
Classes and methods for spatio-temporal

data in R: the spacetime package

1. Das neue IfGI-Logo 1.6 Logovarianten

Logo für den Einsatz in internationalen bzw.

englischsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

ifgi

ifgi

Institute for Geoinformatics
University of Münster

ifgi

Institut für Geoinformatik
Universität Münster

Logo für den Einsatz in nationalen bzw.

deutschsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

Dieses Logo kann bei Anwendungen

eingesetzt werden, wo das Logo besonders

klein erscheint.

Einsatzbereiche: Sponsorenlogo,

Power-Point

Größe bis 40 mm Breite

Edzer Pebesma

May 31, 2011

Abstract

This document describes a set of classes and methods for spatio-
temporal data in R. It builds upon the classes and methods for spatial
data are taken from package sp, and all temporal classes supported by
package xts. The goal is to cover a number of useful representations for
spatio-temporal sensor data, or results from predicting (spatial and/or
temporal interpolation or smoothing), aggregating, or subsetting them.

The goals of this package are to explore how spatio-temporal data
can be sensibly represented in classes, and to find out which analysis and
visualisation methods are useful and feasible for the classes implemented.
It reuses existing classes, methods, and functions present in packages for
spatial data (sp) and time series data (zoo and xts). Coercion to the
appropriate reduced spatial and temporal classes is provided, as well as
to data.frame objects in the obvious long or wide format.

Contents

1 Introduction 2

2 Space-time data in wide and long formats 3

3 Space-time layouts 4
3.1 Full space-time grid . 5
3.2 Sparse space-time grid . 5
3.3 Irregular space-time data.frame 5

4 Spatio-temporal full grid data.frames (STFDF) 5
4.1 Class definition . 5
4.2 Coercion to data.frame . 10
4.3 Coercion to matrix or objects of class xts 11
4.4 Attribute retrieval and replacement: [[and $ 11
4.5 Space and time selection with [. 12

1

http://www.r-project.org
mailto:edzer.pebesma@uni-muenster.de

5 Space-time sparse data.frames (STSDF) 15
5.1 Class definition . 15

6 Spatio-temporal irregular data.frames (STIDF) 16
6.1 Class definition . 16
6.2 Methods . 17

7 Further methods: snapshot, history, coercion 18
7.1 Snap and Hist . 18
7.2 Coercion between STxxx classes 19

8 Graphs of spatio-temporal data: stplot 20
8.1 stplot: panels, space-time plots, animation 20
8.2 Time series plots . 20

9 Spatial footprint or support, time intervals 21
9.1 Time periods . 21
9.2 Spatial support . 21

10 Worked examples 21
10.1 North Carolina SIDS . 22
10.2 Panel data . 22
10.3 Interpolating Irish wind . 23
10.4 Calculation of EOFs . 26
10.5 Conversion from and to trip . 27
10.6 Trajectory data: ltraj in adehabitatLT 29
10.7 Country shapes in cshapes . 31

1 Introduction

Spatio-temporal data are abundant, and easily obtained. Examples are satel-
lite images of parts of the earth, temperature readings for a number of nearby
stations, election results for voting districts and a number of consecutive elec-
tions, GPS tracks for people or animals possibly with additional sensor readings,
disease outbreaks or volcano eruptions.

Schabenberger and Gotway (2004) argue that analysis of spatio-temporal
data often happens conditionally, meaning that either first the spatial aspect is
analysed, after which the temporal aspects are analysed, or reversed, but not in
a joint, integral modelling approach, where space and time are not separated.
As a possible reason they mention the lack of good software, data classes and
methods to handle, import, export, display and analyse such data. This R
package is a start to fill this gap.

Spatio-temporall data are often relatively abundant in either space, or time,
but not in both. Satellite imagery is typically very abundant in space, giving lots
of detail in high spatial resolution for large areas, but relatively sparse in time.
Analysis of repeated images over time may further be hindered by difference
in light conditions, errors in georeferencing resulting in spatial mismatch, and
changes in obscured areas due to changed cloud coverage. On the other side,
data from fixed sensors give often very detailed signals over time, allowing for
elaborate modelling, but relatively little detail in space because a very limited

2

number of sensors is available. The cost of an in situ sensor network typically
depends primarily on its spatial density; the choice of the temporal resolution
with which the sensors register signals may have little effect on total cost.

Although for example Botts et al. (2007) describe a number of open stan-
dards that allow the interaction with sensor data (describing sensor character-
istics, requesting observed values, planning sensors, and processing raw sensed
data to predefined events), the available statistical or GIS software for this is
in an early stage, and scattered. This paper describes an attempt to combine
available infrastructure in the R statistical environment to a set of useful classes
and methods for manipulating, plotting and analysing spatio-temporal data. A
number of case studies from different application areas will illustrate its use.

The current version of the package is experimental, class definitions and
methods are subject to change.

We use xts for time, not only because it supports various basic types to
represent type, but also because it has good tools for aggregation over time
and a very flexible syntax to select time periods that adheres ISO 86011. We
do not use the xts objects to store the spatio-temporal attribute information,
as it is restricted to matrix objects, and hence can only store a single type,
and not combine numeric and factor. Instead, as in the classes of sp, we use
data.frame to store measured values. For information that is purely temporal,
the xts objects can be used, and will be recycled appropriately when coercing
to a long format data.frame.

2 Space-time data in wide and long formats

Spatio-temporal data for which each location has data for each time can be
provided in two so-called wide formats. An example where a single column
refers to a single moment in time is found in the North Carolina Sudden Infant
Death Syndrome (sids) data set, which is in the time wide format:

> library(foreign)

> read.dbf(system.file("shapes/sids.dbf", package = "maptools"))[1:5,

+ c(5, 9:14)]

NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79

1 Ashe 1091 1 10 1364 0 19

2 Alleghany 487 0 10 542 3 12

3 Surry 3188 5 208 3616 6 260

4 Currituck 508 1 123 830 2 145

5 Northampton 1421 9 1066 1606 3 1197

where columns refer to a particular time: SID74 contains to the infant death
syndrome cases for each county at a particular time period (1974-1978).

