Package ‘rlang’

April 2, 2019
Version 0.3.4
Title Functions for Base Types and Core R and 'Tidyverse' Features

Description A toolbox for working with base types, core R features
like the condition system, and core 'Tidyverse' features like tidy
evaluation.

License GPL-3
LazyData true
ByteCompile true
Biarch true
Depends R (>=3.1.0)

Suggests covr,
crayon,
magrittr,
methods,
pillar,
rmarkdown,
testthat (>=2.0.0)

Encoding UTF-8
RoxygenNote 6.1.1
Roxygen list(markdown = TRUE)

URL http://rlang.r-1lib.org, https://github.com/r-1lib/rlang

BugReports https://github.com/r-1lib/rlang/issues

R topics documented:

abort . . . L e e e 4
P2V < o - 6
arg_match L e e e e 7
AS_DOX . . . e e e e e e 8
as_data_mask L e 9
AS_ENVIFONMENT o e e e e 12
as_function e 13
as_label L e 14
AS_NAME . . . v v v v e e e e e e e e e 15
AS_QUOSUTE . v v o v e 16

http://rlang.r-lib.org
https://github.com/r-lib/rlang
https://github.com/r-lib/rlang/issues

R topics documented:

AS_SIIANG . . .« o o e e e e 17
as_utf8_character e e e e e 18
bare-type-predicates Lo 19
DOX . . e e e 20
call2 . . . e e e e 21
caller_env e 23
caller_fn L e 23
call_args L e 24
call_fn e, 25
call_inspect e e e 26
call_modify 26
call_name e 28
call_standardise e e e e e 29
catch_cnd L s e 30
end . ..o e e e e 30
end_muffle e e 31
end_signal L. 33
CNA_LYPE .« o v e e e 34
done e e e 35
dOtS_ N . . . 35
dots_values e 36
EIMPLY_CNV ottt e e e e e e e e 37
ENITACE . . . o v v v e i e e e e e e e e e e e e e e 37
BNV . o o e o e e e e e e e e e e e e e e e 38
env_bind L s 40
env_DbUry e 43
eNV_ClONe e e e e e e e e e e 44
env_depth 45
ENV_ZEL . . v v i e e e e e e e e e e e e e e 45
eNV_has e e 46
env_inherits e e 47
env_lock e 47
ENV_NAIME . . . v v v v o v e e e e e e e e e e e e e e e e 48
ENV_NAMES .+ v v v v o e e e e e e e e e 49
ENV_PATCNL ot vt e 50
ENV_PIINt L o e e e e e e e e 51
env_unbind L e 51
eval_bare e e e e e e 52
eval_tidy 54
CXEC & v v i e e e e e e e e e e e e e e e 56
EXItING L e 57
EXPIS_AULO_NAME v v v v e e e e e e e e e e e e e e e e e 58
EXPI_INTEIP . . o o v e e e e e e e e e e e e e e e e e 59
expr_label L 60
EXPI_PIINt L e e e e e 61
fn_body e e 62
f_env e s 62
fn_fmls e e 63
frhs . . . e e e e 64
ftext . . e 65
GELLENV e e e e e e e 66

has_length e 68

R topics documented: 3

has_name s 68
inherits_any L e e e e e e 69
is_call . . . s, 70
is_callable e 71
is_condition L. e e e e e e e e e 72
is_copyable 72
IS_BMPLY .« o v o e e e e e e e e e e 73
IS_ENVIFONMENT v e e e e e e e e e e e e e e e e 73
IS_EXPIESSION .« . . v v v o et e e e e e e e e e 74
is_formula L e e 75
1S_function e e e 77
is_installed e e 78
is_integerish 79
IS_INEETACHIVE o o o e e 80
Is_named e e e e e 80
IS_NAMESPACE .« . v v v v v e e e e e e e e e e e e e e e e e e e 81
IS Teference e s 82
1s_stack . . . L e 83
is_symbol . ..o e 83
IS_LIUE . . o o e e e e e e e e e 83
lang_head e e 84
Jast_error e e 84
lifecycle L e 85
MISSING o e e e e e e e e 88
MISSING ATZ . . . o o v v v i e e e e e e e e e e e 89
NAMES2 o o e e e e e e e e e e e e 91
NEW-VECIOT . . . v v v e v e i e 92
new-vector-along-retired 92
new_formula L e 93
new_function e e e e 94
NEW_QUOSULES . « « v v v v v e 94
OP-ZEL-AtLT o i e e e e e e e e e e e e e e e e 95
op-na-default 96
op-null-default 96
PATSE_EXPI . v o v v e i e 97
PrM_NAME o oottt e e e e e e e e e e e e 98
qUAsIqUOtAtION o e e e e e e 98
QUOSUTE .+« v v v o v e 101
QUOLALION v o i e e e e e e 104
quo_label e e e 107
quo_squash e 109
rep_along e e e 110
TEStArting e 110
return_from L L L e e 112
rlang_backtrace_on_error e 113
ISt_abort L e e e e e 114
ISEULISt . . o o e s 115
scalar-type-predicates e 116
scoped_bindings L. e 116
scoped_Options 117
SEAZ . o e e e 118

Y .4] 119

SEL NAMES . . . v v v et e e e e e e e e e e e e 120
SIEING . o v o o e e e e e e e e e e e e 121
SYM o v v e e e e e e e e e e e e e e e e 122
tidy-dots e e e 122
tidyeval-data L 125
trace_back e 125
type-predicates e e e e e e e e e e e 127
VECLOT-CONSIIUCHION v v v e o e e e e e e e e e e e e e e e e e 128
with_abort e 129
With_env 130
with_handlers e 131
With_restarts e 133
7.1 o P 135

Index 137

abort Signal an error, warning, or message
Description

These functions are equivalent to base functions base: : stop(), base: :warning() and base: :message(),
but make it easy to supply condition metadata:

* Supply .subclass to create a classed condition. Typed conditions can be captured or handled
selectively, allowing for finer-grained error handling.

* Supply metadata with named . .. arguments. This data will be stored in the condition object
and can be examined by handlers.

interrupt() allows R code to simulate a user interrupt of the kind that is signalled with Ctrl-C.
It is currently not possible to create custom interrupt condition objects.

Usage

abort(message, .subclass = NULL, ..., trace = NULL, call = NULL,
parent = NULL, msg, type)

warn(message, .subclass = NULL, ..., call = NULL, msg, type)

inform(message, .subclass = NULL, ..., call = NULL, msg, type)

signal(message, .subclass, ...)
interrupt()
Arguments
message The message to display.
.subclass Subclass of the condition. This allows your users to selectively handle the con-

ditions signalled by your functions.
Additional data to be stored in the condition object.

trace A trace object created by trace_back().

abort 5

call Deprecated as of rlang 0.3.0. Storing the full backtrace is now preferred to
storing a simple call.
parent A parent condition object created by abort().
msg, type These arguments were renamed to message and . type and are deprecated as of
rlang 0.3.0.
Backtrace

Unlike stop() and warning(), these functions don’t include call information by default. This saves
you from typing call. = FALSE and produces cleaner error messages.

A backtrace is always saved into error objects. You can print a simplified backtrace of the last error
by calling last_error() and a full backtrace with summary(last_error()).

You can also display a backtrace with the error message by setting the option rlang_backtrace_on_error.
It supports the following values:

e "reminder”: Invite users to call rlang::last_error() to see a backtrace.
* "branch”: Display a simplified backtrace.

* "collapse”: Display a collapsed backtrace tree.

e "full”: Display a full backtrace tree.

* "none”: Display nothing.

Mufflable conditions

Signalling a condition with inform() or warn() causes a message to be displayed in the console.
These messages can be muffled with base: : suppressMessages() orbase: : suppressWarnings().

On recent R versions (>= R 3.5.0), interrupts are typically signalled with a "resume” restart. This
is however not guaranteed.

Lifecycle
These functions were changed in rlang 0.3.0 to take condition metadata with Consequently:

» All arguments were renamed to be prefixed with a dot, except for type which was renamed to
.subclass.

e .call (previously call) can no longer be passed positionally.

See Also

with_abort() to convert all errors to rlang errors.

Examples

These examples are guarded to avoid throwing errors
if (FALSE) {

Signal an error with a message just like stop():
abort("”"Something bad happened")

Give a class to the error:
abort("Something bad happened”, "somepkg_bad_error")

This will allow your users to handle the error selectively

6 are_na

tryCatch(
somepkg_function(),
somepkg_bad_error = function(err) {
warn(err$message) # Demote the error to a warning
NA # Return an alternative value
}
)

You can also specify metadata that will be stored in the condition:
abort("”"Something bad happened”, "somepkg_bad_error”, data = 1:10)

This data can then be consulted by user handlers:
tryCatch(
somepkg_function(),
somepkg_bad_error = function(err) {
Compute an alternative return value with the data:
recover_error(err$data)
}
)

If you call low-level APIs it is good practice to catch technical
errors and rethrow them with a more meaningful message. Pass on
the caught error as ‘parent® to get a nice decomposition of
errors and backtraces:
file <- "http://foo.bar/baz"
tryCatch(
download(file),
error = function(err) {
msg <- sprintf(”Can't download ‘%s‘", file)
abort(msg, parent = err)

b

Unhandled errors are saved automatically by ‘abort()‘ and can be
retrieved with ‘last_error()‘. The error prints with a simplified
backtrace:

abort("”Saved error?")

last_error()

Use ‘summary()‘ to print the full backtrace and the condition fields:
summary (last_error())

are_na Test for missing values

Description

are_na() checks for missing values in a vector and is equivalent to base::is.na(). It is a vec-
torised predicate, meaning that its output is always the same length as its input. On the other hand,
is_na() is a scalar predicate and always returns a scalar boolean, TRUE or FALSE. If its input is not
scalar, it returns FALSE. Finally, there are typed versions that check for particular missing types.

arg_match 7

Usage
are_na(x)
is_na(x)

is_lgl_na(x)
is_int_na(x)
is_dbl_na(x)
is_chr_na(x)
is_cpl_na(x)

Arguments

X An object to test

Details

The scalar predicates accept non-vector inputs. They are equivalent to is_null() in that respect.
In contrast the vectorised predicate are_na() requires a vector input since it is defined over vector
values.

Examples

are_na() is vectorised and works regardless of the type
are_na(c(1, 2, NA))
are_na(c(1L, NA, 3L))

is_na() checks for scalar input and works for all types
is_na(NA)

is_na(na_dbl)

is_na(character(9))

There are typed versions as well:
is_lgl_na(NA)
is_lgl_na(na_dbl)

arg_match Match an argument to a character vector

Description
This is equivalent to base: :match.arg() with a few differences:

* Partial matches trigger an error.

* Error messages are a bit more informative and obey the tidyverse standards.

Usage

arg_match(arg, values = NULL)

8 as_box

Arguments
arg A symbol referring to an argument accepting strings.
values The possible values that arg can take. If NULL, the values are taken from the
function definition of the caller frame.
Value

The string supplied to arg.

Examples

fn <= function(x = c("foo", "bar")) arg_match(x)
fn("bar")

This would throw an informative error if run:
fn("b")
fn("baz")

as_box Convert object to a box

Description

* as_box() boxes its input only if it is not already a box. The class is also checked if supplied.

* as_box_if () boxes its input only if it not already a box, or if the predicate . p returns TRUE.

Usage

as_box(x, class = NULL)

as_box_if(.x, .p, .class = NULL, ...)
Arguments
X An R object.

class, .class A box class. If the input is already a box of that class, it is returned as is. If the
input needs to be boxed, class is passed to new_box().

. X An R object.
.p A predicate function.

Arguments passed to . p.

as_data_mask 9

as_data_mask Create a data mask

Description

Stable

A data mask is an environment (or possibly multiple environments forming an ancestry) containing
user-supplied objects. Objects in the mask have precedence over objects in the environment (i.e.
they mask those objects). Many R functions evaluate quoted expressions in a data mask so these
expressions can refer to objects within the user data.

These functions let you construct a tidy eval data mask manually. They are meant for developers of
tidy eval interfaces rather than for end users.

Usage

as_data_mask(data, parent = NULL)
as_data_pronoun(data)

new_data_mask(bottom, top = bottom, parent = NULL)

Arguments
data A data frame or named vector of masking data.
parent Soft-deprecated. This argument no longer has any effect. The parent of the data
mask is determined from either:
* The env argument of eval_tidy()
* Quosure environments when applicable
bottom The environment containing masking objects if the data mask is one environ-
ment deep. The bottom environment if the data mask comprises multiple envi-
ronment.
top The last environment of the data mask. If the data mask is only one environment
deep, top should be the same as bottom.
Value

A data mask that you can supply to eval_tidy().

Why build a data mask?

Most of the time you can just call eval_tidy() with a list or a data frame and the data mask will
be constructed automatically. There are three main use cases for manual creation of data masks:

* When eval_tidy() is called with the same data in a tight loop. Because there is some over-
head to creating tidy eval data masks, constructing the mask once and reusing it for subsequent
evaluations may improve performance.

* When several expressions should be evaluated in the exact same environment because a quoted
expression might create new objects that can be referred in other quoted expressions evaluated
at a later time. One example of this is tibble::1st() where new columns can refer to
previous ones.

10 as_data_mask

* When your data mask requires special features. For instance the data frame columns in dplyr
data masks are implemented with active bindings.

Building your own data mask

Unlike base: :eval() which takes any kind of environments as data mask, eval_tidy() has spe-
cific requirements in order to support quosures. For this reason you can’t supply bare environments.

There are two ways of constructing an rlang data mask manually:

* as_data_mask() transforms a list or data frame to a data mask. It automatically installs the
data pronoun .data.

* new_data_mask() is a bare bones data mask constructor for environments. You can supply a
bottom and a top environment in case your data mask comprises multiple environments (see
section below).

Unlike as_data_mask() it does not install the .data pronoun so you need to provide one
yourself. You can provide a pronoun constructed with as_data_pronoun() or your own
pronoun class.

as_data_pronoun() will create a pronoun from a list, an environment, or an rlang data mask.
In the latter case, the whole ancestry is looked up from the bottom to the top of the mask.
Functions stored in the mask are bypassed by the pronoun.

Once you have built a data mask, simply pass it to eval_tidy() as the data argument. You can
repeat this as many times as needed. Note that any objects created there (perhaps because of a call
to <-) will persist in subsequent evaluations.

Top and bottom of data mask

In some cases you’ll need several levels in your data mask. One good reason is when you include
functions in the mask. It’s a good idea to keep data objects one level lower than function objects, so
that the former cannot override the definitions of the latter (see examples).

In that case, set up all your environments and keep track of the bottom child and the top parent.
You’ll need to pass both to new_data_mask().

Note that the parent of the top environment is completely undetermined, you shouldn’t expect it to
remain the same at all times. This parent is replaced during evaluation by eval_tidy() to one of
the following environments:

* The default environment passed as the env argument of eval_tidy().

* The environment of the current quosure being evaluated, if applicable.

Consequently, all masking data should be contained between the bottom and top environment of the
data mask.

Life cycle
rlang 0.3.0
Passing environments to as_data_mask() is soft-deprecated. Please build a data mask with new_data_mask().
The parent argument no longer has any effect. The parent of the data mask is determined from
either:
* The env argument of eval_tidy()

* Quosure environments when applicable

as_data_mask 11

rlang 0.2.0

In early versions of rlang data masks were called overscopes. We think data mask is a more nat-
ural name in R. It makes reference to masking in the search path which occurs through the same
mechanism (in technical terms, lexical scoping with hierarchically nested environments). We say
that objects from user data mask objects in the current environment.

Following this change in terminology, as_overscope () and new_overscope () were soft-deprecated
in rlang 0.2.0 in favour of as_data_mask() and new_data_mask().

Examples

Evaluating in a tidy evaluation environment enables all tidy
features:

mask <- as_data_mask(mtcars)

eval_tidy(quo(letters), mask)

You can install new pronouns in the mask:
mask$.pronoun <- as_data_pronoun(list(foo = "bar”, baz = "bam"))
eval_tidy(quo(.pronoun$foo), mask)

In some cases the data mask can leak to the user, for example if
a function or formula is created in the data mask environment:
cyl <- "user variable from the context”

fn <- eval_tidy(quote(function() cyl), mask)

fnQ

If new objects are created in the mask, they persist in the
subsequent calls:

eval_tidy(quote(new <- cyl + am), mask)

eval_tidy(quote(new * 2), mask)

In some cases your data mask is a whole chain of environments
rather than a single environment. You'll have to use
‘new_data_mask()" and let it know about the bottom of the mask
(the last child of the environment chain) and the topmost parent.

ETE T

A common situation where you'll want a multiple-environment mask
is when you include functions in your mask. In that case you'll
put functions in the top environment and data in the bottom. This
will prevent the data from overwriting the functions.

top <- new_environment(list(*+' = base::paste, c = base::paste))

%

Let's add a middle environment just for sport:
middle <- env(top)

And finally the bottom environment containing data:
bottom <- env(middle, a = "a", b = "b", ¢ = "c")

We can now create a mask by supplying the top and bottom
environments:
mask <- new_data_mask(bottom, top = top)

This data mask can be passed to eval_tidy() instead of a list or
data frame:
eval_tidy(quote(a + b + ¢), data = mask)

12 as_environment

Note how the function ‘c()‘ and the object ‘c‘ are looked up
properly because of the multi-level structure:
eval_tidy(quote(c(a, b, c)), data = mask)

new_data_mask() does not create data pronouns, but
data pronouns can be added manually:
mask$.fns <- as_data_pronoun(top)

The ‘.data‘ pronoun should generally be created from the

mask. This will ensure data is looked up throughout the whole
ancestry. Only non-function objects are looked up from this

pronoun:

mask$.data <- as_data_pronoun(mask)

mask$.data$c

Now we can reference the values with the pronouns:
eval_tidy(quote(c(.data$a, .data$b, .data$c)), data = mask)

as_environment Coerce to an environment

Description

as_environment () coerces named vectors (including lists) to an environment. It first checks that
x is a dictionary (see is_dictionaryish()). If supplied an unnamed string, it returns the corre-
sponding package environment (see pkg_env()).

Usage

as_environment(x, parent = NULL)

Arguments
X An object to coerce.
parent A parent environment, empty_env() by default. This argument is only used
when x is data actually coerced to an environment (as opposed to data repre-
senting an environment, like NULL representing the empty environment).
Details

If x is an environment and parent is not NULL, the environment is duplicated before being set a new
parent. The return value is therefore a different environment than x.

Life cycle

as_env() was soft-deprecated and renamed to as_environment() in rlang 0.2.0. This is for con-
sistency as type predicates should not be abbreviated.

as_function 13

Examples

Coerce a named vector to an environment:
env <- as_environment(mtcars)

By default it gets the empty environment as parent:
identical(env_parent(env), empty_env())

With strings it is a handy shortcut for pkg_env():
as_environment("base")
as_environment("rlang")

With NULL it returns the empty environment:
as_environment (NULL)

as_function Convert to function or closure

Description
Stable

* as_function() transform objects to functions. It fetches functions by name if supplied a
string or transforms formulas to function.

* as_closure() first passes its argument to as_function(). If the result is a primitive func-
tion, it regularises it to a proper closure (see is_function() about primitive functions).

Usage

as_function(x, env = caller_env())
is_lambda(x)

as_closure(x, env = caller_env())

Arguments
X A function or formula.
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function with two arguments,
.xor . and .y. This allows you to create very compact anonymous functions
with up to two inputs. Functions created from formulas have a special class.
Use is_lambda() to test for it.
env Environment in which to fetch the function in case x is a string.
Examples
f <- as_function(~ . + 1)
f(10)

Functions created from a formula have a special class:
is_lambda(f)

14 as_label

is_lambda(as_function(function() "foo"))

Primitive functions are regularised as closures
as_closure(list)
as_closure("list")

N N N

Operators have ‘.x and ‘.y' as arguments, just like lambda
functions created with the formula syntax:

as_closure(*+%)

as_closure(*~")

as_label Create a default name for an R object

Description
as_label () transforms R objects into a short, human-readable description. You can use labels to:

* Display an object in a concise way, for example to labellise axes in a graphical plot.
* Give default names to columns in a data frame. In this case, labelling is the first step before
name repair.
See also as_name () for transforming symbols back to a string. Unlike as_label(), as_string()
is a well defined operation that guarantees the roundtrip symbol -> string -> symbol.

In general, if you don’t know for sure what kind of object you’re dealing with (a call, a symbol,
an unquoted constant), use as_label() and make no assumption about the resulting string. If
you know you have a symbol and need the name of the object it refers to, use as_string(). For
instance, use as_label() with objects captured with enquo() and as_string() with symbols
captured with ensym().

Usage
as_label (x)

Arguments

X An object.

Transformation to string

* Quosures are squashed before being labelled.

* Symbols are transformed to string with as_string().

* Calls are abbreviated.

* Numbers are represented as such.

 Other constants are represented by their type, such as <dbl> or <data.frame>.

Note that simple symbols should generally be transformed to strings with as_name (). Labelling is
not a well defined operation and no assumption should be made about how the label is created. On
the other hand, as_name () only works with symbols and is a well defined, deterministic operation.

See Also

as_name () for transforming symbols back to a string deterministically.

as_name 15

Examples

as_label() is useful with quoted expressions:
as_label (expr(foo(bar)))
as_label (expr(foobar))

It works with any R object. This is also useful for quoted
arguments because the user might unquote constant objects:
as_label(1:3)

as_label(base::1list)

as_name Extract names from symbols

Description

as_name () converts symbols to character strings. The conversion is deterministic. That is, the
roundtrip symbol -> name -> symbol always gets the same result.

* Use as_name() when you need to transform a symbol to a string to refer to an object by its
name.
* Use as_label() when you need to transform any kind of object to a string to represent that
object with a short description.
Expect as_name () to gain name-repairing features in the future.

Note that rlang: :as_name() is the opposite of base: :as.name(). If you’re writing base R code,
we recommend using base: :as.symbol() which is an alias of as.name() that follows a more
modern terminology (R types instead of S modes).

Usage
as_name(x)
Arguments
X A string or symbol, possibly wrapped in a quosure. If a string, the attributes are
removed, if any.
Value

A character vector of length 1.

See Also

as_label () for converting any object to a single string suitable as a label. as_string() for a
lower-level version that doesn’t unwrap quosures.

https://principles.tidyverse.org/names-attribute.html#minimal-unique-universal

16 as_quosure

Examples

Let's create some symbols:
foo <- quote(foo)
bar <- sym("bar")

as_name() converts symbols to strings:
foo
as_name(foo)

typeof (bar)
typeof (as_name(bar))

as_name() unwraps quosured symbols automatically:
as_name (quo(foo))

as_quosure Coerce object to quosure

Description

While new_quosure () wraps any R object (including expressions, formulas, or other quosures) into
a quosure, as_quosure() converts formulas and quosures and does not double-wrap.

Usage

as_quosure(x, env = NULL)

new_quosure(expr, env = caller_env())

Arguments
X An object to convert. Either an expression or a formula.
env The environment in which the expression should be evaluated. Only used for
symbols and calls. This should typically be the environment in which the ex-
pression was created.
expr The expression wrapped by the quosure.
Life cycle

* as_quosure() now requires an explicit default environment for creating quosures from sym-
bols and calls.

* as_quosureish() is deprecated as of rlang 0.2.0. This function assumes that quosures are
formulas which is currently true but might not be in the future.

See Also

quo(), is_quosure()

as_string 17

Examples

as_quosure() converts expressions or any R object to a validly
scoped quosure:

env <- env(var = "thing")

as_quosure(quote(var), env)

The environment is ignored for formulas:
as_quosure(~foo, env)
as_quosure(~foo)

However you must supply it for symbols and calls:
try(as_quosure(quote(var)))

as_string Cast symbol to string

Description

as_string() converts symbols to character strings.

Usage

as_string(x)

Arguments

X A string or symbol. If a string, the attributes are removed, if any.

Value

A character vector of length 1.

Unicode tags

Unlike base: :as.symbol() and base::as.name(), as_string() automatically transforms uni-
code tags such as "<U+5E78>" to the proper UTF-8 character. This is important on Windows be-
cause:

* R on Windows has no UTF-8 support, and uses native encoding instead.

» The native encodings do not cover all Unicode characters. For example, Western encodings
do not support CKJ characters.

* When a lossy UTF-8 -> native transformation occurs, uncovered characters are transformed
to an ASCII unicode tag like "<U+5E78>".

* Symbols are always encoded in native. This means that transforming the column names of a
data frame to symbols might be a lossy operation.

* This operation is very common in the tidyverse because of data masking APIs like dplyr where
data frames are transformed to environments. While the names of a data frame are stored as a
character vector, the bindings of environments are stored as symbols.

Because it reencodes the ASCII unicode tags to their UTF-8 representation, the string -> symbol ->
string roundtrip is more stable with as_string().

18 as_utf8_character

See Also

as_name () for a higher-level variant of as_string() that automatically unwraps quosures.

