
Generalized and Customizable Sets in R

David Meyer and Kurt Hornik

2008-11-26

Abstract

This document explains algorithms and basic operations of sets and some generalizations
of sets (fuzzy sets, multisets, and fuzzy multisets) available in R through the sets package.

There is only rudimentary support in base R for sets. Typically, these are represented using
atomic or recursive vectors (lists), and one can use operations such as union(), intersect(),
setdiff(), setequal(), and is.element() to emulate set operations. However, there are several
drawbacks: first of all, quite a few other operations such as the Cartesian product, the power set,
the subset predicate, etc., are missing. Then, the current facilities do not make use of a class
system, making extensions hard (if not impossible). Another consequence is that no distinction
can be made between sequences (ordered collections of objects) and sets (unordered collections of
objects), which is key for the definition of relations, where both concepts are combined. Also, there
is no support for extensions such as fuzzy sets or multisets. Therefore, we decided to provide more
formalized and extended support for sets, and, because they are needed for Cartesian products,
also for tuples.

1 Tuples

The tuple functions in package sets represent basic infrastructure for handling tuples of general (R)
objects. They are used, e.g., to correctly represent Cartesian products of sets, resulting in a set
of tuples (see below). Although tuple objects should behave like “ordinary” vectors for the most
common operations (see examples), some functions may yield unexpected results (e.g., table())
or simply not work (e.g., plot()) since tuple objects are in fact list objects internally. There
are several constructors: tuple() for arbitrarily many objects, and singleton(), pair(), and
triple() for tuples of lengths 1, 2 and 3, respectively. Note that tuple elements can be named.

> ## Do not quote strings

> sets_options("quote", FALSE)

> ## constructor

> tuple(1,2,3, TRUE)

(1, 2, 3, TRUE)

> triple(1,2,3)

(1, 2, 3)

> pair(Name = "David", Height = 185)

(Name = David, Height = 185)

> tuple_is_triple(triple(1,2,3))

[1] TRUE

1



> tuple_is_ntuple(tuple(1,2,3,4), 4)

[1] TRUE

> ## converter

> as.tuple(1:3)

(1L, 2L, 3L)

> ## operations

> c(tuple("a","b"), 1)

(a, b, 1)

> tuple(1,2,3) * tuple(2,3,4)

(2, 6, 12)

> rep(tuple(1,2,3), 2)

(1, 2, 3, 1, 2, 3)

The Summary() methods will also work if defined for the elements:

> sum(tuple(1, 2, 3))

[1] 6

> range(tuple(1, 2, 3))

[1] 1 3

In addition, there is a tuple_outer() function to apply functions to all combinations of tuple
elements. Note that tuple_outer() will also work for regular vectors and thus can really be seen
as an extension of outer():

> tuple_outer(pair(1, 2), triple(1, 2, 3))

1 2 3
1 1 2 3
2 2 4 6

> tuple_outer(1:5, 1:4, "^")

1L 2L 3L 4L
1L 1 1 1 1
2L 2 4 8 16
3L 3 9 27 81
4L 4 16 64 256
5L 5 25 125 625

2 Sets

The basic constructor for creating sets is the set() function accepting an arbitrary number of
R objects as arguments (which can be named). In addition, there is a generic as.set() for
converting suitable objects to sets.

2



> ## constructor

> s <- set(1, 2, 3)

> s

{1, 2, 3}

> ## named elements

> snamed <- set(one = 1, 2, three = 3)

> snamed

{one = 1, 2, three = 3}

> ## Indexing by label

> snamed[["one"]]

[1] 1

> ## subassignment using element-based indexing

> snamed[c(2,3)] <- c("a", "b")

> snamed

{a, three = b, one = 1}

> ## a more complex set

> set(c, "test", list(1, 2, 3))

{test, <<function>>, <<list(3)>>}

> ## set of sets

> set(set(), set(1))

{{}, {1}}

> ## conversion functions

> s2 <- as.set(2:5)