The Irish wind data, for which the first six records are

> data(wind, package = "gstat")

> wind[1:6,]

1see http://en.wikipedia.org/wiki/ISO_8601

3

http://en.wikipedia.org/wiki/ISO_8601

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83 12.58

2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67

3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50 7.67

4 61 1 4 10.58 6.63 11.75 4.58 4.54 2.88 8.63 1.79 5.83 5.88

5 61 1 5 13.33 13.25 11.42 6.17 10.71 8.21 11.92 6.54 10.92 10.34

6 61 1 6 13.21 8.12 9.96 6.67 5.37 4.50 10.67 4.42 7.17 7.50

BEL MAL

1 18.50 15.04

2 17.54 13.83

3 12.75 12.71

4 5.46 10.88

5 12.92 11.83

6 8.12 13.17

are in space wide format: each column refers to another wind measurement
location, and the rows reflect a single time period; wind was reported as daily
average wind speed in knots (1 knot = 0.5418 m/s).

Finally, panel data are shown in long form, where the full spatio-temporal
information is held in a single column, and other columns denote location and
time. In the Produc data set (Baltagi, 2001), a panel of 48 observations from
1970 to 1986, the first five records are

> data("Produc", package = "plm")

> Produc[1:5,]

state year pcap hwy water util pc gsp emp unemp

1 ALABAMA 1970 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5 4.7

2 ALABAMA 1971 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9 5.2

3 ALABAMA 1972 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3 4.7

4 ALABAMA 1973 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5 3.9

5 ALABAMA 1974 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8 5.5

where the first two columns denote space and time (a default assumption in
package plm), and e.g. pcap reflects private capital stock.

None of these examples documents has strongly referenced spatial or tem-
poral information: it is from the data alone not clear whether the number 1970
refers to a year, or ALABAMA to a state, and where this is. Section ?? shows
for each of these three cases how the data can be converted into classes with
strongly referenced space and time information.

3 Space-time layouts

In the following we will use spatial location to denote a particular point, (set
of) line(s), (set of) polygon(s), or pixel, for which one or more measurements
are registered at particular moments in time.

Three layouts of space-time data have been implemented, along with conve-
nience methods and coercion methods to get from one to the other. These will
be introduced next.

4

3.1 Full space-time grid

A full space-time grid2 of observations for spatial location (points, lines, poly-
gons, grid cells) si, i = 1, ..., n and observation time tj , j = 1, ...,m is obtained
when the full set of n×m set of observations zk is stored, with k = 1, ..., nm. We
choose to cycle spatial locations first, so observation k corresponds to location
si, i = ((k − 1) % n) + 1 and with time moment tj , j = ((k − 1)/n) + 1, with /
integer division and % integer division remainder (modulo). The tj need to be
in time order, as xts objects are used to store them.

In this data class (figure 1), for each location, the same temporal sequence
of data is sampled. Altenatively one could say that for each moment in time,
the same set of spatial entities is sampled. Unsampled combinations of (space,
time) are stored in this class, but are assigned a missing value NA.

3.2 Sparse space-time grid

A sparse grid has the same general layout, with measurements laid out on a
space time grid (figure 2), but instead of storing the full grid, only non-missing
valued observations zk are stored. For each k, an index [i, j] is stored that refers
which spatial location i and time point j the value belongs to. Storing data
this way can be efficient if full space-time lattices have many missing values, or
if a limited set of spatial locations each have different time instances (times of
crime cases for a set of administrative regions), or if for a set of times the set of
spatial locations varies (locations of crimes, registered per year).

3.3 Irregular space-time data.frame

Space-time irregular data.frames (STIDF, figure 3) are those where time and
space points of measured values can have no organization: for each measured
value the spatial location and time point is stored, as in the long format. This
is equivalent to the most sparse grid where the index for observation k is [k, k],
and hence can be dropped. For these objects, n = m equals the number of
records. Locations and time points need not be unique, but will be replicated
in case they are not.

4 Spatio-temporal full grid data.frames (STFDF)

For objects of class STFDF, time representation can be regular or irregular, as is
supported by class xts in package xts. Spatial locations need to be of a class
deriving from Spatial in package sp.

4.1 Class definition

> library(spacetime)

> showClass("ST")

Class "ST" [package "spacetime"]

Slots:

2note that neither locations nor time points need to be laid out in a regular sequence

5

●

●

●

●

●

●

●

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

●

●

●

●

●

●

●

●

●

●

●

●

1st 3rd 4th

1s
t

2n
d

3r
d

1

2

3

4

5

6

7

8

9

10

11

12

STFDF (Space−time full data.frame) layout

Figure 1: space-time layout of STFDF (STF: ST-Full) objects: all space-
time combinations are stored; numbers refer to the ordering of rows in the
data.frame with measured values: time is kept ordered, space cycles first

6

●

●

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

●

●

●

●

●

●

●

1st 2nd 3rd 4th

1s
t

2n
d

3r
d

1[1,1]

2[2,1]

3[3,1]

4[2,2]

5[3,2]

6[1,3]

7[2,4]

STSDF (Space−time sparse data.frame) layout

Figure 2: space-time layout of STSDF (STS: ST-Sparse) objects: only the non-
missing part of the space-time combinations on a lattice are stored; numbers
refer to the ordering of rows in the data.frame; an index is kept where [3,4]
refers to the third item in the list of spatial locations and fourth item in the list
of temporal points.

7

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

●

●

●

●

●

1st 2nd 4th 5th

1s
t,4

th
2n

d
3r

d
5t

h

1

2

3

4

5

STIDF (Space−time irregular data.frame) layout

Figure 3: space-time layout of STIDF (STI: ST-Irregular) objects: each obser-
vation has its spatial location and time stamp stored; in this example, spatial
location 1 is stored twice–observations 1 and 4 having the same location is not
registered.