Examples

Let's create some symbols:
foo <- quote(foo)
bar <- sym("bar")

as_string() converts symbols to strings:
foo
as_string(foo)

typeof (bar)
typeof (as_string(bar))

as_utf8_character Coerce to a character vector and attempt encoding conversion

Description

Unlike specifying the encoding argument in as_string() and as_character(), which is only
declarative, these functions actually attempt to convert the encoding of their input. There are two
possible cases:

 The string is tagged as UTF-8 or latinl, the only two encodings for which R has specific sup-
port. In this case, converting to the same encoding is a no-op, and converting to native always
works as expected, as long as the native encoding, the one specified by the LC_CTYPE locale
(see mut_utf8_locale()) has support for all characters occurring in the strings. Unrepre-
sentable characters are serialised as unicode points: "<U+xxxx>".

* The string is not tagged. R assumes that it is encoded in the native encoding. Conversion
to native is a no-op, and conversion to UTF-8 should work as long as the string is actually
encoded in the locale codeset.

When translating to UTF-8, the strings are parsed for serialised unicode points (e.g. strings looking
like "U+xxxx") with chr_unserialise_unicode (). This helps to alleviate the effects of character-
to-symbol-to-character roundtrips on systems with non-UTF-8 native encoding.

Usage
as_utf8_character(x)
as_native_character(x)
as_utf8_string(x)

as_native_string(x)

Arguments

X An object to coerce.

bare-type-predicates 19

Examples

Let's create a string marked as UTF-8 (which is guaranteed by the
Unicode escaping in the string):

utf8 <- "caf\ue9”

str_encoding(utf8)

as_bytes(utf8)

It can then be converted to a native encoding, that is, the
encoding specified in the current locale:

Not run:

mut_latinl_locale()

latinl <- as_native_string(utf8)

str_encoding(latini)

as_bytes(latin1)

End(Not run)

bare-type-predicates Bare type predicates

Description

These predicates check for a given type but only return TRUE for bare R objects. Bare objects have
no class attributes. For example, a data frame is a list, but not a bare list.

Usage

is_bare_list(x, n = NULL)

is_bare_atomic(x, n = NULL)

NULL)

is_bare_vector(x, n

is_bare_double(x, n = NULL)

is_bare_integer(x, n = NULL)

NULL)

is_bare_numeric(x, n

is_bare_character(x, n = NULL, encoding = NULL)

is_bare_logical(x, n = NULL)
is_bare_raw(x, n = NULL)

is_bare_string(x, n = NULL)

is_bare_bytes(x, n = NULL)

20 box

Arguments
X Object to be tested.
n Expected length of a vector.
encoding Expected encoding of a string or character vector. One of UTF-8, latinl, or
unknown.
Details

 The predicates for vectors include the n argument for pattern-matching on the vector length.

e Like is_atomic() and unlike base R is.atomic(), is_bare_atomic() does not return TRUE
for NULL.

* Unlike base R is.numeric(), is_bare_double() only returns TRUE for floating point num-
bers.

See Also

type-predicates, scalar-type-predicates

box Box a value

Description

new_box () is similar to base: : I() but it protects a value by wrapping it in a scalar list rather than
by adding an attribute. unbox() retrieves the boxed value. is_box() tests whether an object is
boxed with optional class. as_box() ensures that a value is wrapped in a box. as_box_if () does
the same but only if the value matches a predicate.

Usage

new_box(.x, class = NULL, ...)

is_box(x, class = NULL)

unbox (box)
Arguments
class For new_box (), an additional class for the boxed value (in addition to rlang_box).
For is_box (), a class or vector of classes passed to inherits_all().
Additional attributes passed to base: :structure().
X, .X An R object.

box A boxed value to unbox.

call2 21

Examples

boxed <- new_box(letters, "mybox")
is_box(boxed)

is_box(boxed, "mybox")
is_box(boxed, "otherbox")

unbox (boxed)

as_box() avoids double-boxing:
boxed2 <- as_box(boxed, "mybox")
boxed?2

unbox (boxed2)

Compare to:

boxed_boxed <- new_box(boxed, "mybox")
boxed_boxed

unbox (unbox (boxed_boxed))

Use ‘as_box_if()" with a predicate if you need to ensure a box
only for a subset of values:

as_box_if (NULL, is_null, "null_box")

as_box_if("foo", is_null, "null_box")

call?2 Create a call

Description

Quoted function calls are one of the two types of symbolic objects in R. They represent the action
of calling a function, possibly with arguments. There are two ways of creating a quoted call:

* By quoting it. Quoting prevents functions from being called. Instead, you get the description
of the function call as an R object. That is, a quoted function call.

* By constructing it with base: :call(), base: :as.call(), or call2(). In this case, you pass
the call elements (the function to call and the arguments to call it with) separately.

See section below for the difference between call2() and the base constructors.

Usage
call2(.fn, ..., .ns = NULL)
Arguments
.fn Function to call. Must be a callable object: a string, symbol, call, or a function.

Arguments to the call either in or out of a list. These dots support tidy dots
features.

.ns Namespace with which to prefix . fn. Must be a string or symbol.

22 call2

Difference with base constructors

call2() is more flexible and convenient than base: :call():

* The function to call can be a string or a callable object: a symbol, another call (e.g. a $ or
LL call), or a function to inline. base::call() only supports strings and you need to use
base: :as.call() to construct a call with a callable object.

call2(list, 1, 2)

as.call(list(list, 1, 2))
* The .ns argument is convenient for creating namespaced calls.

call2("list”, 1, 2, .ns = "base")

ns_call <- as.call(list(as.name("::"), as.name("list"), as.name("base")))
as.call(list(ns_call, 1, 2))

* call2() has tidy dots support and you can splice lists of arguments with !!!. With base R,
you need to use as.call() instead of call() if the arguments are in a list.

args <- list(na.rm = TRUE, trim = 0)
call2("mean”, 1:10, !!largs)

as.call(c(list(as.name("mean"), 1:10), args))

Life cycle

In rlang 0.2.0 1ang() was soft-deprecated and renamed to call2().

In early versions of rlang calls were called "language" objects in order to follow the R type nomen-
clature as returned by base: : typeof (). The goal was to avoid adding to the confusion between S
modes and R types. With hindsight we find it is better to use more meaningful type names.

See Also

call_modify

Examples

fn can either be a string, a symbol or a call
call2("f", a =1)

call2(quote(f), a = 1)

call2(quote(f()), a =1)

#' Can supply arguments individually or in a list
call2(quote(f), a =1, b = 2)
call2(quote(f), !!!list(a =1, b = 2))

Creating namespaced calls is easy:
call2("fun”, arg = quote(baz), .ns = "mypkg")

caller_env 23

caller_env Get the current or caller environment

Description

e The current environment is the execution environment of the current function (the one cur-
rently being evaluated).

¢ The caller environment is the execution environment of the function that called the current
function.
Usage

caller_env(n = 1)

current_env()

Arguments

n Number of frames to go back.

See Also

caller_frame() and current_frame()

Examples

Let's create a function that returns its current environment and
its caller environment:
fn <- function() list(current = current_env(), caller = caller_env())

The current environment is an unique execution environment

created when ‘fn()" was called. The caller environment is the
global env because that's where we called ‘fn()".

fnQ)

Let's call *fn()" again but this time within a function:
g <- function() fn()

Now the caller environment is also an unique execution environment.
This is the exec env created by R for our call to g():

g0

caller_fn Get properties of the current or caller frame

Description
Experimental

* The current frame is the execution context of the function that is currently being evaluated.

* The caller frame is the execution context of the function that called the function currently
being evaluated.

See the call stack topic for more information.

24 call_args

Usage

caller_fn(n = 1)

current_fn()

Arguments

n The number of generations to go back.

Life cycle

These functions are experimental.

See Also

caller_env() and current_env()

call_args Extract arguments from a call

Description

Extract arguments from a call

Usage

call_args(call)

call_args_names(call)

Arguments

call Can be a call or a quosure that wraps a call.

Value

A named list of arguments.

Life cycle

Inrlang 0.2.0, lang_args() and lang_args_names () were soft-deprecated and renamed to call_args()
and call_args_names(). See lifecycle section in call2() for more about this change.

See Also

fn_fmls() and fn_fmls_names()

call_fn 25

Examples

call <- quote(f(a, b))

Subsetting a call returns the arguments converted to a language
object:
call[-1]

On the other hand, call_args() returns a regular list that is
often easier to work with:
str(call_args(call))

When the arguments are unnamed, a vector of empty strings is
supplied (rather than NULL):
call_args_names(call)

call_fn Extract function from a call

Description
If a frame or formula, the function will be retrieved from the associated environment. Otherwise, it
is looked up in the calling frame.

Usage

call_fn(call, env = caller_env())

Arguments
call Can be a call or a quosure that wraps a call.
env The environment where to find the definition of the function quoted in call in
case call is not wrapped in a quosure.
Life cycle

In rlang 0.2.0, lang_fn() was soft-deprecated and renamed to call_fn(). See lifecycle section in
call2() for more about this change.

See Also

call_name()

Examples

Extract from a quoted call:
call_fn(quote(matrix()))
call_fn(quo(matrix()))

Extract the calling function
test <- function() call_fn(call_frame())
test()

26 call_modify

call_inspect Inspect a call

Description

This function is useful for quick testing and debugging when you manipulate expressions and calls.
It lets you check that a function is called with the right arguments. This can be useful in unit tests
for instance. Note that this is just a simple wrapper around base: :match.call().

Usage

call_inspect(...)

Arguments
Arguments to display in the returned call.
Examples
call_inspect(foo(bar), "" %>% identity())
call_modify Modify the arguments of a call
Description

If you are working with a user-supplied call, make sure the arguments are standardised with call_standardise()
before modifying the call.

Usage

call_modify(.call, ..., .homonyms = c("keep”, "first”, "last”, "error"),
.standardise = NULL, .env = caller_env())

Arguments
.call Can be a call, a formula quoting a call in the right-hand side, or a frame object
from which to extract the call expression.
Named or unnamed expressions (constants, names or calls) used to modify the
call. Use zap() to remove arguments. These dots support tidy dots features.
Empty arguments are allowed and preserved.
.homonyms How to treat arguments with the same name. The default, "keep”, preserves

these arguments. Set . homonyms to "first” to only keep the first occurrences,
to "last” to keep the last occurrences, and to "error” to raise an informative
error and indicate what arguments have duplicated names.

.standardise, .env
Soft-deprecated as of rlang 0.3.0. Please call call_standardise() manually.

call_modify 27

Value

A quosure if . call is a quosure, a call otherwise.

Life cycle

* Prior to rlang 0.3.0, NULL was the sentinel for removing arguments. As of 0.3.0, zap() objects
remove arguments and NULL simply adds an argument set to NULL. This breaking change allows
the deletion sentinel to be distinct from valid argument values.

* The .standardise argument is soft-deprecated as of rlang 0.3.0.

* In rlang 0.2.0, lang_modify() was soft-deprecated and renamed to call_modify(). See
lifecycle section in call2() for more about this change.

Examples

call <- quote(mean(x, na.rm = TRUE))

Modify an existing argument
call_modify(call, na.rm = FALSE)
call_modify(call, x = quote(y))

Remove an argument
call_modify(call, na.rm = zap())

Add a new argument
call_modify(call, trim = 0.1)

Add an explicit missing argument:
call_modify(call, na.rm =)

Supply a list of new arguments with “!!!*
newargs <- list(na.rm = NULL, trim = 0.1)
call <- call_modify(call, !!!newargs)

call

Remove multiple arguments by splicing zaps:

newargs <- rep_named(c("na.rm”, "trim"), list(zap()))
call <- call_modify(call, !!!newargs)
call

Modify the ‘... arguments as if it were a named argument:

call <- call_modify(call, ... =)

call

call <- call_modify(call, ... = zap())
call

When you're working with a user-supplied call, standardise it
beforehand because it might contain unmatched arguments:
user_call <- quote(matrix(x, nc = 3))

call_modify(user_call, ncol = 1)

Standardising applies the usual argument matching rules:
user_call <- call_standardise(user_call)

28

call name

user_call
call_modify(user_call, ncol = 1)

You can also modify quosures inplace:
f <- quo(matrix(bar))
call_modify(f, quote(foo))

By default, arguments with the same name are kept. This has
subtle implications, for instance you can move an argument to
last position by removing it and remapping it:

call <- quote(foo(bar = , baz))

call_modify(call, bar = NULL, bar = missing_arg())

You can also choose to keep only the first or last homonym
arguments:
args <- list(bar = NULL, bar = missing_arg())

call_modify(call, !!l!args, .homonyms = "first")
call_modify(call, !!largs, .homonyms = "last")
call_name Extract function name or namespaced of a call
Description

Extract function name or namespaced of a call

Usage

call_name(call)

call_ns(call)

Arguments

call Can be a call or a quosure that wraps a call.

Value

A string with the function name, or NULL if the function is anonymous.

Life cycle

In rlang 0.2.0, lang_name () was soft-deprecated and renamed to call_name(). See lifecycle sec-
tion in call2() for more about this change.

See Also

call_fn()

call_standardise 29

Examples

Extract the function name from quoted calls:
call_name(quote(foo(bar)))
call_name(quo(foo(bar)))

Namespaced calls are correctly handled:
call_name(~base: :matrix(baz))

Anonymous and subsetted functions return NULL:
call_name(quote(foo$bar()))
call_name(quote(fool[barl1()))
call_name(quote(foo()()))

Extract namespace of a call with call_ns():
call_ns(quote(base::bar()))

If not namespaced, call_ns() returns NULL:
call_ns(quote(bar()))

call_standardise Standardise a call

Description

This is essentially equivalent to base: :match.call(), but with experimental handling of primitive
functions.

Usage

call_standardise(call, env = caller_env())

Arguments
call Can be a call or a quosure that wraps a call.
env The environment where to find the definition of the function quoted in call in
case call is not wrapped in a quosure.
Value

A quosure if call is a quosure, a raw call otherwise.

Life cycle

In rlang 0.2.0, lang_standardise() was soft-deprecated and renamed to call_standardise().
See lifecycle section in call2() for more about this change.

30 cnd

catch_cnd Catch a condition

Description

This is a small wrapper around tryCatch() that captures any condition signalled while evaluating
its argument. It is useful for situations where you expect a specific condition to be signalled, for
debugging, and for unit testing.

Usage
catch_cnd(expr, classes = "condition")
Arguments
expr Expression to be evaluated with a catching condition handler.
classes A character vector of condition classes to catch. By default, catches all condi-
tions.
Value

A condition if any was signalled, NULL otherwise.

Examples

catch_cnd(10)
catch_cnd(abort("an error”))

catch_cnd(cnd_signal ("my_condition”, .msg = "a condition"))
cnd Create a condition object
Description

These constructors make it easy to create subclassed conditions. Conditions are objects that power
the error system in R. They can also be used for passing messages to pre-established handlers.

Usage
cnd(.subclass, ..., message = "")
error_cnd(.subclass = NULL, ..., message = "", trace = NULL,

parent = NULL)

warning_cnd(.subclass = NULL, ..., message = "")

NULL, ..., message = "")

message_cnd(.subclass

cnd_muffle 31

Arguments
.subclass The condition subclass.
Named data fields stored inside the condition object. These dots are evaluated
with explicit splicing.
message A default message to inform the user about the condition when it is signalled.
trace A trace object created by trace_back().
parent A parent condition object created by abort ().
Details

cnd() creates objects inheriting from condition. Conditions created with error_cnd(), warning_cnd()
and message_cnd() inherit from error, warning or message.
Lifecycle
The . type and .msg arguments have been renamed to .subclass and message. They are defunct
as of rlang 0.3.0.
See Also

cnd_signal (), with_handlers().

Examples

Create a condition inheriting from the s3 type "foo":
cnd <- cnd("foo")

Signal the condition to potential handlers. Since this is a bare
condition the signal has no effect if no handlers are set up:
cnd_signal(cnd)

When a relevant handler is set up, the signal causes the handler
to be called:

with_handlers(cnd_signal(cnd), foo = exiting(function(c) "caught!"))

Handlers can be thrown or executed inplace. See with_handlers()
documentation for more on this.

Signalling an error condition aborts the current computation:
err <- error_cnd("foo", message = "I am an error")
try(cnd_signal(err))

cnd_muffle Muffle a condition

Description

Unlike exiting() handlers, calling() handlers must be explicit that they have handled a condi-
tion to stop it from propagating to other handlers. Use cnd_muffle() within a calling handler (or as
a calling handler, see examples) to prevent any other handlers from being called for that condition.

32 cnd_muffle

Usage
cnd_muffle(cnd)

Arguments

cnd A condition to muffle.

Mufflable conditions

Most conditions signalled by base R are muffable, although the name of the restart varies. cnd_muffle()
will automatically call the correct restart for you. It is compatible with the following conditions:

* warning and message conditions. In this case cnd_muffle() is equivalent to base: : suppressMessages()
and base: : suppressWarnings().

» Bare conditions signalled with signal() or cnd_signal(). Note that conditions signalled
with base: :signalCondition() are not mufflable.

¢ Interrupts are sometimes signalled with a resume restart on recent R versions. When this is
the case, you can muffle the interrupt with cnd_muffle(). Check if a restart is available with
base::findRestart("resume").

If you call cnd_muffle() with a condition that is not mufflable you will cause a new error to be
signalled.

* Errors are not mufflable since they are signalled in critical situations where execution cannot
continue safely.

* Conditions captured with base::tryCatch(), with_handlers() or catch_cnd() are no
longer mufflable. Muffling restarts must be called from a calling handler.

Examples

fn <- function() {

inform("Beware!"”, "my_particular_msg")
inform(”On your guard!")
"foobar"

}

Let's install a muffling handler for the condition thrown by “fn()*‘.
This will suppress all ‘my_particular_wng' warnings but let other
types of warnings go through:
with_handlers(fn(),
my_particular_msg = calling(function(cnd) {
inform("Dealt with this particular message")
cnd_muffle(cnd)
i)
)

Note how execution of ‘fn()‘ continued normally after dealing
with that particular message.

cnd_muffle() can also be passed to with_handlers() as a calling
handler:
with_handlers(fn(),

my_particular_msg = calling(cnd_muffle)

)

cnd_signal 33

cnd_signal Signal a condition

Description

Signal a condition to handlers that have been established on the stack. Conditions signalled with
cnd_signal() are assumed to be benign. Control flow can resume normally once the condition
has been signalled (if no handler jumped somewhere else on the evaluation stack). On the other
hand, cnd_abort() treats the condition as critical and will jump out of the distressed call frame
(see rst_abort()), unless a handler can deal with the condition.

Usage
cnd_signal(cnd, .cnd, .mufflable)

Arguments

cnd A condition object (see cnd()).

.cnd, .mufflable
These arguments are retired. .cnd has been renamed to cnd and .mufflable
no longer has any effect as non-critical conditions are always signalled with a
muffling restart.

Details

If .critical is FALSE, this function has no side effects beyond calling handlers. In particular,
execution will continue normally after signalling the condition (unless a handler jumped somewhere
else via rst_jump() or by being exiting()). If .critical is TRUE, the condition is signalled via
base::stop() and the program will terminate if no handler dealt with the condition by jumping
out of the distressed call frame.

calling() handlers are called in turn when they decline to handle the condition by returning nor-
mally. However, it is sometimes useful for a calling handler to produce a side effect (signalling
another condition, displaying a message, logging something, etc), prevent the condition from being
passed to other handlers, and resume execution from the place where the condition was signalled.
The easiest way to accomplish this is by jumping to a restart point (see with_restarts()) estab-
lished by the signalling function. cnd_signal () always installs a muffle restart (see cnd_muffle()).

Lifecycle

* Modifying a condition object with cnd_signal() is defunct. Consequently the .msg and
.call arguments are retired and defunct as of rlang 0.3.0. In addition .cnd is renamed to cnd
and soft-deprecated.

e The .mufflable argument is soft-deprecated and no longer has any effect. Non-critical con-
ditions are always signalled with a muffle restart.

* Creating a condition object with cnd_signal() is soft-deprecated. Please use signal() in-
stead.
See Also

abort(), warn() and inform() for signalling typical R conditions. See with_handlers() for
establishing condition handlers.

34

Examples

Creating a condition of type "foo"
cnd <- cnd("foo")

If no handler capable of dealing with "foo"” is established on the
stack, signalling the condition has no effect:
cnd_signal(cnd)

To learn more about establishing condition handlers, see
documentation for with_handlers(), exiting() and calling():
with_handlers(cnd_signal(cnd),
foo = calling(function(c) cat("side effect!\n"))
)

By default, cnd_signal() creates a muffling restart which allows
calling handlers to prevent a condition from being passed on to
other handlers and to resume execution:
undesirable_handler <- calling(function(c) cat("please don't call me\n"))
muffling_handler <- calling(function(c) {
cat("muffling foo...\n")
cnd_muffle(c)
»

with_handlers(foo = undesirable_handler,
with_handlers(foo = muffling_handler, {
cnd_signal(cnd("foo"))
"return value”

m

cnd_type

cnd_type What type is a condition?

Description

Use cnd_type () to check what type a condition is.

Usage
cnd_type(cnd)

Arguments

cnd A condition object.

Value

n o n n on n o n

A string, either "condition”, "message”, "warning”, "error” or "interrupt”.

Examples

cnd_type(catch_cnd(abort("Abort!")))
cnd_type(catch_cnd(interrupt()))

done 35

done Box a final value for early termination

Description

A value boxed with done () signals to its caller that it should stop iterating. Use it to shortcircuit a
loop.

Usage

done(x)

is_done_box(x, empty = NULL)

Arguments
X For done(), a value to box. For is_done_box (), a value to test.
empty Whether the box is empty. If NULL, is_done_box() returns TRUE for all done
boxes. If TRUE, it returns TRUE only for empty boxes. Otherwise it returns TRUE
only for non-empty boxes.
Value

A boxed value.
Examples
done(3)

x <- done(3)
is_done_box(x)

dots_n How many arguments are currently forwarded in dots?

Description

This returns the number of arguments currently forwarded in . . . as an integer.

Usage

dots_n(...)

Arguments

Forwarded arguments.

Examples

fn <- function(...) dots_n(..., baz)
fn(foo, bar)

36 dots_values

dots_values Evaluate dots with preliminary splicing

Description

This is a tool for advanced users. It captures dots, processes unquoting and splicing operators, and
evaluates them. Unlike dots_list(), it does not flatten spliced objects, instead they are attributed
a spliced class (see splice()). You can process spliced objects manually, perhaps with a custom
predicate (see flatten_if()).

Usage
dots_values(..., .ignore_empty = c("trailing”, "none", "all"),
.preserve_empty = FALSE, .homonyms = c("keep”, "first", "last"”,
"error"), .check_assign = FALSE)
Arguments

Arguments to evaluate and process splicing operators.

.ignore_empty Whether to ignore empty arguments. Can be one of "trailing”, "none”,
"all”. If "trailing”, only the last argument is ignored if it is empty.

.preserve_empty
Whether to preserve the empty arguments that were not ignored. If TRUE, empty
arguments are stored with missing_arg() values. If FALSE (the default) an
error is thrown when an empty argument is detected.

.homonyms How to treat arguments with the same name. The default, "keep”, preserves
these arguments. Set .homonyms to "first” to only keep the first occurrences,
to "last” to keep the last occurrences, and to "error” to raise an informative
error and indicate what arguments have duplicated names.

.check_assign Whether to check for <- calls passed in dots. When TRUE and a <- call is de-
tected, a warning is issued to advise users to use = if they meant to match a
function parameter, or wrap the <- call in braces otherwise. This ensures as-
signments are explicit.

Examples

dots <- dots_values(!!! list(1, 2), 3)
dots

Flatten the objects marked as spliced:
flatten_if(dots, is_spliced)

empty_env 37

empty_env Get the empty environment

Description
The empty environment is the only one that does not have a parent. It is always used as the tail of
an environment chain such as the search path (see search_envs()).

Usage

empty_env()

Examples

Create environments with nothing in scope:
child_env(empty_env())

entrace Add backtrace from error handler

Description

Set the error global option to quote(rlang: :entrace()) to transform base errors to rlang errors.
These enriched errors include a backtrace. The RProfile is a good place to set the handler.

entrace() also works as a calling handler, though it is often more practical to use the higher-level
function with_abort().

Usage
entrace(cnd, ..., top = NULL, bottom = NULL)
Arguments
cnd When entrace() is used as a calling handler, cnd is the condition to handle.
Unused. These dots are for future extensions.
top The first frame environment to be included in the backtrace. This becomes the
top of the backtrace tree and represents the oldest call in the backtrace.
This is needed in particular when you call trace_back() indirectly or from
a larger context, for example in tests or inside an RMarkdown document where
you don’t want all of the knitr evaluation mechanisms to appear in the backtrace.
bottom The last frame environment to be included in the backtrace. This becomes the
rightmost leaf of the backtrace tree and represents the youngest call in the back-
trace.
Set this when you would like to capture a backtrace without the capture context.
Can also be an integer that will be passed to caller_env().
See Also

with_abort() to promote conditions to rlang errors.

38 env

Examples

if (FALSE) { # Not run

Set the error handler in your RProfile like this:
if (requireNamespace("rlang”, quietly = TRUE)) {
options(error = rlang::entrace)

}

env Create a new environment

Description

These functions create new environments.
* env() creates a child of the current environment by default and takes a variable number of
named objects to populate it.

* new_environment() creates a child of the empty environment by default and takes a named
list of objects to populate it.