> s2

{2L, 3L, 4L, 5L}

There are some basic predicate functions (and corresponding operators) defined for the (in)equality,
(proper) sub-(super-)set, and element-of. Note that all the set_is_foo () functions are vectorized:

> set_is_empty(set())

[1] TRUE

> set_is_equal(set(1), set(1))

[1] TRUE

> set(1) == set(1)

[1] TRUE

> set(1) != set(2)

[1] TRUE

> set_is_subset(set(1), set(1, 2))

3



[1] TRUE

> set(1) <= set(1, 2)

[1] TRUE

> set(1, 2) >= set(1)

[1] TRUE

> set_is_proper_subset(set(1), set(1))

[1] FALSE

> set(1) < set(1)

[1] FALSE

> set(1, 2) > set(1)

[1] TRUE

> set_contains_element(set(1, 2, 3), 1)

[1] TRUE

> 1 %e% set(1, 2, 3)

[1] TRUE

> set_contains_element(set(1, 2, 3), 1:4)

[1] FALSE FALSE FALSE FALSE

> 1:4 %e% set(1, 2, 3)

[1] FALSE FALSE FALSE FALSE

Other than these predicate functions and operators, one can use: c() and | for the union, -
for the difference (or complement), & for the intersection, %D% for the symmetric difference, *
and ^n for the (n-fold) Cartesian product (yielding a set of n-tuples), and 2^ for the power
set. set_union(), set_intersection(), and set_symdiff() accept more than two arguments.1

The length method for sets gives the cardinality. set_combn() returns the set of all subsets of
specified length. closure() and reduction() compute the closure and reduction under union,
intersection, and symmetric difference. Note that (currently) the rep() method for sets will just
return its argument since set elements are unique.

> length(s)

[1] 3

> length(set())

[1] 0

> ## complement, union, intersection, symmetric difference:

> s - 1

1The n-ary symmetric difference of a collection of sets consists of all elements contained in an odd number of
the sets in the collection.

4



{2, 3}

> s + set("a")

{a, 1, 2, 3}

> s | set("a")

{a, 1, 2, 3}

> s & s2

{}

> s %D% s2

{2L, 3L, 4L, 5L, 1, 2, 3}

> set(1,2,3) - set(1,2)

{3}

> set_intersection(set(1,2,3), set(2,3,4), set(3,4,5))

{3}

> set_union(set(1,2,3), set(2,3,4), set(3,4,5))

{1, 2, 3, 4, 5}

> set_symdiff(set(1,2,3), set(2,3,4), set(3,4,5))

{1, 3, 5}

> ## Cartesian product

> s * s2

{(1, 2L), (1, 3L), (1, 4L), (1, 5L), (2, 2L), (2, 3L), (2, 4L), (2,
5L), (3, 2L), (3, 3L), (3, 4L), (3, 5L)}

> s * s

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3,
3)}

> s ^ 2 # same as above

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3,
3)}

> s ^ 3

{(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1,
3, 1), (1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2,
1), (2, 2, 2), (2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1),
(3, 1, 2), (3, 1, 3), (3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3,
3, 2), (3, 3, 3)}

5



> ## power set

> 2 ^ s

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

> ## subsets:

> set_combn(as.set(1:3),2)

{{1L, 2L}, {1L, 3L}, {2L, 3L}}

> ## closure and reduction (under union):

> cl <- closure(set(set(1), set(2), set(3)))

> print(cl)

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

> reduction(cl)

{{1}, {2}, {3}}

The Summary() methods will also work if defined for the elements:

> sum(s)

[1] 6

> range(s)

[1] 1 3

Using set_outer(), it is possible to apply a function on all factorial combinations of the elements
of two sets. If only one set is specified, the function is applied to all pairs of this set.