8

Name: sp time

Class: Spatial xts

Known Subclasses:

Class "STS", directly

Class "STI", directly

Class "STF", directly

Class "STSDF", by class "STS", distance 2

Class "STIDF", by class "STI", distance 2

Class "STFDF", by class "STF", distance 2

Class "STIDFtraj", by class "STIDF", distance 3

> showClass("STFDF")

Class "STFDF" [package "spacetime"]

Slots:

Name: data sp time

Class: data.frame Spatial xts

Extends:

Class "STF", directly

Class "ST", by class "STF", distance 2

> sp = cbind(x = c(0,0,1), y = c(0,1,1))

> row.names(sp) = paste("point", 1:nrow(sp), sep="")

> sp = SpatialPoints(sp)

> time = as.POSIXct("2010-08-05", tz = "GMT")+3600*(10:13)

> m = c(10,20,30) # means for each of the 3 point locations

> mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))

> IDs = paste("ID",1:length(mydata), sep = "_")

> mydata = data.frame(values = signif(mydata,3), ID=IDs)

> stfdf = STFDF(sp, time, mydata)

> str(stfdf)

Formal class 'STFDF' [package "spacetime"] with 3 slots

..@ data:'data.frame': 12 obs. of 2 variables:

.. ..$ values: num [1:12] 9.4 19.4 30.3 10.3 20.3 31.7 10.5 20.9 31.2 10.6 ...

.. ..$ ID : Factor w/ 12 levels "ID_1","ID_10",..: 1 5 6 7 8 9 10 11 12 2 ...

..@ sp :Formal class 'SpatialPoints' [package "sp"] with 3 slots

..@ coords : num [1:3, 1:2] 0 0 1 0 1 1

..- attr(*, "dimnames")=List of 2

..$: chr [1:3] "point1" "point2" "point3"

..$: chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 0 0 1 1

..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

9

..@ projargs: chr NA

..@ time:An ‘xts’ object from 2010-08-05 10:00:00 to 2010-08-05 13:00:00 containing:

Data: int [1:4, 1] 1 2 3 4

Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT

xts Attributes:

NULL

4.2 Coercion to data.frame

The following coercion function creates a data.frame using both the S3 (to set
row.names) and S4 “as()” method. It gives data in the long format, meaning
that time and space are replicated appropriately:

> as.data.frame(stfdf, row.names = IDs)

V1 V2 sp.ID time timedata values ID

ID_1 0 0 point1 2010-08-05 10:00:00 1 9.4 ID_1

ID_2 0 1 point2 2010-08-05 10:00:00 1 19.4 ID_2

ID_3 1 1 point3 2010-08-05 10:00:00 1 30.3 ID_3

ID_4 0 0 point1 2010-08-05 11:00:00 2 10.3 ID_4

ID_5 0 1 point2 2010-08-05 11:00:00 2 20.3 ID_5

ID_6 1 1 point3 2010-08-05 11:00:00 2 31.7 ID_6

ID_7 0 0 point1 2010-08-05 12:00:00 3 10.5 ID_7

ID_8 0 1 point2 2010-08-05 12:00:00 3 20.9 ID_8

ID_9 1 1 point3 2010-08-05 12:00:00 3 31.2 ID_9

ID_10 0 0 point1 2010-08-05 13:00:00 4 10.6 ID_10

ID_11 0 1 point2 2010-08-05 13:00:00 4 20.5 ID_11

ID_12 1 1 point3 2010-08-05 13:00:00 4 28.9 ID_12

> as(stfdf, "data.frame")[1:4,]

V1 V2 sp.ID time timedata values ID

1 0 0 point1 2010-08-05 10:00:00 1 9.4 ID_1

2 0 1 point2 2010-08-05 10:00:00 1 19.4 ID_2

3 1 1 point3 2010-08-05 10:00:00 1 30.3 ID_3

4 0 0 point1 2010-08-05 11:00:00 2 10.3 ID_4

Note that sp.ID denotes the ID of the spatial location; coordinates are shown
for point, pixel or grid cell centre locations; in case locations refer to lines or
polygons, the line’s start coordinate and coordinate centre of weight are given,
respectively, as the coordinate values in this representation.

For a single attribute, we can obtain a data.frame object if we properly
unstack the column, giving the data in both its wide formats when in addition
we apply transpose t():

> unstack(stfdf)

point1 point2 point3

2010-08-05 10:00:00 9.4 19.4 30.3

2010-08-05 11:00:00 10.3 20.3 31.7

2010-08-05 12:00:00 10.5 20.9 31.2

2010-08-05 13:00:00 10.6 20.5 28.9

10

> t(unstack(stfdf))

2010-08-05 10:00:00 2010-08-05 11:00:00 2010-08-05 12:00:00

point1 9.4 10.3 10.5

point2 19.4 20.3 20.9

point3 30.3 31.7 31.2

2010-08-05 13:00:00

point1 10.6

point2 20.5

point3 28.9

> unstack(stfdf, which = 2)

point1 point2 point3

2010-08-05 10:00:00 ID_1 ID_2 ID_3

2010-08-05 11:00:00 ID_4 ID_5 ID_6

2010-08-05 12:00:00 ID_7 ID_8 ID_9

2010-08-05 13:00:00 ID_10 ID_11 ID_12

4.3 Coercion to matrix or objects of class xts

We can coerce an object of class STFDF to an xts if we select a single numeric
attribute:

> as(stfdf[, , "values"], "xts")

point1 point2 point3

2010-08-05 10:00:00 9.4 19.4 30.3

2010-08-05 11:00:00 10.3 20.3 31.7

2010-08-05 12:00:00 10.5 20.9 31.2

2010-08-05 13:00:00 10.6 20.5 28.9

An xts object is a matrix, with time increasing over rows.

4.4 Attribute retrieval and replacement: [[and $

We can define the [[and $ retrieval and replacement methods for all classes
deriving from ST at once. Here are some examples:

> stfdf[[1]]

[1] 9.4 19.4 30.3 10.3 20.3 31.7 10.5 20.9 31.2 10.6 20.5 28.9

> stfdf[["values"]]

[1] 9.4 19.4 30.3 10.3 20.3 31.7 10.5 20.9 31.2 10.6 20.5 28.9

> stfdf[["newVal"]] = rnorm(12)

> stfdf$ID

[1] ID_1 ID_2 ID_3 ID_4 ID_5 ID_6 ID_7 ID_8 ID_9 ID_10 ID_11 ID_12

Levels: ID_1 ID_10 ID_11 ID_12 ID_2 ID_3 ID_4 ID_5 ID_6 ID_7 ID_8 ID_9

11

> stfdf$ID = paste("OldIDs", 1:12, sep = "")

> stfdf$NewID = paste("NewIDs", 12:1, sep = "")

> stfdf

An object of class "STFDF"