Usage
env(...)
child_env(.parent, ...)

new_environment(data = list(), parent = empty_env())

Arguments

., data Named values. You can supply one unnamed to specify a custom parent, other-
wise it defaults to the current environment. These dots support tidy dots features.

.parent, parent
A parent environment. Can be an object supported by as_environment().

Environments as objects

Environments are containers of uniquely named objects. Their most common use is to provide a
scope for the evaluation of R expressions. Not all languages have first class environments, i.e. can
manipulate scope as regular objects. Reification of scope is one of the most powerful features of R
as it allows you to change what objects a function or expression sees when it is evaluated.

Environments also constitute a data structure in their own right. They are a collection of uniquely
named objects, subsettable by name and modifiable by reference. This latter property (see section
on reference semantics) is especially useful for creating mutable OO systems (cf the R6 package
and the ggproto system for extending ggplot2).

https://github.com/wch/R6
http://ggplot2.tidyverse.org/articles/extending-ggplot2.html

env 39

Inheritance

All R environments (except the empty environment) are defined with a parent environment. An
environment and its grandparents thus form a linear hierarchy that is the basis for lexical scoping
in R. When R evaluates an expression, it looks up symbols in a given environment. If it cannot find
these symbols there, it keeps looking them up in parent environments. This way, objects defined in
child environments have precedence over objects defined in parent environments.

The ability of overriding specific definitions is used in the tidyeval framework to create powerful
domain-specific grammars. A common use of masking is to put data frame columns in scope. See
for example as_data_mask().

Reference semantics

Unlike regular objects such as vectors, environments are an uncopyable object type. This means
that if you have multiple references to a given environment (by assigning the environment to another
symbol with <- or passing the environment as argument to a function), modifying the bindings of
one of those references changes all other references as well.

Life cycle

e child_env() is in the questioning stage. It is redundant now that env () accepts parent envi-
ronments.

See Also

env_has(), env_bind().

Examples

env() creates a new environment which has the current environment
as parent

env <- env(a =1, b = "foo")

env$b

identical(env_parent(env), current_env())

Supply one unnamed argument to override the default:
env <- env(base_env(), a =1, b = "foo")
identical(env_parent(env), base_env())

child_env() lets you specify a parent:

child <- child_env(env, ¢ = "bar")

identical(env_parent(child), env)

This child environment owns ‘c‘ but inherits ‘a‘ and ‘b‘ from ‘env':
env_has(child, c("a", "b", "c", "d"))

env_has(child, c("a", "b", "c", "d"), inherit = TRUE)

‘parent’ is passed to as_environment() to provide handy
shortcuts. Pass a string to create a child of a package
environment:

child_env("rlang")

env_parent(child_env("rlang"))

Or *NULL® to create a child of the empty environment:
child_env(NULL)

https://en.wikipedia.org/wiki/Scope_(computer_science)

40 env_bind

env_parent(child_env(NULL))

The base package environment is often a good default choice for a
parent environment because it contains all standard base

functions. Also note that it will never inherit from other loaded
package environments since R keeps the base package at the tail

of the search path:

base_child <- child_env("base")

env_has(base_child, c("lapply”, "("), inherit = TRUE)

On the other hand, a child of the empty environment doesn't even
see a definition for *(*

empty_child <- child_env(NULL)

env_has(empty_child, c("lapply”, "("), inherit = TRUE)

Note that all other package environments inherit from base_env()

as well:
rlang_child <- child_env("rlang")
env_has(rlang_child, "env"”, inherit = TRUE) # rlang function

env_has(rlang_child, "lapply”, inherit = TRUE) # base function

Both env() and child_env() support tidy dots features:
objs <- list(b = "foo"”, ¢ = "bar")

env <- env(a = 1, !!! objs)

env$c

N N

You can also unquote names with the definition operator ‘:=

nan

var <- "a
env <- env(!!var := "A")
env$a

Use new_environment() to create containers with the empty
environment as parent:

env <- new_environment()

env_parent(env)

Like other new_ constructors, it takes an object rather than dots:
new_environment(list(a = "foo", b = "bar"))

env_bind Bind symbols to objects in an environment

Description

These functions create bindings in an environment. The bindings are supplied through . . . as pairs
of names and values or expressions. env_bind() is equivalent to evaluating a <- expression within
the given environment. This function should take care of the majority of use cases but the other
variants can be useful for specific problems.

* env_bind() takes named values which are bound in .env. env_bind() is equivalent to
base::assign().

env_bind

41

env_bind_active() takes named functions and creates active bindings in . env. This is equiv-
alent to base: :makeActiveBinding(). An active binding executes a function each time it is
evaluated. The arguments are passed to as_function() so you can supply formulas instead
of functions.

Remember that functions are scoped in their own environment. These functions can thus refer
to symbols from this enclosure that are not actually in scope in the dynamic environment
where the active bindings are invoked. This allows creative solutions to difficult problems
(see the implementations of dplyr: :do() methods for an example).

env_bind_lazy() takes named expressions. This is equivalent to base: :delayedAssign().
The arguments are captured with exprs() (and thus support call-splicing and unquoting) and
assigned to symbols in .env. These expressions are not evaluated immediately but lazily.
Once a symbol is evaluated, the corresponding expression is evaluated in turn and its value is
bound to the symbol (the expressions are thus evaluated only once, if at all).

Usage
env_bind(.env, ...)
env_bind_lazy(.env, ..., .eval_env = caller_env())
env_bind_active(.env, ...)
Arguments
.env An environment.
Pairs of names and expressions, values or functions. Pass zap() objects to re-
move bindings.
These dots support tidy dots features.
.eval_env The environment where the expressions will be evaluated when the symbols are
forced.
Value

The input object . env, with its associated environment modified in place, invisibly.

Side effects

Since environments have reference semantics (see relevant section in env () documentation), mod-
ifying the bindings of an environment produces effects in all other references to that environment.
In other words, env_bind() and its variants have side effects.

Like

other side-effecty functions like par() and options(), env_bind() and variants return the

old values invisibly.

Life cycle

Passing an environment wrapper like a formula or a function instead of an environment is soft-
deprecated as of rlang 0.3.0. This internal genericity was causing confusion (see issue #427). You
should now extract the environment separately before calling these functions.

42

Examples

env_bind() is a programmatic way of assigning values to symbols
with *<-‘. We can add bindings in the current environment:
env_bind(current_env(), foo = "bar")

foo

Or modify those bindings:

bar <- "bar”

env_bind(current_env(), bar = "BAR")
bar

You can remove bindings by supplying zap sentinels:
env_bind(current_env(), foo = zap())
try(foo)

Unquote-splice a named list of zaps

zaps <- rep_named(c("foo", "bar"), list(zap()))
env_bind(current_env(), !!!zaps)

try(bar)

It is most useful to change other environments:
my_env <- env()

env_bind(my_env, foo = "foo")

my_env$foo

A useful feature is to splice lists of named values:
vals <- list(a = 10, b = 20)

env_bind(my_env, !!lvals, c¢ = 30)

my_env$b

my_env$c

You can also unquote a variable referring to a symbol or a string
as binding name:

var <- "baz"

env_bind(my_env, !!var := "BAZ")

my_env$baz

The old values of the bindings are returned invisibly:
old <- env_bind(my_env, a =1, b = 2, baz = "baz")
old

You can restore the original environment state by supplying the
old values back:
env_bind(my_env, !!!old)

env_bind_lazy() assigns expressions lazily:
env <- env()
env_bind_lazy(env, name = { cat("forced!\n"); "value" })

Referring to the binding will cause evaluation:
env$name

But only once, subsequent references yield the final value:
env$name

env_bind

env_bury 43

You can unquote expressions:
expr <- quote(message("forced!"))
env_bind_lazy(env, name = !!expr)
env$name

By default the expressions are evaluated in the current

environment. For instance we can create a local binding and refer
to it, even though the variable is bound in a different

environment:

who <- "mickey”

env_bind_lazy(env, name = paste(who, "mouse”))

env$name

You can specify another evaluation environment with “.eval_env':

eval_env <- env(who = "minnie")
env_bind_lazy(env, name = paste(who, "mouse"”), .eval_env = eval_env)
env$name

Or by unquoting a quosure:
quo <- local({
who <- "fievel”
quo(paste(who, "mouse"))
»
env_bind_lazy(env, name = !!quo)
env$name

You can create active bindings with env_bind_active(). Active
bindings execute a function each time they are evaluated:
fn <= function() {

cat("I have been called\n")

rnorm(1)

}

env <- env()
env_bind_active(env, symbol = fn)

fn is executed each time ‘symbol‘ is evaluated or retrieved:
env$symbol

env$symbol

eval_bare(quote(symbol), env)

eval_bare(quote(symbol), env)

All arguments are passed to as_function() so you can use the
formula shortcut:

env_bind_active(env, foo = ~ runif(1))
env$foo
env$foo
env_bury Mask bindings by defining symbols deeper in a scope
Description

env_bury() is like env_bind() but it creates the bindings in a new child environment. This makes

44 env_clone

sure the new bindings have precedence over old ones, without altering existing environments. Un-
like env_bind(), this function does not have side effects and returns a new environment (or object
wrapping that environment).

Usage
env_bury(.env, ...)
Arguments
.env An environment.
Pairs of names and expressions, values or functions. Pass zap() objects to re-
move bindings.
These dots support tidy dots features.
Value
A copy of .env enclosing the new environment containing bindings to . .. arguments.
See Also

env_bind(), env_unbind()

Examples

orig_env <- env(a = 10)
fn <- set_env(function() a, orig_env)

[NPREN

fn() currently sees as the value ‘10":

fn(Q)

a

env_bury() will bury the current scope of fn() behind a new

environment:

fn <- env_bury(fn, a = 1000)

fnQ

Even though the symbol ‘a‘ is still defined deeper in the scope:
orig_env$a

env_clone Clone an environment

Description

This creates a new environment containing exactly the same objects, optionally with a new parent.

Usage

env_clone(env, parent = env_parent(env))

Arguments

env An environment.

parent The parent of the cloned environment.

env_depth 45

Examples

env <- env(!!! mtcars)

clone <- env_clone(env)
identical(env, clone)
identical(env$cyl, clone$cyl)

env_depth Depth of an environment chain

Description

This function returns the number of environments between env and the empty environment, includ-
ing env. The depth of env is also the number of parents of env (since the empty environment counts
as a parent).

Usage

env_depth(env)

Arguments

env An environment.

Value

An integer.

See Also

The section on inheritance in env() documentation.

Examples

env_depth(empty_env())
env_depth(pkg_env("rlang"))

env_get Get an object in an environment

Description

env_get() extracts an object from an enviroment env. By default, it does not look in the parent
environments. env_get_list() extracts multiple objects from an environment into a named list.

Usage

env_get(env = caller_env(), nm, default, inherit = FALSE)

env_get_list(env = caller_env(), nms, default, inherit = FALSE)

46 env_has

Arguments
env An environment.
nm, nms Names of bindings. nm must be a single string.
default A default value in case there is no binding for nmin env.
inherit Whether to look for bindings in the parent environments.
Value

An object if it exists. Otherwise, throws an error.

Examples

parent <- child_env(NULL, foo = "foo")
env <- child_env(parent, bar = "bar")

This throws an error because ‘foo‘ is not directly defined in env:
env_get(env, "foo")

However ‘foo‘ can be fetched in the parent environment:
env_get(env, "foo", inherit = TRUE)

You can also avoid an error by supplying a default value:
env_get(env, "foo", default = "F00")

env_has Does an environment have or see bindings?

Description

env_has() is a vectorised predicate that queries whether an environment owns bindings personally
(with inherit set to FALSE, the default), or sees them in its own environment or in any of its parents
(with inherit = TRUE).

Usage

env_has(env = caller_env(), nms, inherit = FALSE)

Arguments
env An environment.
nms A character vector containing the names of the bindings to remove.
inherit Whether to look for bindings in the parent environments.

Value

A named logical vector as long as nms.

env_inherits 47

Examples

parent <- child_env(NULL, foo = "foo")
env <- child_env(parent, bar = "bar")

env does not own ‘foo‘ but sees it in its parent environment:
env_has(env, "foo")
env_has(env, "foo", inherit = TRUE)

env_inherits Does environment inherit from another environment?

Description

This returns TRUE if x has ancestor among its parents.

Usage

env_inherits(env, ancestor)

Arguments
env An environment.
ancestor Another environment from which x might inherit.
env_lock Lock an environment
Description
Experimental

Locked environments cannot be modified. An important example is namespace environments which
are locked by R when loaded in a session. Once an environment is locked it normally cannot be
unlocked.

Note that only the environment as a container is locked, not the individual bindings. You can’t re-
move or add a binding but you can still modify the values of existing bindings. See env_binding_lock()
for locking individual bindings.

Usage

env_lock(env)

env_is_locked(env)

Arguments

env An environment.

Value

The old value of env_is_locked() invisibly.

48 env_name

See Also

env_binding_lock()

Examples

New environments are unlocked by default:
env <- env(a = 1)
env_is_locked(env)

Use env_lock() to lock them:
env_lock(env)
env_is_locked(env)

Now that ‘env‘ is locked, it is no longer possible to remove or
add bindings. If run, the following would fail:

env_unbind(env, "a")

env_bind(env, b = 2)

ETE Y

Note that even though the environment as a container is locked,
the individual bindings are still unlocked and can be modified:
env$a <- 10

env_name Label of an environment

Description

Special environments like the global environment have their own names. env_name () returns:

 "global" for the global environment.

* "empty" for the empty environment.

* "base" for the base package environment (the last environment on the search path).
* "namespace:pkg" if env is the namespace of the package "pkg".

* The name attribute of env if it exists. This is how the package environments and the imports en-
vironments store their names. The name of package environments is typically "package:pkg".

nn

* The empty string "" otherwise.

env_label () is exactly like env_name() but returns the memory address of anonymous environ-
ments as fallback.

Usage
env_name(env)
env_label(env)

Arguments

env An environment.

env_names 49

Examples

Some environments have specific names:
env_name(global_env())
env_name(ns_env("rlang”))

Anonymous environments don't have names but are labelled by their
address in memory:

env_name(env())

env_label(env())

env_names Names and numbers of symbols bound in an environment

Description
env_names() returns object names from an enviroment env as a character vector. All names are
returned, even those starting with a dot. env_length() returns the number of bindings.

Usage

env_names(env)
env_length(env)

Arguments

env An environment.

Value

A character vector of object names.

Names of symbols and objects

Technically, objects are bound to symbols rather than strings, since the R interpreter evaluates sym-
bols (see is_expression() for a discussion of symbolic objects versus literal objects). However it
is often more convenient to work with strings. In rlang terminology, the string corresponding to a
symbol is called the name of the symbol (or by extension the name of an object bound to a symbol).

Encoding

There are deep encoding issues when you convert a string to symbol and vice versa. Symbols are
always in the native encoding (see set_chr_encoding()). If that encoding (let’s say latin1) cannot
support some characters, these characters are serialised to ASCII. That’s why you sometimes see
strings looking like <U+1234>, especially if you’re running Windows (as R doesn’t support UTF-8
as native encoding on that platform).

To alleviate some of the encoding pain, env_names() always returns a UTF-8 character vector
(which is fine even on Windows) with unicode points unserialised.
Examples

env <- env(a =1, b = 2)
env_names(env)

50 env_parent

env_parent Get parent environments

Description

* env_parent() returns the parent environment of env if called with n = 1, the grandparent
with n = 2, etc.

* env_tail() searches through the parents and returns the one which has empty_env() as
parent.

* env_parents() returns the list of all parents, including the empty environment. This list is
named using env_name ().

See the section on inheritance in env ()’s documentation.

Usage

env_parent(env = caller_env(), n = 1)
env_tail(env = caller_env(), last = global_env(), sentinel = NULL)

env_parents(env = caller_env(), last = global_env())

Arguments
env An environment.
n The number of generations to go up.
last The environment at which to stop. Defaults to the global environment. The
empty environment is always a stopping condition so it is safe to leave the de-
fault even when taking the tail or the parents of an environment on the search
path.
env_tail () returns the environment which has last as parent and env_parents()
returns the list of environments up to last.
sentinel This argument is soft-deprecated, please use last instead.
Value

An environment for env_parent() and env_tail(), a list of environments for env_parents().

Life cycle

The sentinel argument of env_tail() has been deprecated in rlang 0.2.0 and renamed to last.

Examples

Get the parent environment with env_parent():
env_parent(global_env())

Or the tail environment with env_tail():
env_tail(global_env())

By default, env_parent() returns the parent environment of the

env_print 51

current evaluation frame. If called at top-level (the global
frame), the following two expressions are equivalent:
env_parent()

env_parent(base_env())

This default is more handy when called within a function. In this
case, the enclosure environment of the function is returned

(since it is the parent of the evaluation frame):

enclos_env <- env()

fn <- set_env(function() env_parent(), enclos_env)
identical(enclos_env, fn())

env_print Pretty-print an environment

Description
This prints:

* The label and the parent label.
¢ Whether the environment is locked.

* The bindings in the environment (up to 20 bindings). They are printed succintly using pillar: : type_sum()
(if available, otherwise uses an internal version of that generic). In addition fancy bindings
(actives and promises) are indicated as such.

* Locked bindings get a [L] tag

Usage

env_print(env = caller_env())

Arguments
env An environment, or object that can be converted to an environment by get_env ().
env_unbind Remove bindings from an environment
Description

env_unbind() is the complement of env_bind(). Like env_has(), it ignores the parent environ-
ments of env by default. Set inherit to TRUE to track down bindings in parent environments.

Usage

env_unbind(env = caller_env(), nms, inherit = FALSE)

Arguments
env An environment.
nms A character vector containing the names of the bindings to remove.

inherit Whether to look for bindings in the parent environments.

52 eval _bare

Value

The input object env with its associated environment modified in place, invisibly.

Examples

data <- set_names(as_list(letters), letters)
env_bind(environment(), !!! data)
env_has(environment(), letters)

env_unbind() removes bindings:
env_unbind(environment(), letters)

env_has(environment(), letters)

With inherit = TRUE, it removes bindings in parent environments

as well:
parent <- child_env(NULL, foo = "a")
env <- child_env(parent, foo = "b")

env_unbind(env, "foo"”, inherit = TRUE)
env_has(env, "foo”, inherit = TRUE)

eval_bare Evaluate an expression in an environment

Description

Stable

eval_bare() is a lower-level version of function base: :eval (). Technically, it is a simple wrap-
per around the C function Rf_eval(). You generally don’t need to use eval_bare() instead of
eval(). Its main advantage is that it handles stack-sensitive (calls such as return(), on.exit()
or parent.frame()) more consistently when you pass an enviroment of a frame on the call stack.

Usage

eval_bare(expr, env = parent.frame())

Arguments

expr An expression to evaluate.

env The environment in which to evaluate the expression.
Details

These semantics are possible because eval_bare () creates only one frame on the call stack whereas
eval() creates two frames, the second of which has the user-supplied environment as frame envi-
ronment. When you supply an existing frame environment to base::eval() there will be two
frames on the stack with the same frame environment. Stack-sensitive functions only detect the
topmost of these frames. We call these evaluation semantics "stack inconsistent".

Evaluating expressions in the actual frame environment has useful practical implications for eval_bare():
* return() calls are evaluated in frame environments that might be burried deep in the call

stack. This causes a long return that unwinds multiple frames (triggering the on.exit() event
for each frame). By contrast eval () only returns from the eval() call, one level up.

eval_bare 53

* on.exit(), parent.frame(), sys.call(), and generally all the stack inspection functions
sys.xxx() are evaluated in the correct frame environment. This is similar to how this type
of calls can be evaluated deep in the call stack because of lazy evaluation, when you force an
argument that has been passed around several times.

The flip side of the semantics of eval_bare() is that it can’t evaluate break or next expressions
even if called within a loop.

See Also

eval_tidy() for evaluation with data mask and quosure support.

Examples

eval_bare() works just like base::eval() but you have to create
the evaluation environment yourself:

eval_bare(quote(foo), env(foo = "bar"))

eval() has different evaluation semantics than eval_bare(). It
can return from the supplied environment even if its an

environment that is not on the call stack (i.e. because you've
created it yourself). The following would trigger an error with
eval_bare():

ret <- quote(return(”foo"))
eval(ret, env())
eval_bare(ret, env()) # "no function to return from” error

Another feature of eval() is that you can control surround loops:
bail <- quote(break)
while (TRUE) {

eval(bail)

eval_bare(bail) # "no loop for break/next"” error

}

To explore the consequences of stack inconsistent semantics, let's
create a function that evaluates ‘parent.frame()‘ deep in the call
stack, in an environment corresponding to a frame in the middle of
the stack. For consistency with R's lazy evaluation semantics, we'd
expect to get the caller of that frame as result:
fn <- function(eval_fn) {
list(

returned_env = middle(eval_fn),

actual_env = current_env()

P

)

3

middle <- function(eval_fn) {
deep(eval_fn, current_env())

3

deep <- function(eval_fn, eval_env) {
expr <- quote(parent.frame())
eval_fn(expr, eval_env)

}

With eval_bare(), we do get the expected environment:
fn(rlang::eval_bare)

But that's not the case with base::eval():

54 eval_tidy

fn(base::eval)

eval_tidy Evaluate an expression with quosures and pronoun support

Description

Stable

eval_tidy() is a variant of base: :eval () that powers the tidy evaluation framework. Like eval ()
it accepts user data as argument. Whereas eval () simply transforms the data to an environment,
eval_tidy() transforms it to a data mask with as_data_mask(). Evaluating in a data mask
enables the following features:

* Quosures. Quosures are expressions bundled with an environment. If data is supplied, objects
in the data mask always have precedence over the quosure environment, i.e. the data masks
the environment.

* Pronouns. If data is supplied, the .env and .data pronouns are installed in the data mask.
.env is a reference to the calling environment and . data refers to the data argument. These
pronouns lets you be explicit about where to find values and throw errors if you try to access
non-existent values.

Usage

eval_tidy(expr, data = NULL, env = caller_env())

Arguments
expr An expression or quosure to evaluate.
data A data frame, or named list or vector. Alternatively, a data mask created with
as_data_mask() or new_data_mask(). Objects in data have priority over
those in env. See the section about data masking.
env The environment in which to evaluate expr. This environment is not applicable

for quosures because they have their own environments.

Data masking

Data masking refers to how columns or objects inside data have priority over objects defined in
env (or in the quosure environment, if applicable). If there is a column var in data and an object
var in env, and expr refers to var, the column has priority:

var <- "this one?”
data <- data.frame(var = rep("Or that one?”, 3))

within <- function(data, expr) {
eval_tidy(enquo(expr), data)
3

within(data, toupper(var))
#> [1] "OR THAT ONE?" "OR THAT ONE?" "OR THAT ONE?"

Because the columns or objects in data are always found first, before objects from env, we say that
the data "masks" the environment.

eval_tidy 55

When should eval_tidy() be used instead of eval()?

base: :eval() is sufficient for simple evaluation. Use eval_tidy() when you’d like to support
expressions referring to the . data pronoun, or when you need to support quosures.

If you’re evaluating an expression captured with quasiquotation support, it is recommended to use
eval_tidy() because users will likely unquote quosures.

Note that unwrapping a quosure with quo_get_expr () does not guarantee that there is no quosures
inside the expression. Quosures might be unquoted anywhere. For instance, the following does not
work reliably in the presence of nested quosures:

my_quoting_fn <- function(x) {
x <= enquo(x)
expr <- quo_get_expr(x)
env <- quo_get_env(x)
eval (expr, env)

3

Works:
my_quoting_fn(toupper(letters))

Fails because of a nested quosure:
my_quoting_fn(toupper(!!quo(letters)))

Life cycle
rlang 0.3.0

Passing an environment to data is deprecated. Please construct an rlang data mask with new_data_mask().

See Also

quasiquotation for the second leg of the tidy evaluation framework.

Examples

With simple quoted expressions eval_tidy() works the same way as
eval():

apple <- "apple”

kiwi <- "kiwi”

expr <- quote(paste(apple, kiwi))

expr

eval (expr)
eval_tidy(expr)

Both accept a data mask as argument:

data <- list(apple = "CARROT"”, kiwi = "TOMATO")
eval (expr, data)

eval_tidy(expr, data)

In addition eval_tidy() has support for quosures:
with_data <- function(data, expr) {
quo <- enquo(expr)

56 exec

eval_tidy(quo, data)
3
with_data(NULL, apple)
with_data(data, apple)
with_data(data, list(apple, kiwi))

Secondly eval_tidy() installs handy pronouns that allow users to
be explicit about where to find symbols:

with_data(data, .data$apple)

with_data(data, .env$apple)

N N

Note that instead of using ‘.env' it is often equivalent and may
be preferred to unquote a value. There are two differences. First
unquoting happens earlier, when the quosure is created. Secondly,
subsetting ‘.env' with the “$* operator may be brittle because
$ does not look through the parents of the environment.

\

For instance using ‘.env$name® in a magrittr pipeline is an
instance where this poses problem, because the magrittr pipe
currently (as of v1.5.0) evaluates its operands in a *child* of
the current environment (this child environment is where it
defines the pronoun *.%).

