
The survey package

Thomas Lumley

UW Biostatistics

R Core Development Team

Vanderbilt — 2004-2-16/17

Overview: survey package for R

• Free software (LGPL) with extensible design

• Handles stratification, clustering, unequal-probability sam-
pling, post-stratification

• Provides Taylor linearization and replicate-weight variances
(jackknife, BRR, bootstrap user-supplied weights). Next
version handles multistage finite-population corrections.

• Good coverage of regression, requires programming for
complex tables.

• Relatively slow.

• New, and therefore less well tested.

Interactive data analysis

John Chambers ACM Software Systems award citation:

For the S system, which has forever altered how people

analyze, visualize, and manipulate data.

Interactive analysis is not always appropriate

• Many non-statisticians do not have the expertise to benefit

from interactive analysis

• Even expert statistical analysis should often be planned and

programmed in advance, executed quickly when data become

available.

R package system

• Quality control: R CMD check requires that every function
is documented, the documented arguments match the actual
ones, the examples all run, etc. Also supports extra
validation/regression tests.

• Centralized distribution: Comprehensive R Archive Network
(http://cran.r-project.org)

• Easy to install: install.packages(), menu items in GUI
versions of R

• Cross-platform support: Under Unix, R knows what compiler
and linker flags are needed. For Mac OS X and Windows,
compiled binary versions of CRAN packages are created
automatically.

http://cran.r-project.org

Challenges in integrating survey

software
• Probability samples come with a lot of meta-data that has

to be linked correctly to the observations

• Interesting data sets tend to be large.

• Design-based inference literature is largely separate from rest

of statistics, doesn’t seem to have a unifying concept such

as likelihood to rationalize arbitrary choices.

In part, too, the specialized terminology has formed barriers

around the territory. At one recent conference, I heard a speaker

describe methods used in his survey with the sentence, ”We used

BRR on a PPS sample of PSU’s, with MI after NRFU”

(Sharon Lohr, American Statistician 5/2004)

Progress

• Thanks to Moore’s Law, desktop computers can now handle

large data sets

• High-level languages simplify the meta-data problem

• Model-based inference is starting to use similar mathematical

techniques to design-based inference: inverse-probability

weighting, sandwich variance estimates, subsampling boot-

strap, . . .

• Semiparametric inference for statistical functionals is philo-

sophically more similar to design-based inference: parameters

are defined as the result of a computation on a (theoretical

or empirical) distribution function.

Analysis Methods

• Estimation by inverse-probability weighting:

– summary statistics, totals, ratios

– linear regression, GLMs, Cox model

– contingency tables.

• Variances by linearisation.

• Variances by replicate weights

Statistical functionals

Define the average slope of Y with X as

β =
∑
i6=j

wij
yi − yj

xi − xj

which is the least squares estimate if wi ∝ (xi−xj)
2 over any finite

sample or population, and infinite populations can be handled by

changing the sum to an integral. There is no mathematical

commitment to any model for (X, Y).

As for most parameters, β satisifies∑
i

Ui(β) = 0

for some estimating function Ui = Ui(xi, yi;β).

Probability weights

If the probability of obtaining observation i is πi, and Ui is the

estimating function for the population then∑
i

1

πi
Ui(β) =

∑
i

Ũi(β) = 0

is an unbiased estimating equation for the sample.

Variances

If the population is large or the sample is with-replacement then∑
Ũi will have a Normal distribution. To get interval estimates

we can

• Estimate the variance of
∑

i Ũi(β), which is just a mean, and
apply the delta method (first-order Taylor series linearisation)

var[β̂] = E

[
∂Ũ

∂β

]−1

var[Ũi]E

[
∂Ũ

∂β

]−1

• Perturb Ũi by changing weights to get approximate re-
alisations from the distribution of

∑
Ũi(β), and solve for

β from each one (bootstrap, jackknife, replicate weights,
subsampling).

(in fact even linearisation can be seen as infinitesimal perturba-
tion)

Specifying survey design

des <- svydesign(id=~PSU, strata=~strata,

fpc=~Pop.size, weight=~weights,

data=dataset)

Creates an object containing the survey design information.
Features such as strata or finite population correction are
optional.

Sampling weights can be specified as weights or probabilities, and
for multi-stage sampling can also be specified as probabilities at
each stage

Finite population correction can be specified as proportion
or population size, per observation or per stratum (currently
restricted to first stage of sampling).