Slot "data":

values ID newVal NewID

1 9.4 OldIDs1 1.1418004 NewIDs12

2 19.4 OldIDs2 0.6002616 NewIDs11

3 30.3 OldIDs3 0.2479371 NewIDs10

4 10.3 OldIDs4 -0.8641906 NewIDs9

5 20.3 OldIDs5 -0.3669076 NewIDs8

6 31.7 OldIDs6 0.6631074 NewIDs7

7 10.5 OldIDs7 0.1962056 NewIDs6

8 20.9 OldIDs8 -1.0739603 NewIDs5

9 31.2 OldIDs9 0.8858039 NewIDs4

10 10.6 OldIDs10 -0.9723138 NewIDs3

11 20.5 OldIDs11 -0.9462406 NewIDs2

12 28.9 OldIDs12 1.0871564 NewIDs1

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

4.5 Space and time selection with [

The idea behind the [method for classes in sp was that objects would behave
as much as possible similar to a matrix or data.frame – this is one of the
stronger intuitive areas of R syntax. A construct like a[i,j] selects row(s) i
and column(s) j. In sp, rows were taken as the spatial entities (points, lines,
polygons, pixels) and rows as the attributes. This convention was broken for
objects of class SpatialGridDataFrame, where a[i,j,k] would select the k-th
attribute of the spatial grid selection with spatial grid row(s) i and column(s)
j.

For spatio-temporal data, a[i,j,k] selects spatial entity/entities i, temporal
entity/entities j, and attribute(s) k:

example:

> stfdf[,1] # SpatialPointsDataFrame

12

coordinates values ID newVal NewID

1 (0, 0) 9.4 OldIDs1 1.1418004 NewIDs12

2 (0, 1) 19.4 OldIDs2 0.6002616 NewIDs11

3 (1, 1) 30.3 OldIDs3 0.2479371 NewIDs10

> stfdf[,,1]

An object of class "STFDF"

Slot "data":

values

1 9.4

2 19.4

3 30.3

4 10.3

5 20.3

6 31.7

7 10.5

8 20.9

9 31.2

10 10.6

11 20.5

12 28.9

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

> stfdf[1,,1] # xts

values

2010-08-05 10:00:00 9.4

2010-08-05 11:00:00 10.3

2010-08-05 12:00:00 10.5

2010-08-05 13:00:00 10.6

> stfdf[,,"ID"]

An object of class "STFDF"

Slot "data":

ID

13

1 OldIDs1

2 OldIDs2

3 OldIDs3

4 OldIDs4

5 OldIDs5

6 OldIDs6

7 OldIDs7

8 OldIDs8

9 OldIDs9

10 OldIDs10

11 OldIDs11

12 OldIDs12

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

> stfdf[1,,"values", drop = FALSE] # stays STFDF:

An object of class "STFDF"

Slot "data":

values

1 9.4

4 10.3

7 10.5

10 10.6

Slot "sp":

SpatialPoints:

x y

point1 0 0

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

14

> stfdf[,1, drop=FALSE] #stays STFDF

An object of class "STFDF"

Slot "data":

values ID newVal NewID

1 9.4 OldIDs1 1.1418004 NewIDs12

2 19.4 OldIDs2 0.6002616 NewIDs11

3 30.3 OldIDs3 0.2479371 NewIDs10

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

..1

2010-08-05 10:00:00 1

Clearly, unless drop=FALSE, selecting a single time or single location object
results in an object that is no longer spatio-temporal; see also section 7.

5 Space-time sparse data.frames (STSDF)

Space-time sparse data.frames have a layout over a grid, meaning that partic-
ular times and locations are typically present more than once, but only the data
for the time/location combinations are stored. An index keeps the link between
the measured values in the data entries (rows), and the locations and times.

5.1 Class definition

> showClass("STSDF")

Class "STSDF" [package "spacetime"]

Slots:

Name: data index sp time

Class: data.frame matrix Spatial xts

Extends:

Class "STS", directly

Class "ST", by class "STS", distance 2

In this class, index is an n× 2 matrix. If in this index row i has entry [j, k], it
means that the i-th row in the data slot corresponds to location j and time k.

15

6 Spatio-temporal irregular data.frames (STIDF)

Space-time irregular data.frames store for each data record the location and
time. No index is kept. Location and time need not be organized. Data are
stored such that time is ordered (as it is an xts object).

6.1 Class definition

> showClass("STIDF")

Class "STIDF" [package "spacetime"]

Slots:

Name: data sp time

Class: data.frame Spatial xts

Extends:

Class "STI", directly

Class "ST", by class "STI", distance 2

Known Subclasses: "STIDFtraj"

> sp = expand.grid(x = 1:3, y = 1:3)

> row.names(sp) = paste("point", 1:nrow(sp), sep="")

> sp = SpatialPoints(sp)

> time = as.POSIXct("2010-08-05", tz = "GMT")+3600*(11:19)

> m = 1:9 * 10 # means for each of the 9 point locations

> mydata = rnorm(length(sp), mean=m)

> IDs = paste("ID",1:length(mydata))

> mydata = data.frame(values = signif(mydata,3),ID=IDs)

> stidf = STIDF(sp, time, mydata)

> stidf

An object of class "STIDF"

Slot "data":

values ID

1 9.89 ID 1

2 21.50 ID 2

3 29.70 ID 3

4 39.20 ID 4

5 49.60 ID 5

6 59.30 ID 6

7 70.50 ID 7

8 80.70 ID 8

9 88.40 ID 9

Slot "sp":

SpatialPoints:

x y

[1,] 1 1

16

[2,] 2 1

[3,] 3 1

[4,] 1 2

[5,] 2 2

[6,] 3 2

[7,] 1 3

[8,] 2 3

[9,] 3 3

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 11:00:00 1

2010-08-05 12:00:00 2

2010-08-05 13:00:00 3

2010-08-05 14:00:00 4

2010-08-05 15:00:00 5

2010-08-05 16:00:00 6

2010-08-05 17:00:00 7

2010-08-05 18:00:00 8

2010-08-05 19:00:00 9

6.2 Methods

Selection takes place with the [method:

> stidf[1:2,]

An object of class "STIDF"

Slot "data":

values ID

1 9.89 ID 1

2 21.50 ID 2

Slot "sp":

SpatialPoints:

x y

[1,] 1 1

[2,] 2 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 11:00:00 1

2010-08-05 12:00:00 2

17

7 Further methods: snapshot, history, coercion

7.1 Snap and Hist

A time snapshot (Galton, 2004) to a particular moment in time can be obtained
through selecting a particular time moment:

> stfdf[, time[3]]

coordinates values ID newVal NewID

10 (0, 0) 10.6 OldIDs10 -0.9723138 NewIDs3

11 (0, 1) 20.5 OldIDs11 -0.9462406 NewIDs2

12 (1, 1) 28.9 OldIDs12 1.0871564 NewIDs1

by default, a simplified object of the underlying Spatial class for this particular
time is obtained (drop=TRUE); if we specify drop = FALSE, the class will not be
changed:

> class(stfdf[, time[3]])

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

> class(stfdf[, time[3], drop = FALSE])

[1] "STFDF"

attr(,"package")

[1] "spacetime"

A time series (or history, according to Galton, 2004) for a single particular
location is obtained by selecting this location, e.g.