Not run:

data %>% with_data(!!kiwi) # "kiwi”

data %>% with_data(.env$kiwi) # NULL

T E R

End(Not run)

exec Execute a function

Description

This function constructs and evaluates a call to . fn. It has two primary uses:

* To call a function with arguments stored in a list (if the function doesn’t support tidy-dots)

* To call every function stored in a list (in conjunction with map()/ lapply())

Usage
exec(.fn, ..., .env = caller_env())
Arguments
.fn A function, or function name as a string.
Arguments to function.
These dots support tidy-dots features.
.env Environment in which to evaluate the call. This will be most useful if f is a

string, or the function has side-effects.

exiting 57

Examples

args <- list(x = c(1:10, 100, NA), na.rm = TRUE)
exec("mean”, !!largs)
exec("mean”, !!largs, trim = 0.2)

fs <- list(a = function() "a", b = function() "b")
lapply(fs, exec)

Compare to do.call it will not automatically inline expressions
into the evaluated call.

x <- 10
args <- exprs(x1 = x + 1, x2 = x * 2)
exec(list, !!largs)

do.call(list, args)

exec() is not designed to generate pretty function calls. This is
most easily seen if you call a function that captures the call:

f <- disp ~ cyl

exec("1lm"”, f, data = mtcars)

If you need finer control over the generated call, you'll need to
construct it yourself. This may require creating a new environment
with carefully constructed bindings

data_env <- env(data = mtcars)

eval(expr(Im(!!f, data)), data_env)

exiting Create an exiting or in place handler

Description

There are two types of condition handlers: exiting handlers, which are thrown to the place where
they have been established (e.g., with_handlers()’s evaluation frame), and local handlers, which
are executed in place (e.g., where the condition has been signalled). exiting() and calling()
create handlers suitable for with_handlers().

Usage
exiting(handler)
calling(handler)
Arguments
handler A handler function that takes a condition as argument. This is passed to as_function()
and can thus be a formula describing a lambda function.
Details

A subtle point in the R language is that conditions are not thrown, handlers are. base: : tryCatch()
and with_handlers() actually catch handlers rather than conditions. When a critical condition is
signalled with base: :stop() or abort(), R inspects the handler stack and looks for a handler
that can deal with the condition. If it finds an exiting handler, it throws it to the function that

58 exprs_auto_name

established it (with_handlers()). That is, it interrupts the normal course of evaluation and jumps
to with_handlers() evaluation frame (see ctxt_stack()), and only then and there the handler is
called. On the other hand, if R finds a calling handler, it executes it locally. The calling handler can
choose to handle the condition by jumping out of the frame (see rst_jump() or return_from()).
If it returns locally, it declines to handle the condition which is passed to the next relevant handler
on the stack. If no handler is found or is able to deal with the critical condition (by jumping out of
the frame), R will then jump out of the faulty evaluation frame to top-level, via the abort restart (see
rst_abort()).

Life cycle
exiting() is in the questioning stage because with_handlers() now treats handlers as exiting by
default.

See Also

with_handlers() for examples, restarting() for another kind of calling handler.

Examples

You can supply a function taking a condition as argument:

hnd <- exiting(function(c) cat("handled foo\n"))
with_handlers(signal("A foobar condition occurred”, "foo"), foo = hnd)
Or a lambda-formula where "."” is bound to the condition:
with_handlers(foo = calling(~cat("hello”, .$attr, "\n")), {

signal ("A foobar condition occurred”, "foo", attr = "there")
Ilfooll
»
exprs_auto_name Ensure that all elements of a list of expressions are named
Description

This gives default names to unnamed elements of a list of expressions (or expression wrappers such
as formulas or quosures). exprs_auto_name() deparses the expressions with expr_name() by
default. quos_auto_name() deparses with quo_name().

Usage

exprs_auto_name(exprs, width = NULL, printer = NULL)

quos_auto_name(quos, width = NULL)

Arguments
exprs A list of expressions.
width Soft-deprecated. Maximum width of names.
printer Soft-deprecated. A function that takes an expression and converts it to a string.

This function must take an expression as the first argument and width as the
second argument.

quos A list of quosures.

expr_interp 59

expr_interp Process unquote operators in a captured expression

Description

While all capturing functions in the tidy evaluation framework perform unquote on capture (most
notably quo()), expr_interp() manually processes unquoting operators in expressions that are
already captured. expr_interp() should be called in all user-facing functions expecting a formula
as argument to provide the same quasiquotation functionality as NSE functions.

Usage

expr_interp(x, env = NULL)

Arguments
X A function, raw expression, or formula to interpolate.
env The environment in which unquoted expressions should be evaluated. By de-
fault, the formula or closure environment if a formula or a function, or the cur-
rent environment otherwise.
Examples

All tidy NSE functions like quo() unquote on capture:
quo(list(!!'(1 + 2)))

expr_interp() is meant to provide the same functionality when you
have a formula or expression that might contain unquoting

operators:

f <= ~list(!'(1 + 2))

expr_interp(f)

Note that only the outer formula is unquoted (which is a reason
to use expr_interp() as early as possible in all user-facing

functions):

f <= ~list(~!1(1 + 2), '1(1 + 2))

expr_interp(f)

Another purpose for expr_interp() is to interpolate a closure's
body. This is useful to inline a function within another. The

important limitation is that all formal arguments of the inlined
function should be defined in the receiving function:

other_fn <- function(x) toupper(x)

fn <- expr_interp(function(x) {
X <- paste@(x, "_suffix")
11! body(other_fn)

»

fn

fn("foo")

60 expr_label

expr_label Turn an expression to a label

Description

Questioning

expr_text() turns the expression into a single string, which might be multi-line. expr_name() is
suitable for formatting names. It works best with symbols and scalar types, but also accepts calls.
expr_label() formats the expression nicely for use in messages.

Usage
expr_label (expr)
expr_name(expr)

expr_text(expr, width = 60L, nlines = Inf)

Arguments

expr An expression to labellise.

width Width of each line.

nlines Maximum number of lines to extract.
Life cycle

These functions are in the questioning stage because they are redundant with the quo_ variants and
do not handle quosures.

Examples

To labellise a function argument, first capture it with
substitute():

fn <- function(x) expr_label(substitute(x))

fn(x:y)

Strings are encoded
expr_label("a\nb")

Names and expressions are quoted with **
expr_label (quote(x))
expr_label(quote(a + b + ¢))

Long expressions are collapsed
expr_label (quote(foo({

1+ 2

print(x)
DN

expr_print 61

expr_print Print an expression

Description

expr_print (), powered by expr_deparse(), is an alternative printer for R expressions with a few
improvements over the base R printer.

* It colourises quosures according to their environment. Quosures from the global environment
are printed normally while quosures from local environments are printed in unique colour (or
in italic when all colours are taken).

It wraps inlined objects in angular brackets. For instance, an integer vector unquoted in a
function call (e.g. expr(foo(!!(1:3)))) is printed like this: foo(<int: 1L, 2L, 3L>)
while by default R prints the code to create that vector: foo(1:3) which is ambiguous.

* It respects the width boundary (from the global option width) in more cases.

Usage

expr_print(x, width = peek_option("width"))

expr_deparse(x, width = peek_option("width"))

Arguments
X An object or expression to print.
width The width of the deparsed or printed expression. Defaults to the global option
width.
Examples

It supports any object. Non-symbolic objects are always printed
within angular brackets:

expr_print(1:3)

expr_print(function() NULL)

Contrast this to how the code to create these objects is printed:
expr_print(quote(1:3))
expr_print(quote(function() NULL))

The main cause of non-symbolic objects in expressions is
quasiquotation:
expr_print(expr(foo(!!(1:3))))

Quosures from the global environment are printed normally:
expr_print(quo(foo))
expr_print(quo(foo(!!quo(bar))))

Quosures from local environments are colourised according to
their environments (if you have crayon installed):

local_quo <- local(quo(foo))

expr_print(local_quo)

62 fn_env

wrapper_quo <- local(quo(bar(!!local_quo, baz)))
expr_print(wrapper_quo)

fn_body Get or set function body

Description

fn_body () is a simple wrapper around base: :body (). It always returns a { expression and throws
an error when the input is a primitive function (whereas body () returns NULL). The setter version
preserves attributes, unlike body<-.

Usage
fn_body(fn = caller_fn())

fn_body(fn) <- value

Arguments
fn A function. It is lookep up in the calling frame if not supplied.
value New formals or formals names for fn.

Examples

fn_body() is like body() but always returns a block:
fn <= function() do()

body (fn)

fn_body(fn)

It also throws an error when used on a primitive function:
try(fn_body(base::1list))

fn_env Return the closure environment of a function

Description

Closure environments define the scope of functions (see env()). When a function call is evaluated,
R creates an evaluation frame (see ctxt_stack()) that inherits from the closure environment. This
makes all objects defined in the closure environment and all its parents available to code executed
within the function.

Usage
fn_env(fn)

fn_env(x) <- value

fn_fmls 63

Arguments

fn, x A function.

value A new closure environment for the function.
Details

fn_env () returns the closure environment of fn. There is also an assignment method to set a new
closure environment.

Examples

env <- child_env("base")
fn <- with_env(env, function() NULL)
identical(fn_env(fn), env)

other_env <- child_env("base")
fn_env(fn) <- other_env
identical(fn_env(fn), other_env)

fn_fmls Extract arguments from a function

Description

fn_fmls() returns a named list of formal arguments. fn_fmls_names() returns the names of the
arguments. fn_fmls_syms() returns formals as a named list of symbols. This is especially useful
for forwarding arguments in constructed calls.

Usage

fn_fmls(fn = caller_fn())
fn_fmls_names(fn = caller_fn())
fn_fmls_syms(fn = caller_fn())
fn_fmls(fn) <- value

fn_fmls_names(fn) <- value

Arguments

fn A function. It is lookep up in the calling frame if not supplied.

value New formals or formals names for fn.

64 f rhs

Details

Unlike formals(), these helpers also work with primitive functions. See is_function() for a
discussion of primitive and closure functions.

Note that the argument names are taken from the closures that are created when passing the primitive
to as_closure(). For instance, while the arguments of the primitive operator + are labelled e1 and
e2, fn_fmls_names() will return .x and .y. Note that for many primitives the base R argument
names are purely placeholders since they don’t perform regular argument matching. E.g. this
returns 5 instead of -5:

*-Y(e2 =10, 5)

To regularise the semantics of primitive functions, it is usually a good idea to coerce them to a
closure first:

minus <- as_closure(*-")
minus(.y = 10, 5)

See Also

call_args() and call_args_names()

Examples

Extract from current call:
fn <- function(a = 1, b = 2) fn_fmls()
fn()

Works with primitive functions:
fn_fmls(base: :switch)

fn_fmls_syms() makes it easy to forward arguments:
call2("apply”, !'!! fn_fmls_syms(lapply))

You can also change the formals:
fn_fmls(fn) <- list(A = 10, B = 20)

fn()
fn_fmls_names(fn) <- c("foo", "bar")
fn()
f_rhs Get or set formula components
Description

f_rhs extracts the righthand side, f_lhs extracts the lefthand side, and f_env extracts the environ-
ment. All functions throw an error if f is not a formula.

f _text 65
Usage

f_rhs(f)

f_rhs(x) <- value

f_lhs(f)

f_lhs(x) <- value

f_env(f)

f_env(x) <- value

Arguments

f, x A formula

value The value to replace with.
Value

f_rhs and f_lhs return language objects (i.e. atomic vectors of length 1, a name, or a call). f_env
returns an environment.

Examples

f_rhs(~ 1 + 2 + 3)

f_rhs(~ x)
f_rhs(~ "A")
f_rhs(1 ~ 2)
f_lhs(~ y)
f_lhs(x ~y)
f_env(~ x)
f_text Turn RHS of formula into a string or label
Description

Equivalent of expr_text() and expr_label() for formulas.
Usage

f_text(x, width = 60L, nlines = Inf)

f_name(x)

f_label(x)

66 get_env

Arguments

X A formula.
width Width of each line.

nlines Maximum number of lines to extract.

Examples

f<-~a+b+bc
f_text(f)
f_label(f)

Names a quoted with **
f_label(~ x)
Strings are encoded
f_label(~ "a\nb")
Long expressions are collapsed
f_label(~ foo({
1T+ 2
print(x)
1))

get_env Get or set the environment of an object

Description

These functions dispatch internally with methods for functions, formulas and frames. If called
with a missing argument, the environment of the current evaluation frame (see ctxt_stack())
is returned. If you call get_env() with an environment, it acts as the identity function and the
environment is simply returned (this helps simplifying code when writing generic functions for
environments).

Usage

get_env(env, default = NULL)

set_env(env, new_env = caller_env())

env_poke_parent(env, new_env)

Arguments
env An environment.
default The default environment in case env does not wrap an environment. If NULL and
no environment could be extracted, an error is issued.
new_env An environment to replace env with.
Details

While set_env() returns a modified copy and does not have side effects, env_poke_parent()
operates changes the environment by side effect. This is because environments are uncopyable. Be
careful not to change environments that you don’t own, e.g. a parent environment of a function
from a package.

get_env 67

Life cycle
* Using get_env() without supplying env is soft-deprecated as of rlang 0.3.0. Please use
current_env() to retrieve the current environment.

* Passing environment wrappers like formulas or functions instead of bare environments is soft-
deprecated as of rlang 0.3.0. This internal genericity was causing confusion (see issue #427).
You should now extract the environment separately before calling these functions.

See Also
quo_get_env() and quo_set_env() for versions of get_env() and set_env() that only work on
quosures.

Examples

Environment of closure functions:
fn <- function() "foo"
get_env(fn)

Or of quosures or formulas:

get_env(~foo)
get_env(quo(foo))

Provide a default in case the object doesn't bundle an environment.

Let's create an unevaluated formula:

f <- quote(~foo)

The following line would fail if run because unevaluated formulas
don't bundle an environment (they didn't have the chance to

record one yet):

get_env(f)

It is often useful to provide a default when you're writing
functions accepting formulas as input:

default <- env()

identical(get_env(f, default), default)

set_env() can be used to set the enclosure of functions and

formulas. Let's create a function with a particular environment:
env <- child_env("base")

fn <- set_env(function() NULL, env)

That function now has ‘env‘ as enclosure:
identical(get_env(fn), env)
identical(get_env(fn), current_env())

set_env() does not work by side effect. Setting a new environment
for fn has no effect on the original function:

other_env <- child_env(NULL)

set_env(fn, other_env)

identical(get_env(fn), other_env)

Since set_env() returns a new function with a different
environment, you'll need to reassign the result:

fn <- set_env(fn, other_env)

identical(get_env(fn), other_env)

68 has_name

has_length How long is an object?

Description
This is a function for the common task of testing the length of an object. It checks the length of an
object in a non-generic way: base: : length() methods are ignored.

Usage
has_length(x, n = NULL)

Arguments
X A R object.
n A specific length to test x with. If NULL, has_length() returns TRUE if x has
length greater than zero, and FALSE otherwise.
Examples

has_length(list())
has_length(list(), 0)

has_length(letters)
has_length(letters, 20)
has_length(letters, 26)

has_name Does an object have an element with this name?

Description
This function returns a logical value that indicates if a data frame or another named object contains
an element with a specific name.

Usage

has_name(x, name)

Arguments
X A data frame or another named object
name Element name(s) to check

Details

Unnamed objects are treated as if all names are empty strings. NA input gives FALSE as output.

Value

A logical vector of the same length as name

inherits_any 69

Examples

has_name(iris, "Species"”)
has_name(mtcars, "gears")

inherits_any Does an object inherit from a set of classes?

Description

e inherits_any() is like base::inherits() but is more explicit about its behaviour with
multiple classes. If classes contains several elements and the object inherits from at least
one of them, inherits_any() returns TRUE.

* inherits_all() tests that an object inherits from all of the classes in the supplied order. This
is usually the best way to test for inheritance of multiple classes.

e inherits_only() tests that the class vectors are identical. It is a shortcut for identical (class(x), class).
Usage
inherits_any(x, class)
inherits_all(x, class)

inherits_only(x, class)

Arguments
X An object to test for inheritance.
class A character vector of classes.
Examples
obj <- structure(list(), class = c("foo", "bar", "baz"))

With the _any variant only one class must match:
inherits_any(obj, c("foobar"”, "bazbaz"))
inherits_any(obj, c("foo"”, "bazbaz"))

With the _all variant all classes must match:
inherits_all(obj, c("foo"”, "bazbaz"))
inherits_all(obj, c("foo", "baz"))

The order of classes must match as well:
inherits_all(obj, c("baz", "foo"))

inherits_only() checks that the class vectors are identical:
inherits_only(obj, c("foo"”, "baz"))
inherits_only(obj, c("foo”, "bar", "baz"))

70 is_call

is_call Is object a call?

Description

This function tests if x is a call. This is a pattern-matching predicate that returns FALSE if name and n
are supplied and the call does not match these properties. is_unary_call() and is_binary_call()
hardcode n to 1 and 2.

Usage

is_call(x, name = NULL, n = NULL, ns = NULL)

Arguments
X An object to test. If a formula, the right-hand side is extracted.
name An optional name that the call should match. It is passed to sym() before match-
ing. This argument is vectorised and you can supply a vector of names to match.
In this case, is_call() returns TRUE if at least one name matches.
n An optional number of arguments that the call should match.
ns The namespace of the call. If NULL, the namespace doesn’t participate in the
pattern-matching. If an empty string "" and x is a namespaced call, is_call()
returns FALSE. If any other string, is_call() checks that x is namespaced
within ns.
Can be a character vector of namespaces, in which case the call has to match at
least one of them, otherwise is_call() returns FALSE.
Life cycle

is_lang() has been soft-deprecated and renamed to is_call() in rlang 0.2.0 and similarly for
is_unary_lang() and is_binary_lang(). This renaming follows the general switch from "lan-
guage" to "call" in the rlang type nomenclature. See lifecycle section in call2().

See Also

is_expression()

Examples

is_call(quote(foo(bar)))

You can pattern-match the call with additional arguments:
is_call(quote(foo(bar)), "foo")

is_call(quote(foo(bar)), "bar")

is_call(quote(foo(bar)), quote(foo))

Match the number of arguments with is_call():
is_call(quote(foo(bar)), "foo", 1)
is_call(quote(foo(bar)), "foo", 2)

is_callable 71

By default, namespaced calls are tested unqualified:
ns_expr <- quote(base::list())
is_call(ns_expr, "list")

You can also specify whether the call shouldn't be namespaced by
supplying an empty string:
is_call(ns_expr, "list", ns = "")

Or if it should have a namespace:
is_call(ns_expr, "list”, ns = "utils"”)

is_call(ns_expr, "list”, ns = "base")

You can supply multiple namespaces:

is_call(ns_expr, "list”, ns = c("utils"”, "base"))
is_call(ns_expr, "list”, ns = c("utils”, "stats"))

If one of them is "", unnamespaced calls will match as well:
is_call(quote(list()), "list", ns = "base")
is_call(quote(list()), "list", ns = c("base”, ""))
is_call(quote(base::1list()), "list", ns = c("base”, ""))

The name argument is vectorised so you can supply a list of names
to match with:

is_call(quote(foo(bar)), c("bar”, "baz"))

is_call(quote(foo(bar)), c("bar”, "foo"))

is_call(quote(base::1list), c("::", ":::", "$",6 "@"))
is_callable Is an object callable?
Description

A callable object is an object that can appear in the function position of a call (as opposed to
argument position). This includes symbolic objects that evaluate to a function or literal functions
embedded in the call.

Usage

is_callable(x)

Arguments

X An object to test.

Details

Note that strings may look like callable objects because expressions of the form "1ist" () are valid
R code. However, that’s only because the R parser transforms strings to symbols. It is not legal to
manually set language heads to strings.

72 is_copyable

Examples

Symbolic objects and functions are callable:
is_callable(quote(foo))
is_callable(base::identity)

node_poke_car() lets you modify calls without any checking:
lang <- quote(foo(10))
node_poke_car(lang, current_env())

Use is_callable() to check an input object is safe to put as CAR:
obj <- base::identity

if (is_callable(obj)) {

lang <- node_poke_car(lang, obj)
} else {

abort(”"‘obj* must be callable”)
3

eval_bare(lang)

is_condition Is object a condition?

Description

Is object a condition?

Usage

is_condition(x)

Arguments
X An object to test.
is_copyable Is an object copyable?
Description

When an object is modified, R generally copies it (sometimes lazily) to enforce value semantics.
However, some internal types are uncopyable. If you try to copy them, either with <- or by argument
passing, you actually create references to the original object rather than actual copies. Modifying
these references can thus have far reaching side effects.

Usage

is_copyable(x)

https://en.wikipedia.org/wiki/Value_semantics

is_empty

Arguments

X An object to test.

Examples

Let's add attributes with structure() to uncopyable types. Since
they are not copied, the attributes are changed in place:

env <- env()

structure(env, foo = "bar")

env

These objects that can only be changed with side effect are not
copyable:
is_copyable(env)

structure(base::list, foo = "bar")
str(base::list)

73

is_empty Is object an empty vector or NULL?

Description

Is object an empty vector or NULL?

Usage

is_empty(x)

Arguments

X object to test

Examples

is_empty(NULL)
is_empty(list())
is_empty(list(NULL))

is_environment Is object an environment?

Description

is_bare_environment() tests whether x is an environment without a s3 or s4 class.

Usage

is_environment(x)

is_bare_environment(x)

74

is_expression

Arguments
X object to test
is_expression Is an object an expression?
Description

is_expression() tests for expressions, the set of objects that can be obtained from parsing R
code. An expression can be one of two things: either a symbolic object (for which is_symbolic()
returns TRUE), or a syntactic literal (testable with is_syntactic_literal()). Technically, calls
can contain any R object, not necessarily symbolic objects or syntactic literals. However, this only
happens in artificial situations. Expressions as we define them only contain numbers, strings, NULL,
symbols, and calls: this is the complete set of R objects that can be created when R parses source
code (e.g. from using parse_expr()).

Note that we are using the term expression in its colloquial sense and not to refer to expression()
vectors, a data type that wraps expressions in a vector and which isn’t used much in modern R code.

Usage

is_expression(x)
is_syntactic_literal(x)

is_symbolic(x)

Arguments

X An object to test.

Details

is_symbolic() returns TRUE for symbols and calls (objects with type language). Symbolic objects
are replaced by their value during evaluation. Literals are the complement of symbolic objects. They
are their own value and return themselves during evaluation.

is_syntactic_literal() is a predicate that returns TRUE for the subset of literals that are created
by R when parsing text (see parse_expr()): numbers, strings and NULL. Along with symbols, these
literals are the terminating nodes in an AST.

Note that in the most general sense, a literal is any R object that evaluates to itself and that can
be evaluated in the empty environment. For instance, quote(c(1, 2)) is not a literal, it is a call.
However, the result of evaluating it in base_env () is a literal(in this case an atomic vector).

Pairlists are also a kind of language objects. However, since they are mostly an internal data struc-
ture, is_expression() returns FALSE for pairlists. You can use is_pairlist() to explicitly check
for them. Pairlists are the data structure for function arguments. They usually do not arise from R
code because subsetting a call is a type-preserving operation. However, you can obtain the pairlist
of arguments by taking the CDR of the call object from C code. The rlang function node_cdr ()
will do it from R. Another way in which pairlist of arguments arise is by extracting the argument
list of a closure with base: : formals() or fn_fmls().

is_formula

See Also

is_call() for a call predicate.

Examples

gl <- quote(1)
is_expression(ql)
is_syntactic_literal(ql)

g2 <- quote(x)
is_expression(qg2)
is_symbol(qg2)

g3 <- quote(x + 1)
is_expression(qg3)
is_call(qg3)

Atomic expressions are the terminating nodes of a call tree:
NULL or a scalar atomic vector:
is_syntactic_literal("string")

is_syntactic_literal (NULL)

is_syntactic_literal(letters)
is_syntactic_literal(quote(call()))

Parsable literals have the property of being self-quoting:
identical("foo"”, quote("foo"))

identical (1L, quote(1L))

identical (NULL, quote(NULL))

Like any literals, they can be evaluated within the empty
environment:
eval_bare(quote(1L), empty_env())

Whereas it would fail for symbolic expressions:
eval_bare(quote(c(1L, 2L)), empty_env())

Pairlists are also language objects representing argument lists.
You will usually encounter them with extracted formals:

fmls <- formals(is_expression)

typeof (fmls)

Since they are mostly an internal data structure, is_expression()
returns FALSE for pairlists, so you will have to check explicitly
for them:

is_expression(fmls)

is_pairlist(fmls)

is_formula Is object a formula?

76 is_formula

Description
is_formula() tests if x is a call to ~. is_bare_formula() tests in addition that x does not inherit
from anything else than "formula”.

Usage
is_formula(x, scoped = NULL, lhs = NULL)

is_bare_formula(x, scoped = NULL, lhs = NULL)

Arguments
X An object to test.
scoped A boolean indicating whether the quosure is scoped, that is, has a valid environ-
ment attribute. If NULL, the scope is not inspected.
lhs A boolean indicating whether the formula or definition has a left-hand side. If
NULL, the LHS is not inspected.
Details

The scoped argument patterns-match on whether the scoped bundled with the quosure is valid or
not. Invalid scopes may happen in nested quotations like ~~expr, where the outer quosure is validly
scoped but not the inner one. This is because ~ saves the environment when it is evaluated, and
quoted formulas are by definition not evaluated.