> set_outer(set(1, 2), set(1, 2, 3), "/")

1 2 3
1 1 0.5 0.3333333
2 2 1.0 0.6666667

> X <- set_outer(set(1, 2), set(1, 2, 3), set)

> X[[2, 3]]

{2, 3}

> set_outer(2^set(1, 2, 3), set_is_subset)

{} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{} TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
{1} FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
{2} FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
{3} FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
{1, 2} FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
{1, 3} FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
{2, 3} FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
{1, 2, 3} FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

Because set elements are unordered, it is not allowed to use positional subscripting. However, as
shown before, it is possible to use the elements or their labels as index. Further, it is possible to
iterate over all elements using for() and lapply()/sapply():

6



> sapply(s, sqrt)

[1] 1.000000 1.414214 1.732051

> for (i in s) print(i)

[1] 1
[1] 2
[1] 3

3 Generalized Sets

There are several extensions of “ordinary” sets such as fuzzy sets and multisets. Both can be be
seen as special cases of fuzzy multisets. For all extensions, the approach is to define a generalized
set X as a pair (D, f) where D is an ordinary set representing the domain, and f the characteristic
function of X, mapping D to some image I. The subset of the domain for which f is non-zero is
the support of X. If I = {0, 1}, X represents an “ordinary” set. If I = N, X becomes a multiset
whose elements ei can appear multiple times. f(ei) is then called the multiplicity of ei. If I is
the unit interval, X becomes a fuzzy set. In this context, f is typically called the membership
function, f(ei) the membership grade of ei, and D the universe for X. If I is a multiset whose
domain is the unit interval (0 excluded), X is a fuzzy multiset whose elements can each have
several (possibly non-unique) membership grades. If for one element, the asociated membership
grades are all 1, we get a multiset. If there is at most one membership grade, we get a “simple”
fuzzy set. If for the latter case the membership is 1, we fall back to an ordinary set.

Generalized sets are created using the gset() function. This can be done in four ways:

1. Specify the support only (this yields an ordinary set).

2. Specify support and memberships.

3. Specify universe and membership function.

4. Specify a set of elements along with their individual membership grades.

Note that by default, for efficiency reasons, gset() will not store elements with zero memberships
grades. The specification of an universe is thus only mandatory with membership functions. A
default universe can be set using sets_options().

> X <- c("A", "B", "C")

> ## ordinary set (X is converted to a set internally).

> gset(support = X)

{A, B, C}

> ## multiset

> multi <- 1:3

> gset(support = X, memberships = multi)

{A [1], B [2], C [3]}

> ## fuzzy set

> ms <- c(0.1, 0.3, 1)

> gset(support = X, memberships = ms)

{A [0.1], B [0.3], C [1]}

7



> ## fuzzy set using a membership function

> f <- function(x) switch(x, A = 0.1, B = 0.2, C = 1, 0)

> gset(universe = X, charfun = f)

{A [0.1], B [0.2], C [1]}

> ## fuzzy multiset

> ## Here, the membership argument expects a list of membership grades,

> ## either specified as vectors, or as multisets.

> ms2 <- list(c(0.1, 0.3, 0.4), c(1, 1),

+ gset(support = ms, memberships = multi))

> gset(support = X, memberships = ms2)

{A [{0.1, 0.3, 0.4}], B [{1 [2]}], C [{0.1 [1], 0.3 [2], 1 [3]}]}

gset_support(), gset_memberships(), gset_height() and gset_core() can be used to re-
trieve support, memberships, height (maximum membership degree), and the core (elements with
membership 1), respectively, of a generalized set. gset_charfun() returns a (point-wise defined)
characteristic function for a given set. Note that in general, this will be different from the charac-
teristic function possibly used for the creation of the set.