> stfdf[1, , "values"]

values

2010-08-05 10:00:00 9.4

2010-08-05 11:00:00 10.3

2010-08-05 12:00:00 10.5

2010-08-05 13:00:00 10.6

Again, the class is not reduced to the simpler when drop = FALSE is specified:

> class(stfdf[1,])

[1] "xts" "zoo"

> class(stfdf[1, drop = FALSE])

[1] "STFDF"

attr(,"package")

[1] "spacetime"

For objects of class STIDF, drop = TRUE results in a Spatial object when a
single time value is selected.

18

7.2 Coercion between STxxx classes

Coercion from full to sparse and/or irregular space-time data.frames, we can
use as:

> class(stfdf)

[1] "STFDF"

attr(,"package")

[1] "spacetime"

> class(as(stfdf, "STSDF"))

[1] "STSDF"

attr(,"package")

[1] "spacetime"

> class(as(as(stfdf, "STSDF"), "STIDF"))

[1] "STIDF"

attr(,"package")

[1] "spacetime"

> class(as(stfdf, "STIDF"))

[1] "STIDF"

attr(,"package")

[1] "spacetime"

On our way back, the reverse coercion takes place:

> x = as(stfdf, "STIDF")

> class(as(x, "STSDF"))

[1] "STSDF"

attr(,"package")

[1] "spacetime"

> class(as(as(x, "STSDF"), "STFDF"))

[1] "STFDF"

attr(,"package")

[1] "spacetime"

> class(as(x, "STFDF"))

[1] "STFDF"

attr(,"package")

[1] "spacetime"

> xx = as(x, "STFDF")

> identical(stfdf, xx)

[1] TRUE

19

8 Graphs of spatio-temporal data: stplot

8.1 stplot: panels, space-time plots, animation

The stplot method can create a few specialized plot types for the classes in the
spacetime package. They are:

multi-panel plots In this form, for each time step (selected) a map is plotted
in a separte panel, and the strip above the panel indicates the time step.
The panels share x- and y-axis, no space is lost by separating white space,
and a common legend is used. An example for gridded data is shown in
figure 6. The stplot is a wrapper around spplot in package sp, and
inherits most of its options.

space-time plots space-time plots show data in a space-time cross section,
with e.g. space on the x-axis and time on the y-axis. An example on the
sea surface temperature data in Cressie and Wikle (2011) is obtained by

> demo(CressieWikle)

Obviously, such plots only make sense for full space-time lattices, i.e. ob-
jects of class STFDF. To obtain such a plot, the arguments mode and scaleX

should be considered; some special care is needed when the x- or y-axis
needs to be plotted instead of the spatial index (1...n); details are found
in the stplot documentation.

animated plots Animation is another way of displaying change over time; a
sequence of spplots, one for each time step, is looped over when the
parameter animate is set to a positive value (indicating the time in seconds
to pause between subsequent plots).

8.2 Time series plots

Time series plots are a fairly common type of plot in R. For instance packate
xts has a plot method that, surprisingly, only allows univariate time series to
be plotted. Many (if not most) plot routines in R support time to be along the
x- or y-axis. The plot in figure 7 was generated by the following code:

> library(lattice)

> library(RColorBrewer)

> b = brewer.pal(12,"Set3")

> par.settings = list(superpose.symbol = list(col = b, fill = b),

+ superpose.line = list(col = b),

+ fontsize = list(text=9))

> print(xyplot(values ~ time, groups = sp.ID, as.data.frame(w),

+ type='l', auto.key=list(space="right"),

+ xlab = "1961", ylab = expression(sqrt(speed)),

+ par.settings = par.settings))

20

9 Spatial footprint or support, time intervals

9.1 Time periods

Time series structures available in R have, explicitly or implicitly, for each record
a time stamp, not a time interval. The implicit assumption seems to be (i) the
time stamp is a moment, (ii) this indicates either the real moment of mea-
surement / registration, or the start of the interval over which something is
aggregated (summed, averaged, maximized). For financial ”Open, high, low,
close” data, the ”Open” and ”Close” refer to the values at the moments the stock
exchange opens and closes, meaning time instances, whereas ”high” and ”low”
are aggregated values – the minimum and maximum price over the time interval
between opening and closing times.

According to ISO 8601:2004, a time stamp like ”2010-05” refers to the full
month of May, 2010, and so reflects a time period rather than a moment. As a
selection criterion, xts will include everything inside the following interval:

> .parseISO8601("2010-05")

$first.time

[1] "2010-05-01 CEST"

$last.time

[1] "2010-05-31 23:59:59 CEST"

and this syntax lets one define, unambiguously, yearly, monthly, daily, hourly
or minute intervals, but not e.g.˜10- or 30-minute intervals; for some particular
ten minute interval, the full specification is needed:

> .parseISO8601("2010-05-01T13:30/2010-05-01T13:39")

$first.time

[1] "2010-05-01 13:30:00 CEST"

$last.time

[1] "2010-05-01 13:39:59 CEST"

9.2 Spatial support

All examples above work with spatial points, i.e. data having a point support.
The assumption of data having points support is implicit. For polygons, the
assumption will be that values reflect aggregates over the polygon. For gridded
data, it is ambiguous whether the value at the grid cell centre is meant (e.g.
for DEM data) or an aggregate over the grid cell (typical for remote sensing
imagery).

10 Worked examples

This section shows how existing data in various formats can be converted into
ST classes, and how they can be analysed and/or visualised.