Examples

x <- disp ~ am
is_formula(x)

is_formula(~10)
is_formula(10)

is_formula(quo(foo))
is_bare_formula(quo(foo))

Note that unevaluated formulas are treated as bare formulas even
though they don't inherit from "formula”:

f <- quote(~foo)

is_bare_formula(f)

However you can specify ‘scoped‘ if you need the predicate to
return FALSE for these unevaluated formulas:
is_bare_formula(f, scoped = TRUE)

is_bare_formula(eval(f), scoped = TRUE)

is_function 77

is_function Is object a function?

Description

The R language defines two different types of functions: primitive functions, which are low-level,
and closures, which are the regular kind of functions.

Usage

is_function(x)
is_closure(x)
is_primitive(x)
is_primitive_eager(x)

is_primitive_lazy(x)

Arguments

X Object to be tested.

Details

Closures are functions written in R, named after the way their arguments are scoped within nested
environments (see https://en.wikipedia.org/wiki/Closure_(computer_programming)). The root en-
vironment of the closure is called the closure environment. When closures are evaluated, a new
environment called the evaluation frame is created with the closure environment as parent. This is
where the body of the closure is evaluated. These closure frames appear on the evaluation stack
(see ctxt_stack()), as opposed to primitive functions which do not necessarily have their own
evaluation frame and never appear on the stack.

Primitive functions are more efficient than closures for two reasons. First, they are written entirely
in fast low-level code. Second, the mechanism by which they are passed arguments is more efficient
because they often do not need the full procedure of argument matching (dealing with positional
versus named arguments, partial matching, etc). One practical consequence of the special way in
which primitives are passed arguments is that they technically do not have formal arguments, and
formals() will return NULL if called on a primitive function. See fn_fmls() for a function that
returns a representation of formal arguments for primitive functions. Finally, primitive functions
can either take arguments lazily, like R closures do, or evaluate them eagerly before being passed
on to the C code. The former kind of primitives are called "special” in R terminology, while the
latter is referred to as "builtin". is_primitive_eager() and is_primitive_lazy() allow you to
check whether a primitive function evaluates arguments eagerly or lazily.

You will also encounter the distinction between primitive and internal functions in technical docu-
mentation. Like primitive functions, internal functions are defined at a low level and written in C.
However, internal functions have no representation in the R language. Instead, they are called via
acall to base: :.Internal() within a regular closure. This ensures that they appear as normal R
function objects: they obey all the usual rules of argument passing, and they appear on the evalu-
ation stack as any other closures. As a result, fn_fmls() does not need to look in the .ArgsEnv

78 is_installed

environment to obtain a representation of their arguments, and there is no way of querying from R
whether they are lazy (’special’ in R terminology) or eager ('builtin’).

You can call primitive functions with .Primitive() and internal functions with .Internal().
However, calling internal functions in a package is forbidden by CRAN’s policy because they are
considered part of the private API. They often assume that they have been called with correctly
formed arguments, and may cause R to crash if you call them with unexpected objects.

Examples

Primitive functions are not closures:
is_closure(base::c)
is_primitive(base::c)

On the other hand, internal functions are wrapped in a closure
and appear as such from the R side:
is_closure(base: :eval)

Both closures and primitives are functions:
is_function(base::c)
is_function(base::eval)

Primitive functions never appear in evaluation stacks:
is_primitive(base::“[[")
is_primitive(base::list)
list(ctxt_stack())[[1]1]

While closures do:
identity(identity(ctxt_stack()))

Many primitive functions evaluate arguments eagerly:
is_primitive_eager(base::c)
is_primitive_eager(base::list)
is_primitive_eager(base::*+")

However, primitives that operate on expressions, like quote() or
substitute(), are lazy:

is_primitive_lazy(base::quote)

is_primitive_lazy(base: :substitute)

is_installed Is a package installed in the library?

Description
This checks that a package is installed with minimal side effects. If installed, the package will be
loaded but not attached.

Usage
is_installed(pkg)

Arguments

pkg The name of a package.

is_integerish 79

Value

TRUE if the package is installed, FALSE otherwise.

Examples

is_installed("utils")
is_installed("ggplot5")

is_integerish Is a vector integer-like?

Description

These predicates check whether R considers a number vector to be integer-like, according to its own
tolerance check (which is in fact delegated to the C library). This function is not adapted to data
analysis, see the help for base: :is.integer () for examples of how to check for whole numbers.

Things to consider when checking for integer-like doubles:

* This check can be expensive because the whole double vector has to be traversed and checked.

* Large double values may be integerish but may still not be coercible to integer. This is because
integers in R only support values up to 2*31 - 1 while numbers stored as double can be much
larger.

Usage

is_integerish(x, n = NULL, finite = NULL)
is_bare_integerish(x, n = NULL, finite = NULL)

is_scalar_integerish(x, finite = NULL)

Arguments
X Object to be tested.
n Expected length of a vector.
finite Whether all values of the vector are finite. The non-finite values are NA, Inf,
-Inf and NaN. Setting this to something other than NULL can be expensive be-
cause the whole vector needs to be traversed and checked.
See Also
is_bare_numeric() for testing whether an object is a base numeric type (a bare double or integer
vector).
Examples

is_integerish(10L)
is_integerish(10.0)
is_integerish(10.09, n = 2)
is_integerish(10.000001)
is_integerish(TRUE)

80 is_named

is_interactive Is R running interactively?

Description

Like base: :interactive(), is_interactive() returns TRUE when the function runs interactively
and FALSE when it runs in batch mode. It also checks:

* Whether knitr or an RStudio notebook is in progress.

* The rlang_interactive global option. If set to a single TRUE or FALSE, is_interactive()
returns that value instead. This escape hatch is useful in unit tests or to manually turn on
interactive features in RMarkdown outputs.

with_interactive() and scoped_interactive() set the global option conveniently.

Usage

is_interactive()
scoped_interactive(value = TRUE, frame = caller_env())

with_interactive(expr, value = TRUE)

Arguments
value A single TRUE or FALSE. This overrides the return value of is_interactive().
frame The environment of a running function which defines the scope of the temporary
options. When the function returns, the options are reset to their original values.
expr An expression to evaluate with interactivity set to value.
is_named Is object named?
Description

is_named() checks that x has names attributes, and that none of the names are missing or empty
(NAor""). is_dictionaryish() checks that an object is a dictionary: that it has actual names and
in addition that there are no duplicated names. have_name () is a vectorised version of is_named().

Usage

is_named(x)
is_dictionaryish(x)
have_name (x)

Arguments

X An object to test.

is_namespace 81

Value

is_named() and is_dictionaryish() are scalar predicates and return TRUE or FALSE. have_name ()
is vectorised and returns a logical vector as long as the input.

Examples

A data frame usually has valid, unique names
is_named(mtcars)

have_name (mtcars)

is_dictionaryish(mtcars)

But data frames can also have duplicated columns:
dups <- cbind(mtcars, cyl = seq_len(nrow(mtcars)))
is_dictionaryish(dups)

The names are still valid:
is_named(dups)
have_name (dups)

For empty objects the semantics are slightly different.
is_dictionaryish() returns TRUE for empty objects:
is_dictionaryish(list())

But is_named() will only return TRUE if there is a names
attribute (a zero-length character vector in this case):
x <- set_names(list(), character(@))

is_named(x)

Empty and missing names are invalid:
invalid <- dups

names(invalid)[2] <- ""
names(invalid)[5] <- NA

is_named() performs a global check while have_name() can show you
where the problem is:

is_named(invalid)

have_name(invalid)

have_name() will work even with vectors that don't have a names
attribute:
have_name(letters)

is_namespace Is an object a namespace environment?

Description

Is an object a namespace environment?

Usage

is_namespace(x)

82 is_reference

Arguments
X An object to test.
is_reference Is an object referencing another?
Description

There are typically two situations where two symbols may refer to the same object.

* R objects usually have copy-on-write semantics. This is an optimisation that ensures that
objects are only copied if needed. When you copy a vector, no memory is actually copied
until you modify either the original object or the copy is modified.

Note that the copy-on-write optimisation is an implementation detail that is not guaranteed by
the specification of the R language.

» Assigning an uncopyable object (like an environment) creates a reference. These objects are
never copied even if you modify one of the references.

Usage

is_reference(x, y)

Arguments

X,y R objects.

Examples

Reassigning an uncopyable object such as an environment creates a
reference:

env <- env()

ref <- env

is_reference(ref, env)

Due to copy-on-write optimisation, a copied vector can
temporarily reference the original vector:

vec <- 1:10

copy <- vec

is_reference(copy, vec)

Once you modify on of them, the copy is triggered in the
background and the objects cease to reference each other:
vec[[1]1] <- 100

is_reference(copy, vec)

is_stack

83

is_stack Is object a stack?

Description

Soft-deprecated

Usage

is_stack(x)
is_eval_stack(x)

is_call_stack(x)

Arguments
X An object to test
is_symbol Is object a symbol?
Description

Is object a symbol?

Usage

is_symbol(x, name = NULL)

Arguments
X An object to test.
name An optional name or vector of names that the symbol should match.
is_true Is object identical to TRUE or FALSE?
Description

These functions bypass R’s automatic conversion rules and check that x is literally TRUE or FALSE.

Usage

is_true(x)

is_false(x)

84 last_error

Arguments

X object to test

Examples

is_true(TRUE)
is_true(1)

is_false(FALSE)
is_false(0@)

lang_head Return the head or tail of a call

Description

Soft-deprecated
As of rlang 0.2.0 these functions are retired (soft-deprecated for now) because they are low level
accessors that are rarely needed for end users.

Usage
lang_head(lang)
lang_tail(lang)

Arguments

lang A call.

last_error Last abort () error

Description

e last_error() returns the last error thrown with abort(). The error is printed with a back-
trace in simplified form.

e last_trace() is a shortcut to return the backtrace stored in the last error. This backtrace is
printed in full form.

Usage

last_error()

last_trace()

lifecycle 85

lifecycle Life cycle of the rlang package

Description

Maturing

The rlang package is currently maturing. Unless otherwise stated, this applies to all its exported
functions. Maturing functions are susceptible to API changes. Only use these in packages if you're
prepared to make changes as the package evolves. See sections below for a list of functions marked
as stable.

The documentation pages of retired functions contain life cycle sections that explain the reasons for
their retirements.

Stable functions
Stable

e eval_tidy()
o 11111

......

* enquo(), quo(), quos()

e enexpr(), expr(), exprs()

* sym(), syms()

* new_quosure(), is_quosure()

* missing_arg(), is_missing()

* quo_get_expr(), quo_set_expr()
e quo_get_env(), quo_set_env()

e eval_bare()

e set_names(), names2()

e as_function(), new_function()

Experimental functions

Experimental

These functions are not yet part of the rlang API. Expect breaking changes.

e with_env(), locally()

e env_poke()

e env_bind_fns(), env_bind_exprs()

* pkg_env(), pkg_env_name()

* scoped_env(), scoped_names(), scoped_envs(), is_scoped()

* ns_env(), ns_imports_env(), ns_env_name()

e is_pairlist(), as_pairlist(), is_node(), is_node_list()

e is_definition(), new_definition(), is_formulaish(), dots_definitions()

* scoped_options(),with_options(), push_options(), peek_options(), peek_option()

e as_bytes(), chr_unserialise_unicode(), set_chr_encoding(), chr_encoding(), set_str_encoding(),
str_encoding()

e mut_utf8_locale(), mut_latinl_locale(), mut_mbcs_locale()
e caller_fn(), current_fn()

86 lifecycle

Questioning stage

Questioning

In the questioning stage as of rlang 0.3.0

e child_env()

e type_of (), switch_type(), coerce_type()

e switch_class(), coerce_class()

e lang_type_of (), switch_lang(), coerce_lang()

e flatten(), squash(), and their atomic vector variants
e modify() and prepend()

e as_logical(), as_character(), etc.

e with_restarts(),rst_list(), rst_exists(), rst_jump(), rst_maybe_jump(), rst_abort().
It is not clear yet whether we want to recommend restarts as a style of programming in R.

e return_from() and return_to().

e expr_label(), expr_name(), and expr_text().
In the questioning stage as of rlang 0.2.0

* UQ(, UQsO
e dots_splice(), splice()

Soft-deprecated functions and arguments

Soft-deprecated
Soft-deprecated as of rlang 0.3.0

* get_env(): The env argument no longer has a default and must be supplied
* cnd_signal(): The .mufflable argument no longer has any effect

* invoke(): Use the simpler exec() instead.

e set_attrs(), mut_attrs()

e cnd_signal(): .cnd =>cnd

e is_frame(), global_frame(), current_frame(), ctxt_frame(), call_frame(), frame_position(),
caller_frame()

e ctxt_depth(), call_depth(), ctxt_stack(), call_stack(), stack_trim()

* Passing a function or formula to env_depth (), env_poke_parent (), env_parent<-,env_tail(),
set_env(), env_clone(), env_inherits(), env_bind(), scoped_bindings(),with_bindings(),
env_poke(), env_has(), env_get(), env_names(), env_bind_exprs() and env_bind_fns().

This internal genericity was causing confusion (see issue #427). You should now extract the
environment separately before calling these functions.

e env_bind_exprs() =>env_bind_lazy()
e env_bind_fns() =>env_bind_active()
e scoped_names() => base: :search()

e is_scoped() => is_attached()

e scoped_env() => search_env()

e scoped_envs() => search_envs()

lifecycle 87

The width and printer arguments of exprs_auto_name() and quos_auto_name () no longer
have any effect. For the same reason, passing a width as . named argument of dots collectors
like quos () is soft-deprecated.

e call_modify(): .standardise and .env arguments.

* new_logical_along(), new_integer_along(), new_double_along(), new_complex_along(),
new_character_along(), new_raw_along(), new_list_along().

* as.character() on quosures.
* Assigning non-quosure objects to quosure lists.
* Supplying a named !!! call.

Soft-deprecated as of rlang 0.2.0:

* overscope_clean()

* overscope_eval_next() =>eval_tidy()

e lang_head(), lang_tail()

e quo_expr() => quo_squash()

* parse_quosure() => parse_quo()

* parse_quosures() => parse_quos()

e as_overscope() => as_data_mask()

¢ new_overscope() => new_data_mask()

e lang() =>call2()

* new_language() =>new_call()

e is_lang() =>1is_call()

e is_unary_lang() => Use the n argument of is_call()
* is_binary_lang() => Use the n argument of is_call()
* quo_is_lang() =>quo_is_call()

e is_expr() =>is_expression()

e lang_modify() =>call_modify()

e lang_standardise() =>call_standardise()
e lang_fn() =>call_fn()

e lang_name() => call_name()

e lang_args() =>call_args()

e lang_args_names() => call_args_names()

Deprecated functions and arguments

Deprecated
Deprecated as of rlang 0.3.0

e as_data_mask(): parent argument

* new_data_mask(): parent argument

e env_tail(): sentinel => last

e abort(),warn(), inform(): msg, type => .msg, .type

e abort(), warn(), inform(), cnd(), error_cnd(), warning_cnd(), message_cnd(): call
argument.

e length() and names() on tidy eval .data pronouns.
* is_character(), is_string(), and variants: The encoding argument.

88

missing

Defunct functions and arguments

Defunct
Defunct as of rlang 0.3.0:

Archived

UQEQ)

eval_tidy_Q)

is_quosureish(), as_quosureish()
as_dictionary() => as_data_pronoun()
cnd_signal(): .msg and .call.

cnd(), error_cnd(), warning_cnd() and message_cnd(): .msg => message.

Archived

These functions were entirely removed from the package. You will find them in the commit history
and previous releases.

Archived in rlang 0.3.0:

cnd_inform(), cnd_warn() and cnd_abort ()
new_cnd() =>cnd()

cnd_message () => message_cnd()
cnd_warning() =>warning_cnd()
cnd_error() =>error_cnd()

rst_muffle() => cnd_muffle()

inplace() =>calling(). The muffle argument of inplace() has not been implemented in
calling() and is now defunct.

missing Missing values

Description

Missing values are represented in R with the general symbol NA. They can be inserted in almost all
data containers: all atomic vectors except raw vectors can contain missing values. To achieve this,
R automatically converts the general NA symbol to a typed missing value appropriate for the target
vector. The objects provided here are aliases for those typed NA objects.

Usage

na_lgl

na_int

na_dbl

na_chr

na_cpl

missing_arg 89

Format

An object of class logical of length 1.

Details

Typed missing values are necessary because R needs sentinel values of the same type (i.e. the same
machine representation of the data) as the containers into which they are inserted. The official typed
missing values are NA_integer_, NA_real_, NA_character_and NA_complex_. The missing value
for logical vectors is simply the default NA. The aliases provided in rlang are consistently named
and thus simpler to remember. Also, na_lgl is provided as an alias to NA that makes intent clearer.

Since na_lgl is the default NA, expressions such as c(NA, NA) yield logical vectors as no data is
available to give a clue of the target type. In the same way, since lists and environments can contain
any types, expressions like 1ist (NA) store a logical NA.

Examples

typeof (NA)
typeof(na_lgl)
typeof (na_int)

Note that while the base R missing symbols cannot be overwritten,
that's not the case for rlang's aliases:

na_dbl <- NA

typeof (na_dbl)

missing_arg Generate or handle a missing argument

Description
These functions help using the missing argument as a regular R object.

* missing_arg() generates a missing argument.

e is_missing() is like base: :missing() but also supports testing for missing arguments con-
tained in other objects like lists.

* maybe_missing() is useful to pass down an input that might be missing to another function,
potentially substituting by a default value. It avoids triggering an "argument is missing" error.

Usage
missing_arg()
is_missing(x)
maybe_missing(x, default = missing_arg())

Arguments

X An object that might be the missing argument.

default The object to return if the input is missing, defaults to missing_arg().

90 missing_arg

Other ways to reify the missing argument

* base::quote(expr =) is the canonical way to create a missing argument object.
* expr() called without argument creates a missing argument.

* quo() called without argument creates an empty quosure, i.e. a quosure containing the missing
argument object.

Fragility of the missing argument object

The missing argument is an object that triggers an error if and only if it is the result of evaluating a
symbol. No error is produced when a function call evaluates to the missing argument object. This
means that expressions like x[[1]] <- missing_arg() are perfectly safe. Likewise, x[[1]1] is
safe even if the result is the missing object.

However, as soon as the missing argument is passed down between functions through an argument,
you're at risk of triggering a missing error. This is because arguments are passed through symbols.
To work around this, is_missing() and maybe_missing(x) use a bit of magic to determine if the
input is the missing argument without triggering a missing error.

maybe_missing() is particularly useful for prototyping meta-programming algorithms in R. The
missing argument is a likely input when computing on the language because it is a standard object
in formals lists. While C functions are always allowed to return the missing argument and pass it to
other C functions, this is not the case on the R side. If you’re implementing your meta-programming
algorithm in R, use maybe_missing() when an input might be the missing argument object.

Life cycle

e missing_arg() and is_missing() are stable.

* Like the rest of rlang, maybe_missing() is maturing.

Examples

The missing argument usually arises inside a function when the
user omits an argument that does not have a default:

fn <= function(x) is_missing(x)

fnQ)

Creating a missing argument can also be useful to generate calls
args <- list(1, missing_arg(), 3, missing_arg())
quo(fn(!!! args))

Other ways to create that object include:
quote(expr =)
expr()

It is perfectly valid to generate and assign the missing
argument in a list.
x <- missing_arg()

1 <- list(missing_arg())

Just don't evaluate a symbol that contains the empty argument.

Evaluating the object “x* that we created above would trigger an
error.

x # Not run

On the other hand accessing a missing argument contained in a

names2 91

list does not trigger an error because subsetting is a function
call:

1C01]]

is.null(1L[11D)

In case you really need to access a symbol that might contain the
empty argument object, use maybe_missing():

maybe_missing(x)

is.null(maybe_missing(x))

is_missing(maybe_missing(x))

Note that base::missing() only works on symbols and does not
support complex expressions. For this reason the following lines
would throw an error:

#> missing(missing_arg())
#> missing(1[[111)

while is_missing() will work as expected:
is_missing(missing_arg())
is_missing(1[[111)

names2 Get names of a vector

Description

Stable

This names getter always returns a character vector, even when an object does not have a names
attribute. In this case, it returns a vector of empty names "". It also standardises missing names to

nn
Usage

names2(x)

Arguments

X A vector.

Life cycle

names2() is stable.

Examples
names2(letters)
It also takes care of standardising missing names:

x <- set_names(1:3, c("a", NA, "b"))
names2(x)

92 new-vector-along-retired

new-vector Create vectors matching a given length

Description

These functions construct vectors of a given length, with attributes specified via dots. Except for
new_list() and new_bytes(), the empty vectors are filled with typed missing values. This is in
contrast to the base function base: : vector () which creates zero-filled vectors.

Usage

new_logical(n, names = NULL)

new_integer(n, names NULL)
new_double(n, names = NULL)
new_character(n, names = NULL)
new_complex(n, names = NULL)
new_raw(n, names = NULL)
new_list(n, names = NULL)
Arguments

n The vector length.

names Names for the new vector.

See Also

rep_along

Examples

new_list(10)
new_logical(10)

new-vector-along-retired
Create vectors matching the length of a given vector

Description

These functions are soft-deprecated as of rlang 0.3.0 because they are longer to type than the equiv-
alent rep_along() or rep_named() calls without added clarity.

new_formula

Usage

new_logical_along(x, names = base::names(x))
new_integer_along(x, names = base::names(x))
new_double_along(x, names = base::names(x))
new_character_along(x, names = base::names(x))

new_complex_along(x, names = base::names(x))

new_raw_along(x, names = base::names(x))

new_list_along(x, names = base::names(x))

93

Arguments
X A vector.
names Names for the new vector.
new_formula Create a formula
Description

Create a formula

Usage

new_formula(lhs, rhs, env = caller_env())

Arguments
lhs, rhs A call, name, or atomic vector.
env An environment.

Value

A formula object.

See Also

new_quosure()

Examples

new_formula(quote(a), quote(b))
new_formula(NULL, quote(b))

94 new_quosures

new_function Create a function

Description

Stable

This constructs a new function given its three components: list of arguments, body code and parent
environment.

Usage

new_function(args, body, env = caller_env())

Arguments
args A named list of default arguments. Note that if you want arguments that don’t
have defaults, you’ll need to use the special function alist, e.g. alist(a =, b = 1)
body A language object representing the code inside the function. Usually this will
be most easily generated with base: :quote()
env The parent environment of the function, defaults to the calling environment of
new_function()
Examples

f <- function(x) x + 3
g <- new_function(alist(x =), quote(x + 3))

The components of the functions are identical
identical (formals(f), formals(g))
identical(body(f), body(g))
identical(environment(f), environment(g))

But the functions are not identical because f has src code reference
identical(f, g)

attr(f, "srcref") <- NULL
Now they are:
stopifnot(identical(f, g))

new_quosures Create a list of quosures

Description
This small S3 class provides methods for [and c() and ensures the following invariants:

* The list only contains quosures.
* It is always named, possibly with a vector of empty strings.
new_quosures() takes a list of quosures and adds the quosures class and a vector of empty names

if needed. as_quosures() calls as_quosure() on all elements before creating the quosures ob-
ject.

op-get-attr
Usage
new_quosures(x)
as_quosures(x, env, named = FALSE)

is_quosures(x)

Arguments
X A list of quosures or objects to coerce to quosures.
env The default environment for the new quosures.
named Whether to name the list with quos_auto_name ().
op-get-attr Infix attribute accessor and setter
Description

This operator extracts or sets attributes for regular objects and S4 fields for S4 objects.

Usage

X %@% name

X
Arguments

X Object

name Attribute name
Examples

Unlike ‘@', this operator extracts attributes for any kind of
objects:

factor(1:3) %@% "levels”

mtcars %@% class

mtcars %@% class <- NULL
mtcars

It also works on S4 objects:

.Person <- setClass("Person”, slots = c(name = "character”, species = "character"))
fievel <- .Person(name = "Fievel”, species = "mouse")

fievel %@% name

96 op-null-default

op-na-default Replace missing values

Description
This infix function is similar to %| |% but is vectorised and provides a default value for missing
elements. It is faster than using base: : ifelse() and does not perform type conversions.

Usage

X %%y

Arguments

X, Y y for elements of x that are NA; otherwise, X.

See Also

op-null-default

Examples

c("a", "b", NA, "c") %|% "default”

op-null-default Default value for NULL

Description

This infix function makes it easy to replace NULLs with a default value. It’s inspired by the way that
Ruby’s or operation (| |) works.

Usage

X %1%y

Arguments

X, Y If x is NULL, will return y; otherwise returns x.

Examples

1 %1% 2
NULL %1% 2

parse_expr 97

parse_expr Parse R code

Description

These functions parse and transform text into R expressions. This is the first step to interpret or
evaluate a piece of R code written by a programmer.

