
Introduction to the ’raster’ package (Version

1.3-11)

Robert J. Hijmans

August 11, 2010

1 Introduction

This vignette describes the R package ’raster’. A raster is a spatial (ge-
ographic) data structure that divides an area into rectangles. Such a data
structure is also referred to as a ’grid’ and is often contrasted with ’vector’ data
(which represents points, lines, and polygons). The raster package has func-
tions for reading, manipulating, and writing raster data. The package provides
(1) general low-level raster data manipulation functions (e.g. read raster values
by row), covert cell numbers into coordinates and back, that can easily be used
to develop higher level specific functions; (2) ’high level’ functions for raster
data manipulation that are common in other spatial data analysis software (of-
ten referred to as ’GIS’); (3) to provide a raster algebra implementation.

A notable feature of the pakcage is that its functions can work with very
large raster datasets that are stored on disk and cannot be loaded into memory.
The raster package can work with extremely large files because it does not load
all the contents of these files into memory when a Raster type object is created
from a file. In stead, the object gathers some basic information, such as the
number of rows and columns, and the spatial extent. In computations with a
Raster object, data then will be read and processes in chunks. If no output
filename specified, and the output raster is too large to keep in memory, the
results are written to a temporary file.

The package is built around a number of ’S4’ classes of which the Raster-
Layer, RasterBrick, and RasterStack classes are the most important.

2 Classes

This package is built around a number of ’S4’ classes. The three most im-
portant classes are: RasterLayer, RasterStack and RasterBrick.

1

2.1 RasterLayer

Most functions in this pacakge operate on objects of the RasterLayer class.
A RasterLayer describes a single-variable raster dataset. A RasterLayer object
always has values for a number of fundamental parameters such as the number
of columns and rows, the coordinates of the spatial extent (’bounding box’),
and the coordinate reference system (the ’map projection’), and some other
parameters such as a name. In addition, a RasterLayer can store information
about the filename where the raster cell values are stored (if there is such a file),
and it can store some or all of the raster cell values.

Because a RasterLayer is a single-variable dataset it can easily be used for
raster algebra (arithmetic and other mathematical operations). Also, some
raster file systems only allow a single variable per file and this class matches
that system. There are, however, also many cases where multi-variable raster
data sets are more useful. The raster package has two classes for that, the
RasterStack and the RasterBrick

2.2 RasterStack

A RasterStack is a collection of RasterLayer objects with the same spatial
extent and resolution. In essence it is a like a list of individual RasterLayer
objects. A RasterStack can easily be formed form a collection of files in different
locations and mixed with RasterLayer objects that only exist in memory.

There are a number of methods (functions) available for RasterStack objects.
These include calc, which lets you compute summary statistics (e.g., sum or
mean) for cells across all layers.

2.3 RasterBrick

A RasterBrick is truly multilayered RasterLayer. It is more efficient than a
RasterStack, but it can only refer to a single file. A typical example of such a
file would be a multi-band satellite image.

2.4 Other classes

The three classes described above inherit from the Raster class which inherits
from the BasicRaster class. The BasicRaster only has a few properties (’slots’
in S4 speak): the number of columns and rows, the coordinate reference system
(which itself is an object of class CRS, which is defined in package ’sp’) and the
spatial extent (which is an object of class Extent). Raster is a virtual class. This
means that it cannot be instantiated (you cannot create objects from this class).
It is used so that methods can be defined for that class. These methods will be
dispatched when called with a descendent of this class (i.e. when the method
is called with a RasterLayer, RasterBrick or RasterStack object as argument).
This allows for efficient code writing and documentation. RasterStackBrick
is a class union of the RasterStack and RasterBrick class. This is a also a

2

virtual class. It allows defining methods that apply to both a RasterStack and
to a RasterBrick. Like with the Raster class its purpose is efficiency in code
and documentation. Class ’Extent’ has four slots for the extreme x and y (or
longitude and latitude) coordinates of the raster.

3 Creating Raster objects

A RasterLayer can easily be created from scratch using the function raster.
The default settings will create a global raster data structure with a longi-
tude/latitude coordinate reference system and 1 by 1 degree cells. You can
change these settings by providing additional arguments such as nrow, ncol, to
the function. You can also change these parameters after creating the object.
In some cases, for example when you change the number of columns or rows,
you will loose the values associated with the RasterLayer (or the link to a file if
there was one). If you set the projection, this is only to properly define it, not
to change it. To tranform a RasterLayer to another coordinate reference system
(projection) you can can use the function projectRaster.

Here is an example of creating and changing a RasterLayer object ’r’ from
scratch.