21

http://en.wikipedia.org/wiki/ISO_8601

1974−1978

1979−1984

0

10

20

30

40

50

Figure 4: North Carolina sudden infant death syndrome (sids) data

10.1 North Carolina SIDS

As an example, the North Carolina Sudden Infant Death Syndrome (sids) data
in package maptools will be used; they are sparse in time (aggregated to 2
periods of unequal length, according to the documentation in package spdep),
but have polygons in space. Figure 4 shows the plot generated.

> library(maptools)

> fname = system.file("shapes/sids.shp", package = "maptools")[1]

> nc = readShapePoly(fname, proj4string = CRS("+proj=longlat +datum=NAD27"))

> data = data.frame(BIR = c(nc$BIR74, nc$BIR79), NWBIR = c(nc$NWBIR74,

+ nc$NWBIR79), SID = c(nc$SID74, nc$SID79))

> time = as.POSIXct(strptime(c("1974-01-01", "1979-01-01"), "%Y-%m-%d"),

+ tz = "GMT")

> nct = STFDF(sp = as(nc, "SpatialPolygons"), time = time, data = data)

> stplot(nct[, , "SID"], c("1974-1978", "1979-1984"))

10.2 Panel data

The panel data discussed in section 2 are imported as a full ST data.frame
(STFDF), and linked to the proper state polygons of maps. Both Produc and
the states in package maps order states alphabetically; the only thing to watch
out for is that the former does not include District of Columbia, but the latter
does (record 8):

> library(maps)

> states.m = map('state', plot=FALSE, fill=TRUE)

> IDs <- sapply(strsplit(states.m$names, ":"), function(x) x[1])

22

> library(maptools)

> states = map2SpatialPolygons(states.m, IDs=IDs)

> library(plm)

> data(Produc)

> yrs = 1970:1986

> time = as.POSIXct(paste(yrs, "-01-01", sep=""), tz = "GMT")

> # deselect District of Columbia, polygon 8, which is not present in Produc:

> Produc.st = STFDF(states[-8], time, Produc[order(Produc[2], Produc[1]),])

> stplot(Produc.st[,,"unemp"], yrs)

(The plot itself was omitted for reasons of file size.) Time and state were not re-
moved from the data table on construction; printing these data as a data.frame

confirms that time and state were matched correctly. The plm routines can be
used on the data, back transformed to a data.frame, when index is specified
(the first two columns from the back-transformed data no longer contain state
and year):

> zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

+ data = as.data.frame(Produc.st), index = c("state", "year"))

> summary(zz)

Oneway (individual) effect Within Model

Call:

plm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

data = as.data.frame(Produc.st), index = c("state", "year"))

Balanced Panel: n=48, T=17, N=816

Residuals :

Min. 1st Qu. Median 3rd Qu. Max.

-0.12000 -0.02370 -0.00204 0.01810 0.17500

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

log(pcap) -0.02614965 0.02900158 -0.9017 0.3675

log(pc) 0.29200693 0.02511967 11.6246 < 2.2e-16 ***

log(emp) 0.76815947 0.03009174 25.5273 < 2.2e-16 ***

unemp -0.00529774 0.00098873 -5.3582 1.114e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 18.941

Residual Sum of Squares: 1.1112

R-Squared : 0.94134

Adj. R-Squared : 0.88135

F-statistic: 3064.81 on 4 and 764 DF, p-value: < 2.22e-16

10.3 Interpolating Irish wind

This worked example is a modified version of the analysis presented in demo(wind)

of package gstat. This demo is rather lengthy and reproduces much of the origi-

23

12°W 10°W 8°W 6°W 4°W

51
°N

52
°N

53
°N

54
°N

55
°N

Valentia

Belmullet

Claremorris

Shannon

Roche's Point

Birr

Mullingar

Malin Head

Kilkenny

Clones

Dublin

Roslare

Figure 5: Station locations for Irish wind data

nal analysis in Haslett and Raftery (1989). Here, we will reduce the intermediate
plots and focus on the use of spatio-temporal classes.

First, we will load the wind data from package gstat. It has two tables,
station locations in a data.frame, called wind.loc, and daily wind speed in
data.frame wind. We now convert character representation (such as 51d56’N)
to proper numerical coordinates, and convert the station locations to a Spatial-
PointsDataFrame object. A plot of these data is shown in figure 6.

> library(gstat)

> data(wind)

> wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))

> wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude"]])))

> coordinates(wind.loc) = ~x + y

> proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

The first thing to do with the wind speed values is to reshape these data.
Unlike the North Carolina SIDS data of section 10.1, for this data space is sparse
and time is rich, and so the data in data.frame wind come in space wide form
with stations time series in columns:

24

> wind[1:3,]

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83 12.58

2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67

3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50 7.67

BEL MAL

1 18.50 15.04

2 17.54 13.83

3 12.75 12.71

We will recode the time columns to an appropriate time data structure, and
subtract a smooth time trend of daily means:

> wind$time = ISOdate(wind$year + 1900, wind$month, wind$day)

> wind$jday = as.numeric(format(wind$time, "%j"))

> stations = 4:15

> windsqrt = sqrt(0.5148 * wind[stations])

> Jday = 1:366

> daymeans = apply(sapply(split(windsqrt - mean(windsqrt), wind$jday),

+ mean), 2, mean)

> meanwind = lowess(daymeans ~ Jday, f = 0.1)$y[wind$jday]

> velocities = apply(windsqrt, 2, function(x) {

+ x - meanwind

+ })

Next, we will match the wind data to its location, and project the longi-
tude/latitude coordinates and country boundary to the appropriate UTM zone:

> # order locations to order of columns in wind;

> # connect station names to location coordinates

> wind.loc = wind.loc[match(names(wind[4:15]), wind.loc$Code),]

> pts = coordinates(wind.loc[match(names(wind[4:15]), wind.loc$Code),])

> rownames(pts) = wind.loc$Station

> pts = SpatialPoints(pts)

> # convert to utm zone 29, to be able to do interpolation in

> # proper Euclidian (projected) space:

> proj4string(pts) = "+proj=longlat +datum=WGS84"

> library(rgdal)

> utm29 = CRS("+proj=utm +zone=29 +datum=WGS84")

> pts = spTransform(pts, utm29)

> # construct from space-wide table:

> w = stConstruct(velocities, space = list(values = 1:ncol(velocities)),

+ time = wind$time, SpatialObj = pts)

> library(maptools)

> m = map2SpatialLines(

+ map("worldHires", xlim = c(-11,-5.4), ylim = c(51,55.5), plot=F))

> proj4string(m) = "+proj=longlat +datum=WGS84"

> m = spTransform(m, utm29)

> # setup grid

> grd = SpatialPixels(SpatialPoints(makegrid(m, n = 300)),

25

1961−04−01 12:00:001961−04−04 17:20:001961−04−07 22:40:001961−04−11 04:00:001961−04−14 09:20:00

1961−04−17 14:40:001961−04−20 20:00:001961−04−24 01:20:001961−04−27 06:40:001961−04−30 12:00:00

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Figure 6: Space-time interpolations of wind (square root transformed, de-
trended) over Ireland using a separable product covariance model, for 10 time
points regularly distributed over the month for which daily data was considered
(April, 1961)

+ proj4string = proj4string(m))

> # select april 1961:

> w = w[, "1961-04"]

> # 10 prediction time points, evenly spread over this month:

> n = 10

> tgrd = xts(1:n, seq(min(index(w)), max(index(w)), length=n))

> # separable covariance model, exponential with ranges 750 km and 1.5 day:

> v = list(space = vgm(0.6, "Exp", 750000), time = vgm(1, "Exp", 1.5 * 3600 * 24))

> pred = krigeST(sqrt(values)~1, w, STF(grd, tgrd), v)

> wind.ST = STFDF(grd, tgrd, data.frame(sqrt_speed = pred))

the results of which are shown in figure 6, created with stplot.

10.4 Calculation of EOFs

Empirical orthogonal functions from STFDF objects can be computed in spatial
form (default):

> eof.sp = EOF(wind.ST)

or in temporal form by:

> eof.xts = EOF(wind.ST, "temporal")

26

1961

sp
ee

d

1.0

1.5

2.0

2.5

3.0

Apr 03 Apr 10 Apr 17 Apr 24 May 01

Belmullet
Birr
Claremorris
Clones
Dublin
Kilkenny
Malin Head
Mullingar
Roche's Point
Roslare
Shannon
Valentia

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Time series plot of daily wind speed at 12 stations, used for interpo-
lation in figure 6

the resulting object is of the appropriate Spatial subclass (SpatialGrid, Spa-
tialPolygons etc.) in the spatial form, or of class xts in the temporal form.
Figure 8 shows the 10 spatial EOFs obtained from the interpolated wind data
of figure 6.

10.5 Conversion from and to trip

Objects of class trip (Sumner, 2010) extend objects of class SpatialPoints-

DataFrame by indicating in which attribute columns time and trip ID are, in
slot TOR.columns. To not lose this information (in particular, which column
contains the IDs), we will extend class STIDF to retain this info.

Currently it does assume that time in a trip object is in order, as xts will
order it anyhow:

> library(diveMove)

> library(trip)

> locs = readLocs(gzfile(system.file(file.path("data", "sealLocs.csv.gz"),

+ package = "diveMove")), idCol = 1, dateCol = 2, dtformat = "%Y-%m-%d %H:%M:%S",

+ classCol = 3, lonCol = 4, latCol = 5, sep = ";")

> ringy = subset(locs, id == "ringy" & !is.na(lon) & !is.na(lat))

> coordinates(ringy) = ringy[c("lon", "lat")]

> tr = trip(ringy, c("time", "id"))

> setAs("trip", "STIDFtraj", function(from) {

+ from$burst = from[[from@TOR.columns[2]]]

+ time = from[[from@TOR.columns[1]]]

+ new("STIDFtraj", STIDF(as(from, "SpatialPoints"), time, from@data))

+ })

27

EOF1 EOF2 EOF3 EOF4 EOF5

EOF6 EOF7 EOF8 EOF9 EOF10

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 8: EOFs of space-time interpolations of wind over Ireland (for spatial
reference, see figure 6), for the 10 time points at which daily data was chosen
above (April, 1961)

28

> x = as(tr, "STIDFtraj")

> m = map2SpatialLines(map("world", xlim = c(-100, -50), ylim = c(40,

+ 77), plot = F))

> proj4string(m) = "+proj=longlat +datum=WGS84"

> plot(m, axes = TRUE, cex.axis = 0.7)

> plot(x, add = TRUE, col = "red")

> setAs("STIDFtraj", "trip", function(from) {

+ from$time = index(from@time)

+ trip(SpatialPointsDataFrame(from@sp, from@data), c("time",

+ "burst"))

+ })

> y = as(x, "trip")

> y$burst = NULL

> all.equal(y, tr, check.attributes = FALSE)

[1] TRUE

120°W 100°W 80°W 60°W 40°W

40
°N

50
°N

60
°N

70
°N

80
°N

10.6 Trajectory data: ltraj in adehabitatLT

Trajectory objects of class ltraj are lists of bursts, sets of sequentially, con-
nected space-time points at which an object is registered. When converting a
list to a single STIDF object, the ordering is according to time, and the subse-
quent objects become unconnected. In the coercion back to ltraj, based on ID
and burst the appropriate bursts are restored. A simple plot is obtained by:

29

> library(adehabitatLT)

> # from: adehabitat/demo/managltraj.r

> # demo(managltraj)

> data(puechabonsp)

> # locations:

> locs = puechabonsp$relocs

> xy = coordinates(locs)

> ### Conversion of the date to the format POSIX

> da = as.character(locs$Date)

> da = as.POSIXct(strptime(as.character(locs$Date),"%y%m%d"), tz = "GMT")

> ## object of class "ltraj"

> ltr = as.ltraj(xy, da, id = locs$Name)

> foo = function(dt) dt > 100*3600*24

> ## The function foo returns TRUE if dt is longer than 100 days

> ## We use it to cut ltr:

> l2 = cutltraj(ltr, "foo(dt)", nextr = TRUE)

> stidfTrj = as(l2, "STIDFtraj")

> ltr0 = as(stidfTrj, "ltraj")

> all.equal(l2, ltr0, check.attributes = FALSE)

[1] TRUE

> plot(stidfTrj, col = c("red", "green", "blue", "darkgreen", "black"),

+ axes=TRUE)

698000 700000 702000

31
58

00
0

31
60

00
0

A more complicated plot is shown in figure 9, obtained by the command

30

> stplot(stidfTrj, by = "time*id")

the output of which is shown in figure 9.