Usage

parse_expr(x)
parse_exprs(x)
parse_quo(x, env)

parse_quos(x, env)

Arguments
X Text containing expressions to parse_expr for parse_expr () and parse_exprs().
Can also be an R connection, for instance to a file. If the supplied connection is
not open, it will be automatically closed and destroyed.
env The environment for the quosures. Depending on the use case, a good default
might be the global environment but you might also want to evaluate the R code
in an isolated context (perhaps a child of the global environment or of the base
environment).
Details

parse_expr () returns one expression. If the text contains more than one expression (separated by
semicolons or new lines), an error is issued. On the other hand parse_exprs() can handle multiple
expressions. It always returns a list of expressions (compare to base: :parse() which returns a
base::expression vector). All functions also support R connections.

The versions suffixed with _quo and _quos return quosures rather than raw expressions.

Value

parse_expr () returns an expression, parse_exprs() returns a list of expressions. Note that for
the plural variants the length of the output may be greater than the length of the input. This would
happen is one of the strings contain several expressions (such as "foo; bar").

Life cycle

* parse_quosure() and parse_quosures() were soft-deprecated in rlang 0.2.0 and renamed
to parse_quo() and parse_quos(). This is consistent with the rule that abbreviated suffixes
indicate the return type of a function.

See Also

base: :parse()

98 quasiquotation

Examples

parse_expr() can parse any R expression:
parse_expr("mtcars %>% dplyr::mutate(cyl_prime = cyl / sd(cyl))")

A string can contain several expressions separated by ; or \n
parse_exprs("NULL; list()\n foo(bar)")

You can also parse source files by passing a R connection. Let's
create a file containing R code:

path <- tempfile("my-file.R")

cat("1; 2; mtcars”, file = path)

We can now parse it by supplying a connection:
parse_exprs(file(path))

prim_name Name of a primitive function

Description

Name of a primitive function

Usage

prim_name(prim)

Arguments
prim A primitive function such as base: :c().
quasiquotation Quasiquotation of an expression
Description

Quasiquotation is the mechanism that makes it possible to program flexibly with tidy evaluation
grammars like dplyr. It is enabled in all tidyeval quoting functions, the most fundamental of which
are quo() and expr().

Quasiquotation is the combination of quoting an expression while allowing immediate evaluation

(unquoting) of part of that expression. We provide both syntactic operators and functional forms
for unquoting.

e The !! operator unquotes its argument. It gets evaluated immediately in the surrounding
context.
* The !!! operator unquotes and splices its argument. The argument should represent a list or

a vector. Each element will be embedded in the surrounding call, i.e. each element is inserted
as an argument. If the vector is named, the names are used as argument names.

If the vector is a classed object (like a factor), it is converted to a list with base: :as.list()
to ensure proper dispatch. If it is an S4 objects, it is converted to a list with methods: :as().

Use qg_show() to experiment with quasiquotation or debug the effect of unquoting operators.
gq_show() quotes its input, processes unquoted parts, and prints the result with expr_print().
This expression printer has a clearer output than the base R printer (see the documentation topic).

quasiquotation 99

Usage

qg_show(expr)

Arguments

expr An expression to be quasiquoted.

Unquoting names

When a function takes multiple named arguments (e.g. dplyr: :mutate()), it is difficult to supply
a variable as name. Since the LHS of = is quoted, giving the name of a variable results in the
argument having the name of the variable rather than the name stored in that variable. This problem
is right up the alley for the unquoting operator !!. If you were able to unquote the variable when
supplying the name, the argument would be named after the content of that variable.

Unfortunately R is very strict about the kind of expressions supported on the LHS of =. This is
why we have made the more flexible : = operator an alias of =. You can use it to supply names, e.g.
a := bisequivalentto a = b. Since its syntax is more flexible you can unquote on the LHS:

name <- "Jane"

list2(!!name := 1 + 2)

exprs(!!'name := 1 + 2)

quos(!!'name := 1 + 2)

Like =, the := operator expects strings or symbols on its LHS.

Note that unquoting on the LHS of : = only works in top level expressions. These are all valid:
exprs(!!'nm := x)

tibble(!!nm := x)
list2(!!'nm := x)

But deep-unquoting names isn’t supported:

expr(foo(!!'nm := x))
exprs(foo(!!'nm := x))
Theory
Formally, quo() and expr () are quasiquote functions, !! is the unquote operator, and !!! is the

unquote-splice operator. These terms have a rich history in Lisp languages, and live on in modern
languages like Julia and Racket.

Life cycle
* Calling UQ() and UQS() with the rlang namespace qualifier is deprecated as of rlang 0.3.0.
Just use the unqualified forms instead:

Bad
rlang: :expr(mean(rlang::UQ(var) * 100))

Ok
rlang: :expr(mean(UQ(var) * 100))

Good
rlang::expr(mean(!!var x 100))

https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.racket-lang.org/reference/quasiquote.html

100 quasiquotation

Supporting namespace qualifiers complicates the implementation of unquotation and is mis-
leading as to the nature of unquoting operators (which are syntactic operators that operates at
quotation-time rather than function calls at evaluation-time).

* UQ() and UQS() were soft-deprecated in rlang 0.2.0 in order to make the syntax of quasiquota-
tion more consistent. The prefix forms are now *!!*() and *!!!*() which is consistent with
other R operators (e.g. *+*(a, b) is the prefix form of a + b).

Note that the prefix forms are not as relevant as before because ! ! now has the right operator
precedence, i.e. the same as unary - or +. It is thus safe to mingle it with other operators,
e.g. !'la + !!bdoes the right thing. In addition the parser now strips one level of parenthe-
ses around unquoted expressions. This way (!!"foo")(...) expands to foo(...). These
changes make the prefix forms less useful.

Finally, the named functional forms UQ() and UQS() were misleading because they suggested
that existing knowledge about functions is applicable to quasiquotation. This was reinforced
by the visible definitions of these functions exported by rlang and by the tidy eval parser
interpreting rlang: :UQ() as !!. In reality unquoting is not a function call, it is a syntactic
operation. The operator form makes it clearer that unquoting is special.

Examples

Quasiquotation functions quote expressions like base::quote()
quote(how_many(this))

expr (how_many(this))

quo (how_many (this))

In addition, they support unquoting. Let's store symbols
(i.e. object names) in variables:

this <- sym("apples”)

that <- sym("oranges")

With unquotation you can insert the contents of these variables
inside the quoted expression:

expr (how_many(!!this))

expr (how_many(!!that))

You can also insert values:
expr Chow_many(!!'(1 + 2)))
quo(how_many(!!(1 + 2)))

Note that when you unquote complex objects into an expression,

the base R printer may be a bit misleading. For instance compare
the output of ‘expr()‘ and ‘quo()‘ (which uses a custom printer)
when we unquote an integer vector:

expr (how_many(!!(1:10)))

quoChow_many (!!(1:10)))

This is why it's often useful to use qg_show() to examine the
result of unquotation operators. It uses the same printer as
quosures but does not return anything:
gg_show(how_many(!!(1:10)))

Use “!!!" to add multiple arguments to a function. Its argument
should evaluate to a list or vector:
args <- list(1:3, na.rm = TRUE)

quosure 101

quo(mean(!!!args))

You can combine the two

var <- quote(xyz)

extra_args <- list(trim = 0.9, na.rm = TRUE)
quo(mean(!!var , !!lextra_args))

The plural versions have support for the ‘:=‘ operator.

Like ‘=%, “:=" creates named arguments:

quos(mousel := bernard, mouse2 = bianca)

The ‘:=" is mainly useful to unquote names. Unlike ‘=" it

supports ‘!!" on its LHS:
var <- "unquote me!”
quos(!!var := bernard, mouse2 = bianca)

All these features apply to dots captured by enquos():
fn <- function(...) enquos(...)
fn(!!largs, !!var := penny)

Unquoting is especially useful for building an expression by
expanding around a variable part (the unquoted part):

quol <- quo(toupper(foo))

quol

quo2 <- quo(paste(!!quol, bar))

quo?2
quo3 <- quo(list(!!quo2, !!!syms(letters[1:5]1)))
quo3
guosure Quosure getters, setters and testers
Description

A quosure is a type of quoted expression that includes a reference to the context where it was
created. A quosure is thus guaranteed to evaluate in its original environment and can refer to local
objects.

You can access the quosure components (its expression and its environment) with:

* get_expr() and get_env(). These getters also support other kinds of objects such as formu-
las.

* quo_get_expr() and quo_get_env(). These getters only work with quosures and throw an
error with other types of input.

Test if an object is a quosure with is_quosure(). If you know an object is a quosure, use the quo_
prefixed predicates to check its contents, quo_is_missing(), quo_is_symbol(), etc.

102 quosure
Usage

is_quosure(x)

quo_is_missing(quo)

quo_is_symbol (quo, name = NULL)

quo_is_call(quo, name = NULL, n = NULL, ns = NULL)

quo_is_symbolic(quo)

quo_is_null(quo)

quo_get_expr(quo)

quo_get_env(quo)

quo_set_expr(quo, expr)

quo_set_env(quo, env)

Arguments

X An object to test.

quo A quosure to test.

name The name of the symbol or function call. If NULL the name is not tested.

n An optional number of arguments that the call should match.

ns The namespace of the call. If NULL, the namespace doesn’t participate in the
pattern-matching. If an empty string "" and x is a namespaced call, is_call()
returns FALSE. If any other string, is_call() checks that x is namespaced
within ns.
Can be a character vector of namespaces, in which case the call has to match at
least one of them, otherwise is_call() returns FALSE.

expr A new expression for the quosure.

env A new environment for the quosure.

Quosured constants

A quosure usually does not carry environments for constant objects like strings or numbers. quo()
and enquo () only capture an environment for symbolic expressions. For instance, all of these return
the empty environment:

quo_get_env(quo(”constant”))
quo_get_env(quo(100))
quo_get_env(quo(NA))

On the other hand, quosures capture the environment of symbolic expressions, i.e. expressions
whose meaning depends on the environment in which they are evaluated and what objects are de-
fined there:

quo_get_env(quo(some_object))
quo_get_env(quo(some_function()))

quosure 103

Empty quosures

When missing arguments are captured as quosures, either through enquo() or quos(), they are
returned as an empty quosure. These quosures contain the missing argument and typically have the
empty environment as enclosure.

Life cycle

e is_quosure() is stable.
e quo_get_expr() and quo_get_env() are stable.

e is_quosureish() is deprecated as of rlang 0.2.0. This function assumed that quosures are
formulas which is currently true but might not be in the future.

See Also

quo() for creating quosures by quotation; as_quosure() and new_quosure() for constructing
quosures manually.

Examples

quo <- quo(my_quosure)
quo

Access and set the components of a quosure:
quo_get_expr(quo)
quo_get_env(quo)

quo <- quo_set_expr(quo, quote(baz))
quo <- quo_set_env(quo, empty_env())
quo

Test wether an object is a quosure:
is_quosure(quo)

If it is a quosure, you can use the specialised type predicates
to check what is inside it:

quo_is_symbol(quo)

quo_is_call(quo)

quo_is_null(quo)

quo_is_missing() checks for a special kind of quosure, the one
that contains the missing argument:

quo()
quo_is_missing(quo())

fn <- function(arg) enquo(arg)

fn()

quo_is_missing(fn())

104 quotation

quotation Quotation

Description

Stable

Quotation is a mechanism by which an expression supplied as argument is captured by a function.
Instead of seeing the value of the argument, the function sees the recipe (the R code) to make that
value. This is possible because R expressions are representable as regular objects in R:

 Calls represent the action of calling a function to compute a new value. Evaluating a call
causes that value to be computed. Calls typically involve symbols to reference R objects.

* Symbols represent the name that is given to an object in a particular context (an environment).

We call objects containing calls and symbols expressions. There are two ways to create R ex-
pressions. First you can build calls and symbols from parts and pieces (see sym(), syms() and
call2()). The other way is by quotation or quasiquotation, i.e. by intercepting an expression
instead of evaluating it.

Usage

expr(expr)
enexpr(arg)

exprs(..., .named = FALSE, .ignore_empty = c("trailing”, "none",
"all"), .unquote_names = TRUE)

enexprs(..., .named = FALSE, .ignore_empty = c("trailing"”, "none",
"all”), .unquote_names = TRUE, .homonyms = c("keep”, "first”, "last”,
"error"), .check_assign = FALSE)

ensym(arg)

ensyms(..., .named = FALSE, .ignore_empty = c("trailing”, "none",
"all"), .unquote_names = TRUE, .homonyms = c("keep”, "first”, "last”,
"error"), .check_assign = FALSE)

quo(expr)

enquo(arg)

quos(..., .named = FALSE, .ignore_empty = c("trailing”, "none”, "all"),
.unquote_names = TRUE)

enquos(..., .named = FALSE, .ignore_empty = c("trailing”, "none",
"all"), .unquote_names = TRUE, .homonyms = c("keep”, "first”, "last”,

"error"), .check_assign = FALSE)

quotation

Arguments
expr

arg

.named

.ignore_empty

.unquote_names

.homonyms

.check_assign

105

An expression.

A symbol representing an argument. The expression supplied to that argument
will be captured instead of being evaluated.

For enexprs(), ensyms () and enquos (), names of arguments to capture with-
out evaluation (including ...). For exprs() and quos(), the expressions to
capture unevaluated (including expressions contained in . . .).

Whether to ensure all dots are named. Unnamed elements are processed with
quo_name () to build a default name. See also quos_auto_name().

Whether to ignore empty arguments. Can be one of "trailing”, "none”,
"all”. If "trailing”, only the last argument is ignored if it is empty. Note
that "trailing” applies only to arguments passed in ..., not to named argu-
ments. On the other hand, "all” also applies to named arguments.

Whether to treat : = as =. Unlike =, the := syntax supports ! ! unquoting on the
LHS.

How to treat arguments with the same name. The default, "keep”, preserves
these arguments. Set .homonyms to "first” to only keep the first occurrences,
to "last” to keep the last occurrences, and to "error” to raise an informative
error and indicate what arguments have duplicated names.

Whether to check for <- calls passed in dots. When TRUE and a <- call is de-
tected, a warning is issued to advise users to use = if they meant to match a
function parameter, or wrap the <- call in braces otherwise. This ensures as-
signments are explicit.

User expressions versus your expressions

There are two points of view when it comes to capturing an expression:

* You can capture the expressions supplied by the user of your function. This is the purpose of
ensym(), enexpr() and enquo() and their plural variants. These functions take an argument
name and capture the expression that was supplied to that argument.

* You can capture the expressions that you supply. To this end use expr() and quo() and their
plural variants exprs() and quos().

Capture raw expressions

* enexpr() and expr() capture a single raw expression.

* enexprs() and exprs() capture a list of raw expressions including expressions contained in

* ensym() and ensyms() are variants of enexpr() and enexprs() that check the captured
expression is either a string (which they convert to symbol) or a symbol. If anything else is
supplied they throw an error.

In terms of base functions, enexpr(arg) corresponds to base: :substitute(arg) (though that
function also features complex substitution semantics) and expr () is like quote() (and bquote()
if we consider unquotation syntax). The plural variant exprs() is equivalent to base::alist().
Finally there is no function in base R that is equivalent to enexprs() but you can reproduce its
behaviour with eval (substitute(alist(...))).

106 quotation

Capture expressions in quosures

quo() and enquo() are similar to their expr counterparts but capture both the expression and its
environment in an object called a quosure. This wrapper contains a reference to the original envi-
ronment in which that expression was captured. Keeping track of the environments of expressions
is important because this is where functions and objects mentioned in the expression are defined.

Quosures are objects that can be evaluated with eval_tidy() just like symbols or function calls.
Since they always evaluate in their original environment, quosures can be seen as vehicles that
allow expressions to travel from function to function but that beam back instantly to their original
environment upon evaluation.

See the quosure help topic about tools to work with quosures.

Quasiquotation

All quotation functions in rlang have support for unquoting operators. The combination of quotation
and unquotation is called quasiquotation.

Unquotation provides a way to refer to variables during quotation. Variables are problematic when
quoting because a captured expression is essentially a constant, just like a string is a constant.
For instance in all the following cases apple is a constant: ~apple, "apple” and expr(apple).
Unquoting allows you to introduce a part of variability within a captured expression.

* In the case of enexpr() and enquo(), unquoting provides an escape hatch to the users of your
function that allows them to manipulate the expression that you capture.

* In the case of expr() and quo(), quasiquotation lets you build a complex expressions where
some parts are constant (the parts that are captured) and some parts are variable (the parts that
are unquoted).

See the quasiquotation help topic for more about this as well as the chapter in Advanced R.

Examples

expr() and exprs() capture expressions that you supply:
expr (symbol)
exprs(several, such, symbols)

enexpr() and enexprs() capture expressions that your user supplied:

expr_inputs <- function(arg, ...) {
user_exprs <- enexprs(arg, ...)
user_exprs

3

expr_inputs(hello)
expr_inputs(hello, bonjour, ciao)

ensym() and ensyms() provide additional type checking to ensure
the user calling your function has supplied bare object names:
sym_inputs <- function(...) {

user_symbols <- ensyms(...)

user_symbols
3
sym_inputs(hello, "bonjour™)
sym_inputs(say(hello)) # Error: Must supply symbols or strings
expr_inputs(say(hello))

All these quoting functions have quasiquotation support. This

https://adv-r.hadley.nz/quasiquotation.html

quo_label 107

means that you can unquote (evaluate and inline) part of the
captured expression:

what <- sym("bonjour")

expr(say(what))

expr(say(!!what))

This also applies to expressions supplied by the user. This is
like an escape hatch that allows control over the captured

expression:

expr_inputs(say(!!what), !!what)

Finally, you can capture expressions as quosures. A quosure is an
object that contains both the expression and its environment:

quo <- quo(letters)

quo

get_expr(quo)
get_env(quo)

Quosures can be evaluated with eval_tidy():
eval_tidy(quo)

They have the nice property that you can pass them around from
context to context (that is, from function to function) and they
still evaluate in their original environment:
multiply_expr_by_10 <- function(expr) {

We capture the user expression and its environment:

expr <- enquo(expr)

Then create an object that only exists in this function:
local_ten <- 10

Now let's create a multiplication expression that (a) inlines
the user expression as LHS (still wrapped in its quosure) and
(b) refers to the local object in the RHS:
quo(!!expr x local_ten)

3

quo <- multiply_expr_by_10(2 + 3)

The local parts of the quosure are printed in colour if your
terminal is capable of displaying colours:
quo

All the quosures in the expression evaluate in their original

context. The local objects are looked up properly and we get the
expected result:

eval_tidy(quo)

quo_label Format quosures for printing or labelling

Description

Questioning

108 quo_label

Note: You should now use as_label () or as_name() instead of quo_name (). See life cycle section
below.

These functions take an arbitrary R object, typically an expression, and represent it as a string.

* quo_name() returns an abbreviated representation of the object as a single line string. It is
suitable for default names.

* quo_text() returns a multiline string. For instance block expressions like { foo; bar } are
represented on 4 lines (one for each symbol, and the curly braces on their own lines).

These deparsers are only suitable for creating default names or printing output at the console. The
behaviour of your functions should not depend on deparsed objects. If you are looking for a way of
transforming symbols to strings, use as_string() instead of quo_name (). Unlike deparsing, the
transformation between symbols and strings is non-lossy and well defined.

Usage
quo_label (quo)

quo_text(quo, width = 60L, nlines = Inf)

quo_name (quo)

Arguments

quo A quosure or expression.

width Width of each line.

nlines Maximum number of lines to extract.
Life cycle

These functions are in the questioning life cycle stage.

e as_label() and as_name() should be used instead of quo_name (). as_label() transforms
any R object to a string but should only be used to create a default name. Labelisation is not
a well defined operation and no assumption should be made about the label. On the other
hand, as_name() only works with (possibly quosured) symbols, but is a well defined and
deterministic operation.

* We don’t have a good replacement for quo_text() yet. See https://github.com/r-1ib/
rlang/issues/636 to follow discussions about a new deparsing API.
See Also
expr_label (), f_label ()

Examples

Quosures can contain nested quosures:
quo <- quo(foo(!! quo(bar)))
quo

quo_squash() unwraps all quosures and returns a raw expression:
quo_squash(quo)

This is used by quo_text() and quo_label():

https://github.com/r-lib/rlang/issues/636
https://github.com/r-lib/rlang/issues/636

quo_squash 109

quo_text(quo)

Compare to the unwrapped expression:
expr_text(quo)

quo_name() is helpful when you need really short labels:
quo_name (quo(sym))
quo_name(quo(!! sym))

quo_squash Squash a quosure

Description

quo_squash () flattens all nested quosures within an expression. For example it transforms *foo(*bar (), “baz)
to the bare expression foo(bar(), baz).

This operation is safe if the squashed quosure is used for labelling or printing (see quo_label()
or quo_name()). However if the squashed quosure is evaluated, all expressions of the flattened
quosures are resolved in a single environment. This is a source of bugs so it is good practice to set
warn to TRUE to let the user know about the lossy squashing.

Usage

quo_squash(quo, warn = FALSE)

Arguments
quo A quosure or expression.
warn Whether to warn if the quosure contains other quosures (those will be collapsed).
This is useful when you use quo_squash() in order to make a non-tidyeval API
compatible with quosures. In that case, getting rid of the nested quosures is
likely to cause subtle bugs and it is good practice to warn the user about it.
Life cycle

This function replaces quo_expr () which was soft-deprecated in rlang 0.2.0. quo_expr() was a
misnomer because it implied that it was a mere expression acccessor for quosures whereas it was
really a lossy operation that squashed all nested quosures.

Examples

Quosures can contain nested quosures:
quo <- quo(wrapper(!!quo(wrappee)))
quo

quo_squash() flattens all the quosures and returns a simple expression:
quo_squash(quo)

110 restarting

rep_along Create vectors matching the length of a given vector

Description

These functions take the idea of seq_along() and apply it to repeating values.

Usage

rep_along(along, x)

rep_named(names, Xx)

Arguments
along Vector whose length determine how many times x is repeated.
X Values to repeat.
names Names for the new vector. The length of names determines how many times x
is repeated.
See Also
new-vector
Examples
X <- 0:5

rep_along(x, 1:2)
rep_along(x, 1)

Create fresh vectors by repeating missing values:
rep_along(x, na_int)
rep_along(x, na_chr)

rep_named() repeats a value along a names vectors
rep_named(c("foo", "bar"), list(letters))

restarting Create a restarting handler

Description
This constructor automates the common task of creating an calling() handler that invokes a
restart.

Usage

restarting(.restart, ..., .fields = NULL)

restarting 111

Arguments

.restart The name of a restart.

Additional arguments passed on the restart function. These arguments are eval-
uated only once and immediately, when creating the restarting handler. Further-
more, they support tidy dots features.

.fields A character vector specifying the fields of the condition that should be passed
as arguments to the restart. If named, the names (except empty names "") are
used as argument names for calling the restart function. Otherwise the the fields
themselves are used as argument names.

Details

Jumping to a restart point from a calling handler has two effects. First, the control flow jumps
to wherever the restart was established, and the restart function is called (with ..., or .fields
as arguments). Execution resumes from the with_restarts() call. Secondly, the transfer of the
control flow out of the function that signalled the condition means that the handler has dealt with
the condition. Thus the condition will not be passed on to other potential handlers established on
the stack.

See Also

calling() and exiting().

Examples

This is a restart that takes a data frame and names as arguments
rst_bar <- function(df, nms) {
stats: :setNames(df, nms)

}

This restart is simpler and does not take arguments
rst_baz <- function() "baz"

Signalling a condition parameterised with a data frame
fn <= function() {
with_restarts(signal("A foobar condition occurred”, "foo", foo_field = mtcars),
rst_bar = rst_bar,
rst_baz = rst_baz
)
3

\ \

Creating a restarting handler that passes arguments ‘nms‘ and
“df‘, the latter taken from a data field of the condition object
restart_bar <- restarting("rst_bar",
nms = LETTERS[1:11], .fields = c(df = "foo_field")
)

The restarting handlers jumps to ‘rst_bar‘ when ‘foo‘ is signalled:
with_handlers(fn(), foo = restart_bar)

The restarting() constructor is especially nice to use with
restarts that do not need arguments:
with_handlers(fn(), foo = restarting("rst_baz"))

112 return_from

return_from Jump to or from a frame

Description

Questioning

While base: :return() can only return from the current local frame, these two functions will return
from any frame on the current evaluation stack, between the global and the currently active context.
They provide a way of performing arbitrary non-local jumps out of the function currently under
evaluation.

Usage

return_from(frame, value = NULL)

return_to(frame, value = NULL)

Arguments
frame An environment, a frame object, or any object with an get_env () method. The
environment should be an evaluation environment currently on the stack.
value The return value.
Details

return_from() will jump out of frame. return_to() is a bit trickier. It will jump out of the
frame located just before frame in the evaluation stack, so that control flow ends up in frame, at the
location where the previous frame was called from.

These functions should only be used rarely. These sort of non-local gotos can be hard to reason
about in casual code, though they can sometimes be useful. Also, consider to use the condition
system to perform non-local jumps.

Life cycle

The support for frame object is soft-deprecated. Please pass simple environments to return_from()
and return_to().

These functions are in the questioning lifecycle because we are considering simpler alternatives.