As for ordinary sets, the usual operations such as union, intersection, and complement are
available. Additionally, the sum and the difference of sets are defined, which add and subtract
multiplicities:

> X <- gset(c("A", "B", "C"), 4:6)

> print(X)

{A [4], B [5], C [6]}

> Y <- gset(c("B", "C", "D"), 1:3)

> print(Y)

{B [1], C [2], D [3]}

> ## union vs. sum

> gset_union(X, Y)

{A [4], B [5], C [6], D [3]}

> gset_sum(X, Y)

{A [4], B [6], C [8], D [3]}

> ## intersection vs. difference

> gset_intersection(X, Y)

{B [1], C [2]}

> gset_difference(X, Y)

{A [4], B [4], C [4]}

> ## sum and difference for fuzzy sets

> X <- gset("a", 0.3)

> Y <- gset(c("a", "b"), c(0.3, 0.4))

> gset_sum(X, Y)

{a [0.6], b [0.4]}

8



> gset_sum(X, Y, set("a"))

{a [1], b [0.4]}

> gset_difference(Y, X)

{b [0.4]}

Note that + and - can be used instead, and that for fuzzy (multi-)sets, in general, complement
and difference do not yield the same result (as for crisp sets):

> X - Y

{}

> gset_complement(X, Y)

{a [0.3], b [0.4]}

gset_mean() creates a new set by averaging corresponding memberships using the arithmetic,
geometric or harmonic mean. Note that missing elements have 0 membership degree:

> x <- gset(1:3, 1:3/3)

> y <- gset(1:2, 1:2/2)

> gset_mean(x, y)

{1L [0.4166667], 2L [0.8333333], 3L [0.5]}

> gset_mean(x, y, "harmonic")

{1L [0.4], 2L [0.8]}

> gset_mean(set(1), set(1, 2))

{1 [1], 2 [0.5]}

The membership vector of a generalized set can be transformed using
gset_transform_memberships(), using any vectorized function:

> x <- gset(1:10, 1:10/10)

> gset_transform_memberships(x, pmax, 0.5)

{1L [0.5], 2L [0.5], 3L [0.5], 4L [0.5], 5L [0.5], 6L [0.6], 7L [0.7],
8L [0.8], 9L [0.9], 10L [1]}

Note the effect of applying transformations to (multi)sets:

> x = gset(1, 2)

> gset_transform_memberships(x, `*`, 0.5)

{1 [{0.5 [2]}]}

> rep(x, 0.5)

{1}

In addition, three convenience functions exist: gset_concentrate() and gset_dilate() apply
the square and the square root function, and gset_normalize() normalizes the memberships to
a specified maximum:

9



> gset_dilate(y)

{1L [0.7071068], 2L [1]}

> gset_concentrate(y)

{1L [0.25], 2L [1]}

> gset_normalize(y, 0.5)

{1L [0.25], 2L [0.5]}

For fuzzy (multi-)sets, the user can choose the logic underlying the operations using the
fuzzy_logic() function. Fuzzy logics are represented as named lists with four components N, T, S,
and I containing the corresponding functions for negation, conjunction (“t-norm”), disjunction (“t-
conorm”), and implication. The fuzzy logic is selected by calling fuzzy_logic() with a character
string specifying the fuzzy logic “family”, and optional parameters. Available families include:
"Zadeh" (default), "drastic", "product", "Lukasiewicz", "Fodor", "Frank", "Hamacher",
"Schweizer-Sklar", "Yager", "Dombi", "Aczel-Alsina", "Sugeno-Weber", "Dubois-Prade",
and "Yu". A call to fuzzy_logic() without arguments returns the currently set fuzzy logic.

> X <- gset(c("A", "B", "C"), c(0.3, 0.5, 0.8))

> print(X)

{A [0.3], B [0.5], C [0.8]}

> Y <- gset(c("B", "C", "D"), c(0.1, 0.3, 0.9))

> print(Y)

{B [0.1], C [0.3], D [0.9]}

> ## Zadeh logic (default)

> gset_intersection(X, Y)

{B [0.1], C [0.3]}

> gset_union(X, Y)

{A [0.3], B [0.5], C [0.8], D [0.9]}

> gset_complement(X, Y)

{B [0.1], C [0.2], D [0.9]}

> !X

{A [0.7], B [0.5], C [0.2]}

> ## switch logic

> fuzzy_logic("Fodor")

> ## Fodor logic

> gset_intersection(X, Y)

{C [0.3]}

> gset_union(X, Y)

{A [0.3], B [0.5], C [1], D [0.9]}

10



> gset_complement(X, Y)