10.7 Country shapes in cshapes

The cshapes package contains a GIS dataset of country boundaries (1946-2008),
and includes functions for data extraction and the computation of weights ma-
trices. The data set consist of a SpatialPolygonsDataFrame, with the following
attributes:

> library(cshapes)

> cs = cshp()

> names(cs)

[1] "CNTRY_NAME" "AREA" "CAPNAME" "CAPLONG" "CAPLAT"

[6] "FEATUREID" "COWCODE" "COWSYEAR" "COWSMONTH" "COWSDAY"

[11] "COWEYEAR" "COWEMONTH" "COWEDAY" "GWCODE" "GWSYEAR"

[16] "GWSMONTH" "GWSDAY" "GWEYEAR" "GWEMONTH" "GWEDAY"

[21] "ISONAME" "ISO1NUM" "ISO1AL2" "ISO1AL3"

where two data bases are used, ”COW” (correlates of war project, 2008), and
”GW” Gleditsch and Ward (1999). The attributes COWSMONTH and COWE-
MONTH denote the start month and end month, respectively, according to the
COW data base.

To select the country boundaries corresponding to a particular date and
system, one can use

> cshp.2002 <- cshp(date = as.Date("2002-6-30"), useGW = TRUE)

In the following fragment, an unordered list of times t is passed on to STIDF,
and this will cause the geometries and attributes to be reordered (in the order
of t):

> t = as.POSIXct(strptime(paste(cs$COWSYEAR, cs$COWSMONTH, cs$COWSDAY,

+ sep = "-"), "%Y-%m-%d"), tz = "GMT")

> st = STIDF(geometry(cs), t, as.data.frame(cs))

> pt = SpatialPoints(cbind(7, 52), CRS(proj4string(cs)))

> as.data.frame(st[pt, , 1:5])

V1 V2 sp.ID time timedata CNTRY_NAME AREA

1 9.41437 50.57623 188 1955-05-05 188 Germany Federal Republic 247366.4

2 10.38084 51.09070 187 1990-10-03 187 Germany 356451.5

CAPNAME CAPLONG CAPLAT

1 Bonn 7.1 50.73333

2 Berlin 13.4 52.51667

Acknowledgements

Michael Sumner provided helpful comments on the trip example. Members
from the spatio-temporal modelling lab of the institute for geoinformatics of the
University of Muenster contributed in useful discussions.

31

time
Brock

time
Brock

time
Brock

time
Brock

time
Brock

time
Brock

time
Calou

time
Calou

time
Calou

time
Calou

time
Calou

time
Calou

time
Chou

time
Chou

time
Chou

time
Chou

time
Chou

time
Chou

time
Jean

time
Jean

time
Jean

time
Jean

time
Jean

time
Jean

Figure 9: trajectories, by id (rows) and time (columns)

32

References

Baltagi B (2001). Econometric Analysis of Panel Data. John Wiley and Sons,
3rd edition. (see http://www.wiley.com/legacy/wileychi/baltagi/)

Botts, M., Percivall, G., Reed, C., and Davidson, J., 2007. OGC Sensor
Web Enablement: Overview And High Level Architecture. Technical re-
port, Open Geospatial Consortium. http://portal.opengeospatial.

org/files/?artifact_id=25562

Calenge, C., S. Dray, M. Royer-Carenzi (2008). The concept of animals’ tra-
jectories from a data analysis perspective. Ecological informatics 4, 34-41.

Cressie, N., C. Wikle, 2011. Statistics for spatio-temporal data. Wiley, NY.

Croissant Y., G. Millo, 2008. Panel Data Econometrics in R: The plm Package.
Journal of Statistical Software, 27(2). http://www.jstatsoft.org/v27/
i02/.

Galton, A. (2004). Fields and Objects in Space, Time and Space-time. Spatial
cognition and computation 4(1).

Güting, R.H., M. Schneider, 2005. Moving Objects Databases. Morgan Kauf-
mann Publishers.

Haslett, J. and Raftery, A. E., 1989. Space-time Modelling with Long-memory
Dependence: Assessing Ireland’s Wind Power Resource (with Discussion).
Applied Statistics 38, 1-50.

Schabenberger, O., and Gotway, C.A., 2004. Statistical methods for spatial
data analysis. Boca Raton: Chapman and Hall.

Sumner, M., 2010. The tag location problem. Unpublished PhD thesis, Insti-
tute of Marine and Antarctic Studies University of Tasmania, September
2010.

Correlates of War Project. 2008. State System Membership List, v2008.1.
Online, http://correlatesofwar.org/

Gleditsch, Kristian S., Michael D. Ward. 1999. Interstate System Membership:
A Revised List of the Independent States since 1816. International Inter-
actions 25: 393-413. Online, http://privatewww.essex.ac.uk/~ksg/

statelist.html

33

http://www.wiley.com/legacy/wileychi/baltagi/
http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562
http://www.jstatsoft.org/v27/i02/
http://www.jstatsoft.org/v27/i02/
http://correlatesofwar.org/
http://privatewww.essex.ac.uk/~ksg/statelist.html
http://privatewww.essex.ac.uk/~ksg/statelist.html

	Introduction
	Space-time data in wide and long formats
	Space-time layouts
	Full space-time grid
	Sparse space-time grid
	Irregular space-time data.frame

	Spatio-temporal full grid data.frames (STFDF)
	Class definition
	Coercion to data.frame
	Coercion to matrix or objects of class xts
	Attribute retrieval and replacement: [[and $
	Space and time selection with [

	Space-time sparse data.frames (STSDF)
	Class definition

	Spatio-temporal irregular data.frames (STIDF)
	Class definition
	Methods

	Further methods: snapshot, history, coercion
	Snap and Hist
	Coercion between STxxx classes

	Graphs of spatio-temporal data: stplot
	stplot: panels, space-time plots, animation
	Time series plots

	Spatial footprint or support, time intervals
	Time periods
	Spatial support

	Worked examples
	North Carolina SIDS
	Panel data
	Interpolating Irish wind
	Calculation of EOFs
	Conversion from and to trip
	Trajectory data: ltraj in adehabitatLT
	Country shapes in cshapes