Examples

Passing fn() evaluation frame to g():
fn <= function() {
val <- g(current_env())
cat("g returned:”, val, "\n")
"normal return”

}

g <- function(env) h(env)

Here we return from fn() with a new return value:
h <- function(env) return_from(env, "early return”)

nQ)

rlang_backtrace_on_error 113

Here we return to fn(). The call stack unwinds until the last frame
called by fn(), which is g() in that case.

h <- function(env) return_to(env, "early return”)

nQ)

rlang_backtrace_on_error
Display backtrace on error

Description

Errors thrown with abort () automatically save a backtrace that can be inspected by calling last_error().
Optionally, you can also display the backtrace alongside the error message by setting the option
rlang_backtrace_on_error to one of the following values:
* "reminder”: Display a reminder that the backtrace can be inspected by calling rlang: :last_error().
* "branch”: Display a simplified backtrace.

* "collapse”: Display a collapsed backtrace tree.

e "full”: Display the full backtrace tree.

Promote base errors to rlang errors

Call options(error = rlang::enframe) to instrument base errors with rlang features. This
handler does two things:

* It saves the base error as an rlang object. This allows you to call last_error() to print the
backtrace or inspect its data.

o It prints the backtrace for the current error according to the rlang_backtrace_on_error
option.

Examples

Display a simplified backtrace on error for both base and rlang

errors:

options(

rlang_backtrace_on_error = "branch”,
error = rlang::enframe

#)

stop("foo")

114 rst_abort

rst_abort Jump to the abort restart

Description

Questioning

The abort restart is the only restart that is established at top level. It is used by R as a top-level
target, most notably when an error is issued (see abort()) that no handler is able to deal with (see
with_handlers()).

Usage

rst_abort()

Life cycle

All the restart functions are in the questioning stage. It is not clear yet whether we want to recom-
mend restarts as a style of programming in R.

See Also

rst_jump(), abort()

Examples

The ‘abort" restart is a bit special in that it is always

registered in a R session. You will always find it on the restart
stack because it is established at top level:

rst_list()

You can use the ‘above' restart to jump to top level without
signalling an error:
Not run:
fn <= function() {
cat("aborting...\n")
rst_abort()
cat("This is never called\n")
3
{
fnQ)
cat("This is never called\n")

}

End(Not run)

The ‘above' restart is the target that R uses to jump to top
level when critical errors are signalled:
Not run:
{
abort("error")
cat("This is never called\n")

3

rst_list 115

End(Not run)

If another ‘abort" restart is specified, errors are signalled as
usual but then control flow resumes with from the new restart:

Not run:
out <- NULL
{

out <- with_restarts(abort("error”), abort = function() "restart!")
cat("This is called\n")
3

cat("‘out* has now become:", out, "\n")

End(Not run)

rst_list Restarts utilities

Description

Questioning

Restarts are named jumping points established by with_restarts(). rst_list() returns the
names of all restarts currently established. rst_exists() checks if a given restart is established.
rst_jump() stops execution of the current function and jumps to a restart point. If the restart does
not exist, an error is thrown. rst_maybe_jump() first checks that a restart exists before jumping.

Usage

rst_list()

rst_exists(.restart)

rst_jump(.restart, ...)

rst_maybe_jump(.restart, ...)
Arguments

.restart The name of a restart.

Arguments passed on to the restart function. These dots support tidy dots fea-
tures.
Life cycle

All the restart functions are in the questioning stage. It is not clear yet whether we want to recom-
mend restarts as a style of programming in R.

See Also

with_restarts()

116 scoped_bindings

scalar-type-predicates
Scalar type predicates

Description

These predicates check for a given type and whether the vector is "scalar”, that is, of length 1.

Usage

is_scalar_list(x)

is_scalar_atomic(x)

is_scalar_vector(x)
is_scalar_integer(x)
is_scalar_double(x)
is_scalar_character(x, encoding = NULL)
is_scalar_logical(x)

is_scalar_raw(x)

is_string(x, encoding = NULL)

is_scalar_bytes(x)

Arguments
X object to be tested.
encoding Expected encoding of a string or character vector. One of UTF-8, latinl, or
unknown.
See Also

type-predicates, bare-type-predicates

scoped_bindings Temporarily change bindings of an environment

Description

* scoped_bindings() temporarily changes bindings in .env (which is by default the caller
environment). The bindings are reset to their original values when the current frame (or an
arbitrary one if you specify . frame) goes out of scope.

* with_bindings() evaluates expr with temporary bindings. When with_bindings() returns,
bindings are reset to their original values. It is a simple wrapper around scoped_bindings().

scoped_options 117

Usage
scoped_bindings(..., .env = .frame, .frame = caller_env())
with_bindings(.expr, ..., .env = caller_env())
Arguments
Pairs of names and values. These dots support splicing (with value semantics)
and name unquoting.

.env An environment.

.frame The frame environment that determines the scope of the temporary bindings.
When that frame is popped from the call stack, bindings are switched back to
their original values.

.expr An expression to evaluate with temporary bindings.

Value

scoped_bindings() returns the values of old bindings invisibly; with_bindings() returns the
value of expr.

Examples

foo <- "foo"
bar <- "bar”

“foo' will be temporarily rebinded while executing ‘expr®
with_bindings(paste(foo, bar), foo = "rebinded"”)
paste(foo, bar)

scoped_options Change global options

Description
* scoped_options() changes options for the duration of a stack frame (by default the current
one). Options are set back to their old values when the frame returns.

» with_options() changes options while an expression is evaluated. Options are restored when
the expression returns.

* push_options() adds or changes options permanently.

* peek_option() and peek_options() return option values. The former returns the option
directly while the latter returns a list.

Usage
scoped_options(..., .frame = caller_env())
with_options(.expr, ...)

push_options(...)

118 seq2

peek_options(...)

peek_option(name)

Arguments
For scoped_options() and push_options(), named values defining new op-
tion values. For peek_options(), strings or character vectors of option names.
.frame The environment of a stack frame which defines the scope of the temporary
options. When the frame returns, the options are set back to their original values.
.expr An expression to evaluate with temporary options.
name An option name as string.
Value

For scoped_options() and push_options(), the old option values. peek_option() returns the
current value of an option while the plural peek_options() returns a list of current option values.

Life cycle

These functions are experimental.

Examples

Store and retrieve a global option:
push_options(my_option = 10)
peek_option("my_option”)

Change the option temporarily:
with_options(my_option = 100, peek_option("my_option"))
peek_option("my_option")

The scoped variant is useful within functions:
fn <- function() {
scoped_options(my_option = 100)
peek_option("my_option")
3
fn()
peek_option("my_option")

The plural peek returns a named list:
peek_options("my_option™)
peek_options("my_option", "digits")

seq2 Increasing sequence of integers in an interval

Description

These helpers take two endpoints and return the sequence of all integers within that interval. For
seg2_along(), the upper endpoint is taken from the length of a vector. Unlike base: : seq(), they
return an empty vector if the starting point is a larger integer than the end point.

set_expr

Usage
seq2(from, to)

seq2_along(from, x)

Arguments

from The starting point of the sequence.

to The end point.

X A vector whose length is the end point.
Value

An integer vector containing a strictly increasing sequence.

Examples
seq2(2, 10)
seq2(10, 2)
seq(10, 2)

seq2_along(10, letters)

119

set_expr Set and get an expression

Description

These helpers are useful to make your function work generically with quosures and raw expres-
sions. First call get_expr() to extract an expression. Once you’re done processing the expres-
sion, call set_expr() on the original object to update the expression. You can return the result of
set_expr(), either a formula or an expression depending on the input type. Note that set_expr()

does not change its input, it creates a new object.

Usage

set_expr(x, value)

get_expr(x, default = x)

Arguments
X An expression, closure, or one-sided formula. In addition, set_expr () accept
frames.
value An updated expression.
default A default expression to return when x is not an expression wrapper. Defaults to
x itself.
Value

The updated original input for set_expr (). A raw expression for get_expr ().

120 set_names

See Also

quo_get_expr() and quo_set_expr() for versions of get_expr() and set_expr() that only
work on quosures.

Examples

f <- ~foo(bar)
e <- quote(foo(bar))
frame <- identity(identity(ctxt_frame()))

get_expr(f)
get_expr(e)
get_expr(frame)

set_expr(f, quote(baz))
set_expr(e, quote(baz))

set_names Set names of a vector

Description

Stable

This is equivalent to stats: : setNames (), with more features and stricter argument checking.

Usage
set_names(x, nm = x, ...)
Arguments
X Vector to name.
nm, ... Vector of names, the same length as x.
You can specify names in the following ways:
* If you do nothing, x will be named with itself.
* If x already has names, you can provide a function or formula to transform
the existing names. In that case, . . . is passed to the function.
 If nmis NULL, the names are removed (if present).
¢ In all other cases, nmand . .. are coerced to character.
Life cycle

set_names() is stable and exported in purrr.

string 121

Examples

set_names(1:4, c("a", "b", "c", "d"))
set_names(1:4, letters[1:4])
set_names(1:4, "a", "b", "c", "d")

If the second argument is ommitted a vector is named with itself
set_names(letters[1:5])

Alternatively you can supply a function
set_names(1:10, ~ letters[seq_along(.)])

set_names(head(mtcars), toupper)

... is passed to the function:

set_names(head(mtcars), paste@, "_foo")
string Create a string
Description

These base-type constructors allow more control over the creation of strings in R. They take char-
acter vectors or string-like objects (integerish or raw vectors), and optionally set the encoding. The
string version checks that the input contains a scalar string.

Usage
string(x, encoding = NULL)

Arguments
X A character vector or a vector or list of string-like objects.
encoding If non-null, passed to set_chr_encoding() to add an encoding mark. This is
only declarative, no encoding conversion is performed.
See Also

set_chr_encoding() for more information about encodings in R.

Examples

As everywhere in R, you can specify a string with Unicode

escapes. The characters corresponding to Unicode codepoints will
be encoded in UTF-8, and the string will be marked as UTF-8

automatically:

cafe <- string("caf\uE9")

str_encoding(cafe)

as_bytes(cafe)

In addition, string() provides useful conversions to let

programmers control how the string is represented in memory. For
encodings other than UTF-8, you'll need to supply the bytes in
hexadecimal form. If it is a latinl encoding, you can mark the
string explicitly:

122 tidy-dots

cafe_latinl <- string(c(@x63, 0x61, 0x66, OxE9), "latin1")
str_encoding(cafe_latinl)
as_bytes(cafe_latin1)

sym Create a symbol or list of symbols

Description

These functions take strings as input and turn them into symbols. Contrarily to as.name(), they
convert the strings to the native encoding beforehand. This is necessary because symbols remove
silently the encoding mark of strings (see set_str_encoding()).

Usage

sym(x)
syms(x)

Arguments

X A string or list of strings.

Value

A symbol for sym() and a list of symbols for syms ().

Examples

The empty string returns the missing argument:
sym("™)

This way sym() and as_string() are inverse of each other:
as_string(missing_arg())
sym(as_string(missing_arg()))

tidy-dots Collect dots tidily

Description
list2() is equivalent to list(...) but provides tidy dots semantics:

* You can splice other lists with the unquote-splice ! !'! operator.
* You can unquote names by using the unquote operator !! on the left-hand side of :=.
We call quasiquotation support in dots tidy dots semantics and functions taking dots with 1ist2()

tidy dots functions. Quasiquotation is an alternative to do.call() idioms and gives the users of
your functions an uniform syntax to supply a variable number of arguments or a variable name.

dots_list() is a lower-level version of 1ist2() that offers additional parameters for dots capture.

tidy-dots 123

Usage
dots_list(..., .ignore_empty = c("trailing”, "none"”, "all"),
.preserve_empty = FALSE, .homonyms = c("keep”, "first"”, "last”,
"error"), .check_assign = FALSE)
list2(...)
Arguments

Arguments to collect with !'! ! support.

.ignore_empty Whether to ignore empty arguments. Can be one of "trailing”, "none”,
"all”. If "trailing”, only the last argument is ignored if it is empty.
.preserve_empty
Whether to preserve the empty arguments that were not ignored. If TRUE, empty
arguments are stored with missing_arg() values. If FALSE (the default) an
error is thrown when an empty argument is detected.

.homonyms How to treat arguments with the same name. The default, "keep”, preserves
these arguments. Set .homonyms to "first” to only keep the first occurrences,
to "last” to keep the last occurrences, and to "error” to raise an informative
error and indicate what arguments have duplicated names.

.check_assign Whether to check for <- calls passed in dots. When TRUE and a <- call is de-
tected, a warning is issued to advise users to use = if they meant to match a
function parameter, or wrap the <- call in braces otherwise. This ensures as-
signments are explicit.

Details
Note that while all tidy eval quoting functions have tidy dots semantics, not all tidy dots functions
are quoting functions. 1ist2() is for standard functions, not quoting functions.

Value
A list of arguments. This list is always named: unnamed arguments are named with the empty string

Life cycle

One difference of dots_list() with 1list2() is that it always allocates a vector of names even
if no names were supplied. In this case, the names are all empty "". This is for consistency with
enquos () and enexprs() but can be quite costly when long lists are spliced in the results. For
this reason we plan to parameterise this behaviour with a . named argument and possibly change the
default. 1ist2() does not have this issue.

See Also

exprs() for extracting dots without evaluation.

Examples

Let's create a function that takes a variable number of arguments:
numeric <- function(...) {
dots <- list2(...)

124 tidy-dots

num <- as.numeric(dots)
set_names(num, names(dots))

}

numeric(1, 2, 3)

The main difference with list(...) is that list2(...) enables
the “!!!" syntax to splice lists:

x <- list(2, 3)

numeric(1, !!'! x, 4)

As well as unquoting of names:
nm <= "yup!”
numeric(!!'nm := 1)

One useful application of splicing is to work around exact and
partial matching of arguments. Let's create a function taking
named arguments and dots:
fn <- function(data, ...) {

list2(...)
3

You normally cannot pass an argument named ‘data‘ through the dots
as it will match ‘fn‘'s ‘data‘ argument. The splicing syntax
provides a workaround:

fn("wrong!"”, data = letters) # exact matching of ‘data‘
fn("wrong!"”, dat = letters) # partial matching of ‘data®
fn(some_data, !!!list(data = letters)) # no matching

Empty arguments trigger an error by default:
try(fn(,))

You can choose to preserve empty arguments instead:
list3 <- function(...) dots_list(..., .preserve_empty = TRUE)

Note how the last empty argument is still ignored because
“.ignore_empty' defaults to "trailing”:
list3(,)

The list with preserved empty arguments is equivalent to:
list(missing_arg())
Arguments with duplicated names are kept by default:

list2(a =1, a=2, b=3, b=4,5, 6)

Use the ‘.homonyms‘ argument to keep only the first of these:
dots_list(a =1, a=2, b=3, b=4,5, 6, .homonyms = "first")

Or the last:
dots_list(a =1, a=2, b=3, b=4,5, 6, .homonyms = "last")

Or raise an informative error:
try(dots_list(a =1, a=2, b=3, b=4,5, 6, .homonyms = "error"))

tidyeval-data 125

dots_list() can be configured to warn when a ‘<-‘ call is
detected:

my_list <- function(...) dots_list(..., .check_assign = TRUE)
my_list(a <- 1)

There is no warning if the assignment is wrapped in braces.
This requires users to be explicit about their intent:
my_list({ a <- 1 3})

tidyeval-data Data pronoun for tidy evaluation

Description

This pronoun allows you to be explicit when you refer to an object inside the data. Referring to the
.data pronoun rather than to the original data frame has several advantages:

* It makes it easy to refer to column names stored as strings. If var contains the column
"height", the pronoun will subset that column:

var <- "height”
dplyr::summarise(df, mean(.datal[[var]ll]))

The index variable var is unquoted, which ensures a column named var in the data frame
cannot mask it. This makes the pronoun safe to use in functions and packages.

* Sometimes a computation is not about the whole data but about a subset. For example if you
supply a grouped data frame to a dplyr verb, the .data pronoun contains the group subset.

o It lets dplyr know that you’re referring to a column from the data which is helpful to generate
correct queries when the source is a database.

The . data object exported here is useful to import in your package namespace to avoid aR CMD check
note when referring to objects from the data mask.

Usage

.data

trace_back Capture a backtrace

Description

A backtrace captures the sequence of calls that lead to the current function, sometimes called the
call stack. Because of lazy evaluation, the call stack in R is actually a tree, which the summary ()
method of this object will reveal.

Usage

trace_back(top = NULL, bottom = NULL)

126

Arguments

top

bottom

Examples

trace_back

The first frame environment to be included in the backtrace. This becomes the
top of the backtrace tree and represents the oldest call in the backtrace.

This is needed in particular when you call trace_back() indirectly or from
a larger context, for example in tests or inside an RMarkdown document where
you don’t want all of the knitr evaluation mechanisms to appear in the backtrace.

The last frame environment to be included in the backtrace. This becomes the
rightmost leaf of the backtrace tree and represents the youngest call in the back-
trace.

Set this when you would like to capture a backtrace without the capture context.
Can also be an integer that will be passed to caller_env().

Trim backtraces automatically (this improves the generated

documentation for the rlang website and the same trick can be
useful within knitr documents):

options(rlang_trace_top_env = current_env())

f <= function() g(Q)
g <- function() h()
h <- function() trace_back()

When no lazy evaluation is involved the backtrace is linear
(i.e. every call has only one child)

O

Lazy evaluation introduces a tree like structure
identity(identity(f()))

identity(try(f()))

try(identity(f()))

When printing, you can request to simplify this tree to only show
the direct sequence of calls that lead to ‘trace_back()*
x <- try(identity(f()))

X

print(x, simplify = "branch")

With a little cunning you can also use it to capture the
tree from within a base NSE function

x <- NULL

with(mtcars, {x <<- f(); 10})

X

Restore default top env for next example
options(rlang_trace_top_env = NULL)

When code is executed indirectly, i.e. via source or within an

RMarkdown document, you'll tend to get a lot of guff at the beginning
related to the execution environment:

conn <- textConnection(”summary(f())")

source(conn, echo
close(conn)

= TRUE, local = TRUE)

type-predicates 127

To automatically strip this off, specify which frame should be
the top of the backtrace. This will automatically trim off calls
prior to that frame:

top <- current_env()

h <- function() trace_back(top)

conn <- textConnection(”summary(f())")
source(conn, echo = TRUE, local = TRUE)
close(conn)

type-predicates Type predicates

Description

These type predicates aim to make type testing in R more consistent. They are wrappers around
base: :typeof (), so operate at a level beneath S3/5S4 etc.

Usage

is_list(x, n = NULL)

NULL)

is_atomic(x, n

is_vector(x, n = NULL)

is_integer(x, n = NULL)

is_double(x, n = NULL, finite = NULL)
is_character(x, n = NULL, encoding = NULL)
is_logical(x, n = NULL)

is_raw(x, n = NULL)

is_bytes(x, n = NULL)

is_null(x)
Arguments

X Object to be tested.

n Expected length of a vector.

finite Whether all values of the vector are finite. The non-finite values are NA, Inf,
-Inf and NaN. Setting this to something other than NULL can be expensive be-
cause the whole vector needs to be traversed and checked.

encoding Expected encoding of a string or character vector. One of UTF-8, latinl, or

unknown.

128 vector-construction

Details

Compared to base R functions:

* The predicates for vectors include the n argument for pattern-matching on the vector length.
e Unlike is.atomic(), is_atomic() does not return TRUE for NULL.

* Unlike is.vector(), is_vector() tests if an object is an atomic vector or a list. is.vector
checks for the presence of attributes (other than name).

See Also

bare-type-predicates scalar-type-predicates

vector-construction Create vectors

Description

The atomic vector constructors are equivalent to c() but:

* They allow you to be more explicit about the output type. Implicit coercions (e.g. from integer
to logical) follow the rules described in vector-coercion.

* They use tidy dots and thus support splicing with !!!.

Usage
1gl(...)
int(...)
dbl(...)
cpl(...)
chr(..., .encoding = NULL)
bytes(...)
Arguments
Components of the new vector. Bare lists and explicitly spliced lists are spliced.
.encoding If non-null, passed to set_chr_encoding() to add an encoding mark. This is
only declarative, no encoding conversion is performed.
Life cycle

* Automatic splicing is soft-deprecated and will trigger a warning in a future version. Please
splice explicitly with !'!'!.

with_abort 129

Examples

These constructors are like a typed version of c():
c(TRUE, FALSE)
1g1(TRUE, FALSE)

They follow a restricted set of coercion rules:
int(TRUE, FALSE, 20)

Lists can be spliced:
dbl(ie, !!'! list(1, 2L), TRUE)

They splice names a bit differently than c(). The latter
automatically composes inner and outer names:
c(a=c(A=10), b =c(B =20, C=30))

On the other hand, rlang's ctors use the inner names and issue a
warning to inform the user that the outer names are ignored:
dbl(a = c(A =10), b = c(B =20, C = 30))

dbl(a = c(1, 2))

As an exception, it is allowed to provide an outer name when the
inner vector is an unnamed scalar atomic:
dbl(a = 1)

Spliced lists behave the same way:
dbl(!!! list(a = 1))
dbl(!!! list(a = c(A = 1)))

bytes() accepts integerish inputs
bytes(1:10)
bytes(0x01, oOxff, c(@x03, 0x05), list(10, 20, 30L))

with_abort Promote all errors to rlang errors

Description

with_abort() promotes conditions as if they were thrown with abort(). These errors embed
a backtrace. They are particularly suitable to be set as parent errors (see parent argument of
abort()).

Usage
with_abort(expr, classes = "error")
Arguments
expr An expression run in a context where errors are promoted to rlang errors.

classes Character vector of condition classes that should be promoted to rlang errors.

130 with_env

Details

with_abort() installs a calling handler for errors and rethrows non-rlang errors with abort().
However, error handlers installed within with_abort() have priority. For this reason, you should
use tryCatch() and exiting handlers outside with_abort () rather than inside.

Examples

For cleaner backtraces:
options(rlang_trace_top_env = current_env())

with_abort() automatically casts simple errors thrown by stop()
to rlang errors:

fn <- function() stop("”Base error")

try(with_abort(fn()))

last_error()

with_abort() is handy for rethrowing low level errors. The
backtraces are then segmented between the low level and high
level contexts.

low_levell <- function() low_level2()

low_level2 <- function() stop(”"Low level error")

high_level <- function() {
with_handlers(
with_abort(low_levell()),
error = ~ abort("High level error”, parent = .x)
)
3

try(high_level())
last_error()
summary (last_error())

Reset to default
options(rlang_trace_top_env = NULL)

with_env Evaluate an expression within a given environment

Description

These functions evaluate expr within a given environment (env for with_env(), or the child of
the current environment for locally). They rely on eval_bare() which features a lighter evalu-
ation mechanism than base R base: :eval(), and which also has some subtle implications when
evaluting stack sensitive functions (see help for eval_bare()).

Usage

with_env(env, expr)

locally(expr)

with_handlers 131

Arguments
env An environment within which to evaluate expr. Can be an object with a get_env()
method.
expr An expression to evaluate.
Details

locally() is equivalent to the base function base: : local() but it produces a much cleaner eval-
uation stack, and has stack-consistent semantics. It is thus more suited for experimenting with the
R language.

Life cycle

These functions are experimental. Expect API changes.

Examples

with_env() is handy to create formulas with a given environment:
env <- child_env("rlang")

f <- with_env(env, ~new_formula())

identical(f_env(f), env)

Or functions with a given enclosure:
fn <- with_env(env, function() NULL)
identical(get_env(fn), env)

Unlike eval() it doesn't create duplicates on the evaluation
stack. You can thus use it e.g. to create non-local returns:
fn <= function() {
g(current_env())
"normal return”
}
g <- function(env) {
with_env(env, return("early return”))
}
n()

Since env is passed to as_environment(), it can be any object with an
as_environment() method. For strings, the pkg_env() is returned:
with_env("base”, ~mtcars)

This can be handy to put dictionaries in scope:
with_env(mtcars, cyl)

with_handlers Establish handlers on the stack

132 with_handlers

Description

Condition handlers are functions established on the evaluation stack (see ctxt_stack()) that are
called by R when a condition is signalled (see cnd_signal() and abort() for two common signal
functions). They come in two types: exiting handlers, which jump out of the signalling context
and are transferred to with_handlers() before being executed. And calling handlers, which are
executed within the signal functions.

Usage
with_handlers(.expr, ...)
Arguments
.expr An expression to execute in a context where new handlers are established. The
underscored version takes a quoted expression or a quoted formula.
Named handlers. These should be functions of one argument. These handlers
are treated as exiting by default. Use calling() to specify a calling handler.
These dots support tidy dots features and are passed to as_function() to enable
the formula shortcut for lambda functions.
Details

An exiting handler is taking charge of the condition. No other handler on the stack gets a chance
to handle the condition. The handler is executed and with_handlers() returns the return value of
that handler. On the other hand, in place handlers do not necessarily take charge. If they return
normally, they decline to handle the condition, and R looks for other handlers established on the
evaluation stack. Only by jumping to an earlier call frame can a calling handler take charge of the
condition and stop the signalling process. Sometimes, a muffling restart has been established for
the purpose of jumping out of the signalling function but not out of the context where the condition
was signalled, which allows execution to resume normally. See cnd_muffle() and the mufflable
argument of cnd_signal().

Exiting handlers are established first by with_handlers(), and in place handlers are installed in
second place. The latter handlers thus take precedence over the former.

See Also

exiting(), calling().