Specifying replicate weights

rdes <- svrepdesign(dataset, weights=~weights,

repweights=repweights, type="BRR")

adss<-svrepdesign(data = adssdata,

repweights = adssdata[, 782:981],

scale = 1, rscales = adssjack, type = "other",

weights = ~PH1FW0, combined.weights = TRUE,

fpc=adssfpc, fpctype="correction")

rdes<-as.svrepdesign(des)

Sampling weights can be combined with or separate from
replicate weights.

If R does not know how the weights were constructed a per-
observation (rscales) and overall (scale) multiplier are needed
to convert sum of squared deviations into variance.

Specifying survey information

The survey design object contains the observed data and the

meta-data describing the sampling. This object, rather than a

data frame, is supplied to survey analysis functions.

Subsetting preserves the meta-data

first100.schools <- cal.schools[1:100,]

low.ses <- subset(cal.schools, ell>25 | meals >50)

and an update function allows adding variables

cal.schools <- update(cal.schools,

low.ses= ell>25 | meals >50,

APIchange = api00-api99)

Specifying survey information

Printing the object gives some summary information; more is
available with the summary function:

> dstrat

Stratified Independent Sampling design

svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)

> dclus2

2 - level Cluster Sampling design

With (40, 126) clusters.

svydesign(id = ~dnum + snum, weights = ~pw, data = apiclus2)

> dclus1

1 - level Cluster Sampling design

With (15) clusters.

svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

Specifying survey information

> summary(subset(dstrat, stype != "H"))
Stratified Independent Sampling design
subset.survey.design(dstrat, stype != "H")
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02262 0.02262 0.02262 0.03145 0.04912 0.04912
Stratum sizes:

E H M
obs 100 0 50
design.PSU 100 50 50
actual.PSU 100 0 50
Population stratum sizes (PSUs):

strata N
1 E 4421
2 H 755
3 M 1018
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname" "dnum"
[8] "cname" "cnum" "flag" "pcttest" "api00" "api99" "target"

...

Specifying survey information

Post-stratification and raking adjust sample distributions of a set

of categorical variables to the known population margins (same

issue as estimated vs prespecified weights in Robins-type causal

inference models)

cal.ps<-postStratify(cal.schools,

strata=~stype, population=pop.table)

The rake() function is similar but takes a list of formulas and a

list of population tables.

Specifying survey information

See the effect on weights with

image(cal.schools, type.="total")

image(cal.ps, type.="total")

Specifying survey information

2 4 6 8 12

50
10

0
15

0
Raw

Replicate

O
bs

er
va

tio
n

2 4 6 8 12

50
10

0
15

0

Post−stratified

Replicate

O
bs

er
va

tio
n

Graphics

Scatterplots allowing for sampling weights

• Bubble plots (for small surveys)

• Hexagonal binning (for large surveys)

• Random subsampling (for large surveys)

Random subsampling can be used for other plot types, eg

boxplots.

Graphics

400 500 600 700 800 900

40
0

60
0

80
0

1999 API

20
00

 A
P

I

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

Graphics

1

279120

558239

837357

1116476

1395595

1674714

1953833

2232952

2512070

2791189

3070308

3349427

3628546

3907664

4186783

4465902

Counts

0 20 40 60 80

50
10

0
15

0
20

0
25

0
30

0

Graphics

English language learners

ELL

D
en

si
ty

0 20 40 60 80

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Design principles: interface

S has an established modelling interface where variables to be

used in a computation are specified by a formula and a data

frame.

The survey package uses this interface, but replaces the data

frame with a survey object.

svymean(~api00, design=cal.schools)

svyratio(~api.stu, ~enroll, design=cal.schools)

svyglm(api00~meals+ell+mobility, design=cal.schools)

svytable(~sch.wide+stype, design=cal.schools)

svychisq(~sch.wide+stype, design=cal.schools)

svyby(~api00, by=~sch.wide+stype,

design=cal.schools, svymean)

Design principles: interface

For regression models, the result of a model-fitting function
is an object with methods to extract coefficients, variances,
loglikelihood, AIC, residuals etc, as appropriate.

For summary statistics the result can be fed to ftable for prettier
output: eg table of %ages for school type by success in meeting
comparative improvement target.

> a <- svymean(~interaction(stype, comp.imp), design = dclus1)

> b <- ftable(a, rownames = list(stype = c("E", "H",

"M"), comp.imp = c("No", "Yes")))

> round(100 * b, 1)

stype E H M

comp.imp

No mean 17.5 3.8 6.0

SE 2.6 1.6 2.5

Yes mean 61.2 3.8 7.7

SE 4.2 1.6 2.2

Design principles: interface

These functions return objects containing the results and other

information that enables them to be printed attractively.