{D [0.9]}

> !X

{A [0.7], B [0.5], C [0.2]}

The cut() method for generalized sets “filters” all elements with membership not less then a
specified level—the result, thus, is a crisp (multi)set:

> cut(X, 0.5)

{B, C}

> cut(X)

{}

4 Characteristic Functions and their Visualization

The sets package provides several generators of characteristic functions to be used as templates
for the creation of fuzzy sets, including the following shapes: gaussian curve (fuzzy_normal()),
double gaussian curve (fuzzy_two_normals()), bell curve (fuzzy_bell()), sigmoid curve
(fuzzy_sigmoid()), trapezoid (fuzzy_trapezoid()), and triangle (fuzzy_triangular(),
fuzzy_cone()).

> N <- fuzzy_normal(mean = 0, sd = 1)

> N(-3:3)

[1] 0.01110900 0.13533528 0.60653066 1.00000000 0.60653066 0.13533528 0.01110900

> gset(charfun = N, universe = -3:3)

{-3L [0.01110900], -2L [0.1353353], -1L [0.6065307], 0L [1], 1L
[0.6065307], 2L [0.1353353], 3L [0.01110900]}

For convenience, we also provide wrappers that directly generate corresponding sets, given a
specified (default) universe:

> fuzzy_normal_gset(universe = -3:3)

{-3L [0.01110900], -2L [0.1353353], -1L [0.6065307], 0L [1], 1L
[0.6065307], 2L [0.1353353], 3L [0.01110900]}

It is also possible to create function generators for characteristic functions from other functions
(such as distribution functions):

> fuzzy_poisson <- make_charfun_generator(dpois)

> gset(charfun = fuzzy_poisson(10), universe = seq(0, 20, 2))

{0 [0.00036288], 2 [0.018144], 4 [0.1512], 6 [0.504], 8 [0.9], 10 [1],
12 [0.7575758], 14 [0.4162504], 16 [0.1734377], 18 [0.05667898], 20
[0.01491552]}

make_fuzzy_tuple() generates a sequence (tuple) of sets based on any of the generating functions
(except fuzzy_trapezoid() and fuzzy_triangular()). The chosen generating function is called
with different values (chosen along the universe) passed to the first argument, thus varying the
position or the resulting graph:

11



> make_fuzzy_tuple(fuzzy_normal, 5)

(<<gset(201)>>, <<gset(201)>>, <<gset(201)>>, <<gset(201)>>,
<<gset(201)>>)

The sets package provides support for visualizing the membership functions of generalized sets,
and in particular fuzzy sets. For (fuzzy) multisets, the plot method produces a (grouped) barplot
for the membership vector (see Figure 1, top left):

> X <- gset(c("A", "B"), list(1:2/2, 0.5))

> plot(X)

Characteristic function generators can directly be plotted using a default universe (see Figure 1,
top right):

> plot(fuzzy_bell)

There is a plot method for tuples for visualizing a sequence of sets (see Figure 1, bottom left):

> plot(make_fuzzy_tuple(fuzzy_cone, 10), col = gray.colors(10))

Plots of several sets can be superposed using the line method (see Figure 1, bottom right):

> x <- fuzzy_normal_gset()

> y <- fuzzy_trapezoid_gset(corners = c(5, 10, 15, 17), height = c(0.7,

+ 1))

> plot(tuple(x, y), lty = 3)

> lines(x | y, col = 2)

> lines(gset_mean(x, y), col = 3, lty = 2)

5 Customizable Sets

Customizable sets extend generalized sets in two ways: First, users can control the way elements
are matched, i.e., define equivalence classes of elements. Second, arbitrary iteration orders can be
specified.

By default, sets and generalized sets use identical() to match elements which is maximal
restrictive. Customizable sets can be used to obtain the behavior of "==" or match().