Examples

Signal a condition with signal():
fn <- function() {

g0

cat("called?\n")

"fn() return value”

g <- function() {

hQO
cat("called?\n")

h <- function() {
signal ("A foobar condition occurred”, "foo")
cat("called?\n")

with_restarts 133

Exiting handlers jump to with_handlers() before being
executed. Their return value is handed over:

handler <- function(c) "handler return value”
with_handlers(fn(), foo = exiting(handler))

Handlers are exiting by default so you can omit the adjective:
with_handlers(fn(), foo = handler)

In place handlers are called in turn and their return value is

ignored. Returning just means they are declining to take charge of

the condition. However, they can produce side-effects such as

displaying a message:

some_handler <- function(c) cat(”some handler!\n")

other_handler <- function(c) cat("other handler!\n")

with_handlers(fn(), foo = calling(some_handler), foo = calling(other_handler))

If an in place handler jumps to an earlier context, it takes
charge of the condition and no other handler gets a chance to
deal with it. The canonical way of transferring control is by
jumping to a restart. See with_restarts() and restarting()
documentation for more on this:
exiting_handler <- function(c) rst_jump("rst_foo")
fn2 <- function() {
with_restarts(g(), rst_foo = function() "restart value")
3
with_handlers(fn2(), foo = calling(exiting_handler), foo = calling(other_handler))

with_restarts Establish a restart point on the stack

Description

Questioning

Restart points are named functions that are established with with_restarts(). Once established,
you can interrupt the normal execution of R code, jump to the restart, and resume execution from
there. Each restart is established along with a restart function that is executed after the jump and
that provides a return value from the establishing point (i.e., a return value for with_restarts()).

Usage
with_restarts(.expr, ...)
Arguments
.expr An expression to execute with new restarts established on the stack. This argu-

ment is passed by expression and supports unquoting. It is evaluated in a context
where restarts are established.

Named restart functions. The name is taken as the restart name and the function
is executed after the jump. These dots support tidy dots features.

134 with_restarts

Details

Restarts are not the only way of jumping to a previous call frame (see return_from() or return_to()).
However, they have the advantage of being callable by name once established.

Life cycle

All the restart functions are in the questioning stage. It is not clear yet whether we want to recom-
mend restarts as a style of programming in R.

See Also

return_from() and return_to() for a more flexible way of performing a non-local jump to an
arbitrary call frame.

Examples

Restarts are not the only way to jump to a previous frame, but

they have the advantage of being callable by name:

fn <- function() with_restarts(g(), my_restart = function() "returned”)
g <- function() h()

h <- function() { rst_jump("my_restart”); "not returned” }

fnQ

Whereas a non-local return requires to manually pass the calling
frame to the return function:

fn <= function() g(current_env())

g <- function(env) h(env)

h <- function(env) { return_from(env, "returned”); "not returned” }
fnQ

rst_maybe_jump() checks that a restart exists before trying to jump:
fn <- function() {
g0
cat(”"will this be called?\n")
3
g <- function() {
rst_maybe_jump("my_restart"”)
cat("will this be called?\n")
3

Here no restart are on the stack:
fn()

If a restart point called ‘my_restart® was established on the
stack before calling fn(), the control flow will jump there:
rst <- function() {

cat("restarting...\n")

"return value”

}

with_restarts(fn(), my_restart = rst)

Restarts are particularly useful to provide alternative default
values when the normal output cannot be computed:

zap 135

fn <- function(valid_input) {
if (valid_input) {
return(”normal value”)

}

nn

We decide to return the empty string as default value. An
altenative strategy would be to signal an error. In any case,
we want to provide a way for the caller to get a different
output. For this purpose, we provide two restart functions that
returns alternative defaults:

restarts <- list(

rst_empty_chr = function() character(9),

rst_null = function() NULL

H o B B H

)
with_restarts(splice(restarts), .expr = {

Signal a typed condition to let the caller know that we are
about to return an empty string as default value:
cnd_signal("default_empty_string”)

If no jump to with_restarts, return default value:

nn

D

Normal value for valid input:
fn(TRUE)

Default value for bad input:
fn(FALSE)

Change the default value if you need an empty character vector by
defining a calling handler that jumps to the restart. It has to
be calling because exiting handlers jump to the place where they
are established before being executed, and the restart is not

defined anymore at that point:

rst_handler <- calling(function(c) rst_jump("rst_empty_chr"))
with_handlers(fn(FALSE), default_empty_string = rst_handler)

You can use restarting() to create restarting handlers easily:
with_handlers(fn(FALSE), default_empty_string = restarting(”rst_null"))

zap Create zap objects

Description

zap() creates a sentinel object that indicates that an object should be removed. For instance, named
zaps instruct env_bind() and call_modify() to remove those objects from the environment or the
call.

The advantage of zap objects is that they unambiguously signal the intent of removing an object.
Sentinels like NULL or missing_arg() are ambiguous because they represent valid R objects.

136

Usage
zap()

is_zap(x)

Arguments

X An object to test.

Examples

Create one zap object:
zap()

Create a list of zaps:

rep(list(zap()), 3)
rep_named(c(”"foo”, "bar"), list(zap()))

zap

Index

'l (quasiquotation), 98
11l (quasiquotation), 98
xTopic datasets
missing, 88
tidyeval-data, 125
+Topic experimental
scoped_options, 117
.Internal(), 78
.Primitive(), 78
.data, 10
.data (tidyeval-data), 125
:=(quasiquotation), 98

abort, 4

abort(), 5,31,33,57,84,87,113, 114, 129,
130, 132

active bindings, 10

add_backtrace
(rlang_backtrace_on_error), 113

alist, 94

are_na, 6

arg_match, 7

as_box, 8

as_box_if (as_box), 8

as_bytes(), 85

as_character(), 86

as_closure (as_function), 13

as_closure(), 64

as_data_mask, 9

as_data_mask(), 39, 54, 87

as_data_pronoun (as_data_mask), 9

as_data_pronoun(), 88

as_environment, 12

as_environment(), 38

as_function, 13

as_function(), 41, 57,85, 132

as_label, 14

as_label(), 15, 108

as_logical(), 86

as_name, 15

as_name(), 14, 18, 108

as_native_character
(as_utf8_character), 18

as_native_string (as_utf8_character), 18

137

as_overscope(), 87

as_pairlist(), 85

as_quosure, 16

as_quosure(), 94, 103
as_quosureish(), 88

as_quosures (new_quosures), 94
as_string, 17

as_string(), 14, 15, 108
as_utf8_character, 18

as_utf8_string (as_utf8_character), 18

backtrace, 129
bare-type-predicates, 19, 116, 128
base environment, 97
base::.Internal(), 77

base::alist(), 105
base::as.call(), 21
base::as.list(), 98
base::as.name(), 15, 17
base::as.symbol(), 15,17
base::assign(), 40

base: :body(), 62
base::c(), 98
base::call(), 21

base: :delayedAssign(), 41
base::eval(), 10, 52, 54, 130
base::formals(), 74
base::I(), 20
base::ifelse(), 96

base: :inherits(), 69
base::interactive(), 80
base::is.integer(), 79
base::is.na(), 6
base::length(), 68
base::local(), 131

base: :makeActiveBinding(), 41
base::match.arg(), 7
base: :match.call(), 26, 29
base: :message(), 4

base: :missing(), 89

base: :parse(), 97

base: :quote(), 94
base::return(), 112

base: :search(), 86

138

base::signalCondition(), 32
base: :stop(), 4, 33,57

base: :structure(), 20

base: : suppressMessages(), 3, 32
base: : suppressWarnings(), 3, 32
base::tryCatch(), 32, 57
base::typeof (), 22, 127

base: :vector(), 92
base::warning(), 4
base_env(), 74

box, 20

boxed, 35

bquote(), 105

bytes (vector-construction), 128

c(), 128

call, 70

call stack, 23

call2, 21
call2(), 24, 25,27-29, 70, 87, 104
call_args, 24

call_args(), 64,87
call_args_names (call_args), 24
call_args_names(), 64, 87
call_depth(), 86

call_fn, 25

call_fn(), 28, 87
call_frame(), 86
call_inspect, 26
call_modify, 26
call_modify(), 87,135
call_name, 28
call_name(), 25, 87

call_ns (call_name), 28
call_stack(), 86
call_standardise, 29
call_standardise(), 26, 87
callable, 22

caller frame, 8
caller_env, 23
caller_env(), 24, 37,126
caller_fn, 23

caller_fn(), 85
caller_frame(), 23, 86
calling, 32, 37

calling (exiting), 57

calling handler, 130
calling(), 31,33,88,110, 111,132
catch_cnd, 30

catch_cnd(), 32

child_env (env), 38
child_env(), 86

chr (vector-construction), 128

chr_encoding(), 85
chr_unserialise_unicode(), 18, 85
closure, 13

cnd, 30

cnd(), 33, 87, 88

cnd_muffle, 31
cnd_muffle(), 33, 88, 132
cnd_signal, 33
cnd_signal (), 31-33, 86, 88, 132
cnd_type, 34
coerce_class(), 86
coerce_lang(), 86
coerce_type(), 86

constant objects, 102
constructed calls, 63

cpl (vector-construction), 128
ctxt_depth(), 86
ctxt_frame(), 86
ctxt_stack(), 58, 62, 66, 77, 86, 132
current_env (caller_env), 23
current_env(), 24, 67
current_fn (caller_fn), 23
current_fn(), 85
current_frame(), 23, 86

dbl (vector-construction), 128
definition, 76

documentation topic, 98

done, 35
dots_definitions(), 85
dots_list (tidy-dots), 122
dots_list(), 36

dots_n, 35

dots_splice(), 86
dots_values, 36

empty environment, 39, 45, 102, 103
empty_env, 37
empty_env(), 12, 50
enexpr (quotation), 104
enexpr(), 85

enexprs (quotation), 104
enexprs(), 123

enquo (quotation), 104
enquo(), 85, 102, 103
enquos (quotation), 104
enquos(), 123

ensym (quotation), 104
ensyms (quotation), 104
entrace, 37

env, 38

env(), 41,45, 50, 62
env_bind, 40

INDEX

INDEX

env_bind(), 39, 43, 44, 51, 135
env_bind_active (env_bind), 40
env_bind_active(), 86
env_bind_exprs(), 85
env_bind_fns(), 85
env_bind_lazy (env_bind), 40
env_bind_lazy(), 86
env_binding_lock(), 47, 48
env_bury, 43

env_clone, 44

env_depth, 45

env_get, 45

env_get_list (env_get), 45
env_has, 46

env_has(), 39
env_inherits, 47
env_is_locked (env_lock), 47
env_label (env_name), 48
env_length (env_names), 49
env_lock, 47

env_name, 48

env_name(), 50
env_names, 49
env_parent, 50

env_parents (env_parent), 50
env_poke(), 85
env_poke_parent (get_env), 66
env_print, 51

env_tail (env_parent), 50
env_tail(), 87
env_unbind, 51
env_unbind(), 44
environment, 104

error_cnd (cnd), 30
error_cnd(), 87, 88
eval_bare, 52
eval_bare(), 85, 130
eval_tidy, 54
eval_tidy(), 9, 10, 53, 85, 87, 106
eval_tidy_(), 88

exec, 56

exec(), 86

exiting, 57, 130
exiting(),31,33,111,132
explicit splicing, 31

expr (quotation), 104
expr(), 85, 98

expr_deparse (expr_print), 61
expr_interp, 59
expr_label, 60
expr_label(), 65, 86, 108
expr_name (expr_label), 60

expr_name(), 58, 86
expr_print, 61
expr_print(), 98
expr_text (expr_label), 60
expr_text(), 65, 86
expression, 16, 97, 108
expression(), 74
expressions, 104
exprs (quotation), 104
exprs(), 41,85, 123
exprs_auto_name, 58
exprs_auto_name(), 87

f_env (f_rhs), 64

f_env<- (f_rhs), 64
f_label (f_text), 65
f_label(), 108

f_lhs (f_rhs), 64

f_lhs<- (f_rhs), 64

f_name (f_text), 65
f_rhs, 64
f_rhs<-(f_rhs), 64
f_text, 65

fancy bindings, 51
flatten(), 86
flatten_if (), 36
fn_body, 62

fn_body<- (fn_body), 62
fn_env, 62

fn_env<- (fn_env), 62
fn_fmls, 63
fn_fmls(), 24, 74, 77
fn_fmls<- (fn_fmls), 63
fn_fmls_names (fn_fmls), 63
fn_fmls_names(), 24
fn_fmls_names<- (fn_fmls), 63
fn_fmls_syms (fn_fmls), 63
formals(), 77

formula, 76
frame_position(), 86

get_env, 66

get_env(), 51,67,86, 101, 112, 131
get_expr (set_expr), 119
get_expr(), 101, 120

global environment, 97
global_frame(), 86

has_length, 68
has_name, 68

have_name (is_named), 80

imports environments, 48

139

140

inform (abort), 4

inform(), 33,87

inherits_all (inherits_any), 69

inherits_all(), 20

inherits_any, 69

inherits_only (inherits_any), 69

int (vector-construction), 128

interrupt (abort), 4

invoke(), 86

is_atomic (type-predicates), 127

is_atomic(), 20

is_attached(), 86

is_bare_atomic (bare-type-predicates),
19

is_bare_bytes (bare-type-predicates), 19

is_bare_character
(bare-type-predicates), 19

is_bare_double (bare-type-predicates),
19

is_bare_environment (is_environment), 73

is_bare_formula (is_formula), 75

is_bare_integer (bare-type-predicates),
19

is_bare_integerish (is_integerish), 79

is_bare_list (bare-type-predicates), 19

is_bare_logical (bare-type-predicates),
19

is_bare_numeric (bare-type-predicates),
19

is_bare_numeric(), 79

is_bare_raw (bare-type-predicates), 19

is_bare_string (bare-type-predicates),
19

is_bare_vector (bare-type-predicates),
19

is_binary_lang(), 87

is_box (box), 20

is_bytes (type-predicates), 127

is_call, 70

is_call(), 75,87

is_call_stack (is_stack), 83

is_callable, 71

is_character (type-predicates), 127

is_character(), 87

is_chr_na (are_na), 6

is_closure (is_function), 77

is_condition, 72

is_copyable, 72

is_cpl_na (are_na), 6

is_dbl_na (are_na), 6

is_definition(), 85

is_dictionaryish (is_named), 80

INDEX

is_dictionaryish(), 12

is_done_box (done), 35

is_double (type-predicates), 127

is_empty, 73

is_environment, 73

is_eval_stack (is_stack), 83

is_expr(), 87

is_expression, 74

is_expression(), 49, 70, 87

is_false (is_true), 83

is_formula, 75

is_formulaish(), 85

is_frame(), 86

is_function, 77

is_function(), 13, 64

is_installed, 78

is_int_na(are_na), 6

is_integer (type-predicates), 127

is_integerish, 79

is_interactive, 80

is_lambda (as_function), 13

is_lang(), 87

is_lgl_na(are_na), 6

is_list (type-predicates), 127

is_logical (type-predicates), 127

is_missing (missing_arg), 89

is_missing(), 85

is_na(are_na), 6

is_named, 80

is_namespace, 81

is_node(), 85

is_node_list(), 85

is_null (type-predicates), 127

is_null(),7

is_pairlist(), 85

is_primitive (is_function), 77

is_primitive_eager (is_function), 77

is_primitive_lazy (is_function), 77

is_quosure (quosure), 101

is_quosure(), 16, 85

is_quosureish(), 88

is_quosures (new_quosures), 94

is_raw (type-predicates), 127

is_reference, 82

is_scalar_atomic
(scalar-type-predicates), 116

is_scalar_bytes
(scalar-type-predicates), 116

is_scalar_character
(scalar-type-predicates), 116

is_scalar_double
(scalar-type-predicates), 116

INDEX

is_scalar_integer
(scalar-type-predicates), 116

is_scalar_integerish (is_integerish), 79

is_scalar_list
(scalar-type-predicates), 116

is_scalar_logical
(scalar-type-predicates), 116

is_scalar_raw (scalar-type-predicates),
116

is_scalar_vector
(scalar-type-predicates), 116

is_scoped(), 85

is_stack, 83

is_string (scalar-type-predicates), 116

is_string(), 87

is_symbol, 83

is_symbolic (is_expression), 74

is_syntactic_literal (is_expression), 74

is_true, 83

is_unary_lang(), 87

is_vector (type-predicates), 127

is_zap (zap), 135

label, 51

lang(), 87

lang_args(), 87
lang_args_names(), 87
lang_fn(), 87
lang_head, 84
lang_head(), 87
lang_modify(), 87
lang_name(), 87
lang_standardise(), 87
lang_tail (lang_head), 84
lang_tail(), 87
lang_type_of (), 86
lapply (), 56

last_error, 84
last_error(), 5,113
last_trace (last_error), 84
1gl (vector-construction), 128
lifecycle, 85

list2 (tidy-dots), 122

11 (vector-construction), 128
locally (with_env), 130
locally(), 85

locked, 51

maybe_missing (missing_arg), 89
message_cnd (cnd), 30
message_cnd(), 87, 88

methods: :as(), 98
missing, 88, 92

141

missing argument, 103
missing types, 6
missing_arg, 89
missing_arg(), 36, 85, 123, 135
modify(), 86

mut_attrs(), 86
mut_latinl_locale(), 85
mut_mbcs_locale(), 85
mut_utf8_locale(), 18, 85

na_chr (missing), 88

na_cpl (missing), 88

na_dbl (missing), 88

na_int (missing), 88

na_lgl (missing), 88

names2, 91

names2(), 85

new-vector, 92

new-vector-along-retired, 92

new_box (box), 20

new_box(), 8

new_call(), 87

new_character (new-vector), 92

new_character_along
(new-vector-along-retired), 92

new_complex (new-vector), 92

new_complex_along
(new-vector-along-retired), 92

new_data_mask (as_data_mask), 9

new_data_mask(), 54, 55, 87

new_definition(), 85

new_double (new-vector), 92

new_double_along
(new-vector-along-retired), 92

new_environment (env), 38

new_formula, 93

new_function, 94

new_function(), 85

new_integer (new-vector), 92

new_integer_along
(new-vector-along-retired), 92

new_language(), 87

new_list (new-vector), 92

new_list_along
(new-vector-along-retired), 92

new_logical (new-vector), 92

new_logical_along
(new-vector-along-retired), 92

new_overscope(), 87

new_quosure (as_quosure), 16

new_quosure(), 85, 93, 103

new_quosures, 94

new_raw (new-vector), 92

142

new_raw_along
(new-vector-along-retired), 92

node_cdr (), 74

ns_env(), 85

ns_env_name(), 85

ns_imports_env(), 85

op-get-attr, 95
op-na-default, 96
op-null-default, 96, 96
overscope_clean(), 87
overscope_eval_next(), 87

package environments, 48
parse_expr, 97

parse_expr(), 74

parse_exprs (parse_expr), 97
parse_quo (parse_expr), 97
parse_quo(), 87

parse_quos (parse_expr), 97
parse_quos(), 87
parse_quosure(), 87
parse_quosures(), 87

peek_option (scoped_options), 117
peek_option(), 85

peek_options (scoped_options), 117
peek_options(), 85
pkg_env(), 12, 85
pkg_env_name(), 85

prepend(), 86

prim_name, 98

Pronouns, 54

push_options (scoped_options), 117
push_options(), 85

gq_show (quasiquotation), 98
quasiquotation, 55, 98, 106
quo (quotation), 104

quo(), 16, 59, 85, 98, 102, 103
quo_expr(), 87

quo_get_env (quosure), 101
quo_get_env(), 67,85
quo_get_expr (quosure), 101
quo_get_expr(), 55, 85, 120
quo_is_call (quosure), 101
quo_is_call(), 87
quo_is_lang(), 87
quo_is_missing (quosure), 101
quo_is_null (quosure), 101
quo_is_symbol (quosure), 101
quo_is_symbolic (quosure), 101
quo_label, 107
quo_label(), 109

INDEX

quo_name (quo_label), 107
quo_name(), 58, 105, 109
quo_set_env (quosure), 101
quo_set_env(), 67,85
quo_set_expr (quosure), 101
quo_set_expr(), 85, 120
quo_squash, 109
quo_squash(), 87

quo_text (quo_label), 107
quos (quotation), 104
quos(), 85, 103
quos_auto_name (exprs_auto_name), 58
quos_auto_name(), 87, 95, 105
quosure, 15,101, 106
Quosures, 54
quosures, 10, 61, 97
quotation, 104
quote(), 105

quoted expression, 101
quoting, 21

quoting functions, 123

rep_along, 110
rep_along(), 92

rep_named (rep_along), 110
rep_named(), 92
restarting, 110
restarting(), 58
return_from, 112
return_from(), 58, 86, 134
return_to (return_from), 112
return_to(), 86, 134
rlang::last_error(), 113
rlang_backtrace_on_error, 113,113
rst_abort, 114
rst_abort(), 33, 58, 86
rst_exists (rst_list), 115
rst_exists(), 86

rst_jump (rst_list), 115
rst_jump(), 33, 58, 86, 114
rst_list, 115

rst_list(), 86
rst_maybe_jump (rst_list), 115
rst_maybe_jump(), 86

scalar-type-predicates, 20, 116, 128
scoped_bindings, 116

scoped_env(), 85

scoped_envs(), 85

scoped_interactive (is_interactive), 80
scoped_names(), 85

scoped_options, 117
scoped_options(), 85

INDEX 143

search_env(), 86 uQQ), 86

search_envs(), 37, 86 UQE(), 88

seq2, 118 UQS (quasiquotation), 98
seg2_along (seq2), 118 uQs (), 86
seqg_along(), 110

set_attrs(), 86 vector-coercion, 128
set_chr_encoding(), 49, 85, 121, 128 vector-construction, 128
set_env (get_env), 66

set_env(), 67 warn (abort), 4
set_expr, 119 warn(), 33, 87
set_expr(), 120 warning_cnd (cnd), 30

warning_cnd(), 87, 88
with_abort, 129

with_abort(), 5, 37

with_bindings (scoped_bindings), 116

set_names, 120
set_names(), 85
set_str_encoding(), 85, 122
signal (abort), 4 -
signal(), 33 with_env, 130

splice(), 36, 86 w%th_env(),85
squash(), 86 with_handlers, 131

squashed, 14 with_handlers(), 31-33, 57, 58, 114
stack tr;m() 86 with_interactive (is_interactive), 80
statsf-setNa%es() 120 with_options (scoped_options), 117

str_encoding(), 85 W%th_options(),85
string, 121 with_restarts, 133

switch_class(), 86 with_restarts(), 33,86, 111,115

switch_lang(), 86
switch_type(), 86

sym, 122

sym(), 70, 85, 104
symbolic, 27

symbolic expressions, 102
symbolic objects, 71
symbols, 15, 17

syms (sym), 122
syms(), 85, 104

zap, 135
zap(), 26, 27,41, 44

tidy dots, 21, 22, 26, 38,41,44, 111, 115,
128,132, 133

tidy-dots, 56, 122

tidyeval-data, 125

trace_back, 125

trace_back(), 4, 31

tryCatch(), 130

type-predicates, 20, 116, 127

type_of (), 86

unbox (box), 20
uncopyable, 39, 66, 82
unquote, 122
unquote-splice, 122
unquoted, 125
unquoting, /133

unquoting operators, 106
UQ (quasiquotation), 98

	abort
	are_na
	arg_match
	as_box
	as_data_mask
	as_environment
	as_function
	as_label
	as_name
	as_quosure
	as_string
	as_utf8_character
	bare-type-predicates
	box
	call2
	caller_env
	caller_fn
	call_args
	call_fn
	call_inspect
	call_modify
	call_name
	call_standardise
	catch_cnd
	cnd
	cnd_muffle
	cnd_signal
	cnd_type
	done
	dots_n
	dots_values
	empty_env
	entrace
	env
	env_bind
	env_bury
	env_clone
	env_depth
	env_get
	env_has
	env_inherits
	env_lock
	env_name
	env_names
	env_parent
	env_print
	env_unbind
	eval_bare
	eval_tidy
	exec
	exiting
	exprs_auto_name
	expr_interp
	expr_label
	expr_print
	fn_body
	fn_env
	fn_fmls
	f_rhs
	f_text
	get_env
	has_length
	has_name
	inherits_any
	is_call
	is_callable
	is_condition
	is_copyable
	is_empty
	is_environment
	is_expression
	is_formula
	is_function
	is_installed
	is_integerish
	is_interactive
	is_named
	is_namespace
	is_reference
	is_stack
	is_symbol
	is_true
	lang_head
	last_error
	lifecycle
	missing
	missing_arg
	names2
	new-vector
	new-vector-along-retired
	new_formula
	new_function
	new_quosures
	op-get-attr
	op-na-default
	op-null-default
	parse_expr
	prim_name
	quasiquotation
	quosure
	quotation
	quo_label
	quo_squash
	rep_along
	restarting
	return_from
	rlang_backtrace_on_error
	rst_abort
	rst_list
	scalar-type-predicates
	scoped_bindings
	scoped_options
	seq2
	set_expr
	set_names
	string
	sym
	tidy-dots
	tidyeval-data
	trace_back
	type-predicates
	vector-construction
	with_abort
	with_env
	with_handlers
	with_restarts
	zap
	Index