> svyratio(~api.stu,~enroll,dclus1)

Ratio estimator: svyratio(~api.stu, ~enroll, dclus1)

Ratios=

enroll

api.stu 0.8497087

SEs=

enroll

api.stu 0.008386297

Here’s the internal structure of the object

> str(svyratio(~api.stu,~enroll,dclus1))

List of 3

$ ratio: num [1, 1] 0.85

..- attr(*, "dimnames")=List of 2

.. ..$: chr "api.stu"

.. ..$: chr "enroll"

$ var : num [1, 1] 7.03e-05

..- attr(*, "dimnames")=List of 2

.. ..$: chr "api.stu"

.. ..$: chr "enroll"

$ call : language svyratio(~api.stu, ~enroll, dclus1)

- attr(*, "class")= chr "svyratio"

Design principles: performance

Good design in a high-level interpreted language emphasizes

simplicity of code rather than efficiency. Simple code is easier to

get right. The survey package contains only about 3000 lines of

code.

On my desktop the replicate-weight computations for a fairly

large dataset are ten times faster than NASSVAR on a 1984 IBM

mainframe. On my laptop they are only three times faster (the

main difference is memory size).

Optimisation for speed and memory is a useful next step. The

R profiler allows program bottlenecks to be identified in real use,

so that optimisation can be directed sensibly. If necessary, parts

of the program can be replaced by C or Fortran code.

Design principles: extensibility

The modelling functions (eg svyglm, svrepglm) call the ordinary

modelling functions (eg glm) to obtain point estimates.

Standard error computations are localized in two functions

(svyCprod and svrVar).

For Taylor linearization, svyCprod computes the variance of the

estimating functions. The other component of the variance, the

inverse of the expected derivative of the estimating functions, is

already available as the model-based variance estimate.

Creating a new estimator involves working out the correct calls

to the model-based version and to svyCprod or svrVar, or writing

a wrapper for withReplicates or svymle.

Design principles: polymorphism

A valuable feature of S is that the same function can do different

things with different objects (eg print, summary, image). The

survey package does not take full advantage of this

• The initial design didn’t consider replication weights, so we

have parallel svy and svrep functions for everything. This is

fixed in the next version, so eg svymean works on both types

of survey object.

• In the traditional S method system dispatch can be based

on only one method, and functions such as plot and

mean are already doing this. They can’t be made to also

consider whether they have a survey design object as another

argument. The newer S4 method system would allow this,

but a lot of things would need to be rewritten.

Replication and arbitrary statistics

The withReplicates function allows any statistic to be pro-

grammed.

Two forms: a function of weights and data, or an expression:

eg ratio estimate

withReplicates(scdrep,

quote(sum(.weights*alive)/sum(.weights*arrests)))

withReplicates(scdrep,

function(w,data) sum(w*data$alive)/sum(w*data$arrests))

(in this case could use svyratio instead)

Validation

• Comparisons to Stata for Taylor linearization methods

• Datasets from Levy & Lemeshow

• A couple of WesVar analyses.

• VPLX documentation examples

• The PEAS project at Napier (Scotland)

To add

Major:

• Score tests for regression models

Minor:

• Better interfaces for ratio/regression estimation of totals

• Survival curve estimation

• Perhaps score-based confidence intervals (eg, Binder 1991)

• Performance improvements (speed, memory)

(and probably things I haven’t thought of)

Main references

• Levy & Lemeshow Sampling of Populations

• Korn & Graubard Analysis of Health Surveys

• Wolter Introduction to Variance Estimation

• Shao & Tu The Jackknife and Bootstrap

• David Binder’s estimating function papers

• Rao & Scott’s contingency table papers

• Valliant (JASA 1983) on post-stratification

Main references

• The Stata survey manual (which credits John Eltinge,

Bureau of Labor Statistics for helping in the design)

• A Westat white paper by Brick, Morganstein, & Valliant on

replication weights.

	Overview: survey package for R
	Interactive data analysis
	R package system
	Challenges in integrating survey software
	Progress
	Analysis Methods
	Statistical functionals
	Probability weights
	Variances
	Specifying survey design
	Specifying replicate weights
	Specifying survey information
	Specifying survey information
	Specifying survey information
	Specifying survey information
	Specifying survey information
	Graphics
	Design principles: interface
	Design principles: interface
	
	Design principles: performance
	Design principles: extensibility
	Design principles: polymorphism
	Replication and arbitrary statistics
	Validation
	To add
	Main references