> ## restore string quoting

> sets_options("quote", TRUE)

> ## default behavior of sets: matching of elements is very strict

> ## Note that on most systems, 3.3 - 2.2 != 1.1

> x <- set("1", 1L, 1, 3.3 - 2.2, 1.1)

> print(x)

{"1", 1L, 1, 1.1, 1.1}

> y <- set(1, 1.1, 2L, "2")

> print(y)

{"2", 2L, 1, 1.1}

> 1L %e% y

[1] FALSE

> set_union(x, y)

12



{"1", "2", 1L, 2L, 1, 1.1, 1.1}

> set_intersection(x, y)

{1, 1.1}

> set_complement(x, y)

{"2", 2L}

> ### Now use the more sloppy match()-function (i.e., `==`)

> ### Note that 1 == "1" == 1L ...

> X <- cset(x, matchfun = match)

> print(X)

{"1", 1.1}

> Y <- cset(y, matchfun = match)

> print(Y)

{"2", 1, 1.1}

> 1L %e% Y

[1] TRUE

> cset_union(X, Y)

{"1", "2", 1.1}

> cset_intersection(X, Y)

{"1", 1.1}

> cset_complement(X, Y)

{"2"}

> ## Same using all.equal().

> ## This is a non-vectorized predicate, so use make_matchfun

> ## to generate a vectorized version:

> FUN <- make_matchfun(function(x, y) isTRUE(all.equal(x, y)))

> X <- cset(x, matchfun = FUN)

> print(X)

{"1", 1L, 1.1}

> Y <- cset(y, matchfun = FUN)

> print(Y)

{"2", 2L, 1, 1.1}

> 1L %e% Y

[1] TRUE

> cset_union(X, Y)

{"1", "2", 1L, 2L, 1.1}

13



> cset_intersection(X, Y)

{1L, 1.1}

> cset_complement(X, Y)

{"2", 2L}

set_options() can be used to conveniently switch the default match and/or order function if a
number of cset objects need to be created.

> ### change default functions via sets_option

> sets_options("matchfun", match)

> cset(x)

{"1", 1.1}

> cset(y)

{"2", 1, 1.1}

> cset(1:3) <= cset(c(1,2,3))

[1] TRUE

> ### restore package defaults

> sets_options("matchfun", NULL)

In addition, an order function (or permutation index) can be specified for each set for changing
the order in which iterators such as as.list() process the elements. The latter in particular
influences the labeling and print methods for customizable sets. Sets and generalized sets have a
canonical internal ordering which by default is also used for iterations. With customizable sets, a
“natural” ordering of elements can be kept.

> ## simple example using a permutation index vector

> cset(letters[1:5], orderfun = 5:1)

{"e", "d", "c", "b", "a"}

> ### customized order function

> FUN <- function(x) order(as.character(x), decreasing = TRUE)

> Z <- cset(letters[1:5], orderfun = FUN)

> print(Z)

{"e", "d", "c", "b", "a"}

> as.character(Z)

[1] "a" "b" "c" "d" "e"

Note that converters for ordered factors keeps the order:

> o <- ordered(c("a", "b", "a"), levels = c("b", "a"))

> as.set(o)

{b, a}

> as.cset(o)

14



{a [1], b [2]}

Converter for other data types keep order if the elements are unique:

> as.cset(c("A", "quick", "brown", "fox"))

{"A", "quick", "brown", "fox"}

> as.cset(c("A", "quick", "brown", "fox", "quick"))

{"A" [1], "brown" [1], "fox" [1], "quick" [2]}

15



A B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Universe

M
em

be
rs

hi
p 

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20

Universe

M
em

be
rs

hi
p 

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20

Universe

M
em

be
rs

hi
p 

G
ra

de

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20

Figure 1: Membership plots for fuzzy sets. Top left: grouped barplot for a fuzzy multiset. Top
right: graph of a bell curve. Bottom left: sequence of triangular functions. Bottom right: two
combinations of a normal and a trapzoid function (dotted lines: basic shapes; solid (red) line:
union; dashed (green) line: arithmetic mean).

16


	Tuples
	Sets
	Generalized Sets
	Characteristic Functions and their Visualization
	Customizable Sets