> library(raster)

raster version 1.3-11 (9-August-2010)

> r <- raster()

> r

class : RasterLayer

filename :

nrow : 180

ncol : 360

ncell : 64800

min value :

max value :

projection : +proj=longlat +datum=WGS84

xmin : -180

xmax : 180

ymin : -90

ymax : 90

xres : 1

yres : 1

> r <- raster(ncol=36, nrow=18, xmn=-1000, xmx=1000, ymn=-100, ymx=900)

> res(r)

[1] 55.55556 55.55556

3

> res(r) <- 100

> res(r)

[1] 100 100

> ncol(r) <- 18

> res(r)

[1] 111.1111 100.0000

> projection(r) <- "+proj=utm +zone=48 +datum=WGS84"

> r

class : RasterLayer

filename :

nrow : 10

ncol : 18

ncell : 180

min value :

max value :

projection : +proj=utm +zone=48 +datum=WGS84

xmin : -1000

xmax : 1000

ymin : -100

ymax : 900

xres : 111.1111

yres : 100

The function raster also allows you to create a RasterLayer from another
object, including another RasterLayer, RasterStack and RasterBrick, as well as
from a SpatialPixels* and SpatialGrid* object (defined in the sp package), an
extent object, and from a matrix.

It is more common, however, to create RasterLayer objects from files. The
raster package can read raster files in several formats, including some ’natively’
supported formats and other formats via the rgdal package. Supported formats
for reading include ESRI, ENVI, and ERDAS grids and geoTiff. Most formats
supported for reading can also be written too. Here is an example using the
’Meuse’ dataset that (taken from the sp package), using a file in the native
raster-grid format:

> r <- raster(system.file("external/test.grd", package="raster"))

> plot(r)

4

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

33
40

00

500

1000

1500

Multi-layer objects can be created in memory (from RasterLayer objects) or
from file(s).

> r1 <- raster(nrow=10, ncol=10)

> # set random cell values

> r1 <- setValues(r1, runif(ncell(r1)))

> r2 <- setValues(r1, runif(ncell(r1)))

> r3 <- setValues(r1, runif(ncell(r1)))

> # combine three RasterLayer objects into a RasterStack

> s <- stack(r1, r2, r3)

> s

class : RasterStack

filename :

nlayers : 3

nrow : 10

ncol : 10

ncell : 100

projection : +proj=longlat +datum=WGS84

min value : 9.30912792682648e-05 0.0211235065944493 0.016692753881216

max value : 0.998258433304727 0.99159968039021 0.997271220432594

xmin : -180

xmax : 180

5

ymin : -90

ymax : 90

xres : 36

yres : 18

> nlayers(s)

[1] 3

> # combine three RasterLayer objects into a RasterBrick

> b1 <- brick(r1, r2, r3)

> b2 <- brick(s)

> # create a RasterBrick from file

> b <- brick(system.file("external/rlogo.grd", package="raster"))

> b

class : RasterBrick

filename : /tmp/Rinst906389636/raster/external/rlogo.grd

nlayers : 3

nrow : 77

ncol : 101

ncell : 7777

projection : '+proj=utm +zone=1 +ellps=WGS84'
min value : 0 0 0

max value : 255 255 255

xmin : 0

xmax : 101

ymin : 0

ymax : 77

xres : 1

yres : 1

> nlayers(b)

[1] 3

> # extract a single RasterLayer

> r <- raster(b, layer=2)

> # equivalent to creating it from disk

> r <- raster(system.file("external/rlogo.grd", package="raster"), band=2)

4 Raster algebra

Many generic functions have been implemented for RasterLayer objects (but
not for mutli-layer objects), including the normal algebraic and logical operators
and functions such as abs, round, ceiling, floor, trunc, sqrt, log, log10,
exp, cos, sin, max, min, range, prod, sum, any, all. These functions

6

allows for simple and elegant raster algebra. In these functions you can mix
RasterLayer objects with numbers, as long as the first argument is a Raster-
Layer. Summary functions (min, max, mean, prod, sum, Median, cv,
range, any, all) can also be used with a RasterStack or RasterBrick as argu-
ment.

In raster algebra, the result of a computation is always a RasterLayer. This
is probably obvious when mutliplying two RasterLayer objects, but perhaps
this is not obvious when using functions like min, sum or mean. Use cellStats if
instead of a RasterLayer you want a single number summarizaing the cell values
of a single RasterLayer.

> r <- raster(ncol=36, nrow=18)

> r[] <- 1:ncell(r)

> s <- r + 1

> s <- sqrt(s)

> s <- s * r + 5

> r[] <- round(runif(ncell(r)))

> r <- r == 1

> s[r] <- -0.5

> s[!r] <- 5

> s[s == 5] <- runif(length(s[s==5]))

> a <- sum(r,s)

> b <- round(mean(r,s,10))

> st <- stack(r, s, a, b)

> sst <- sum(st)

5 ’High-level’ functions

Several ’high level’ functions have been implemented for RasterLayer objects.
With ’high level’ functions we refer to those functions that you would normally
find in a GIS program that supports raster data (such as IDRISI, GRASS,
or GRID module in ArcInfo workstation). All these functions work for raster
datasets that cannot be loaded into memory. Here we briefly discuss some of
these functions. See the help files for more detailed descriptions of each function.

The high-level functions have some arguments in common. The first argu-
ment is typically ’x’ or ’object’ and can be a RasterLayer, and in some cases a
RasterStack or RasterBrick. It is followed by one or more arguments specific to
the function (either additional RasterLayer objects or parameters), followed by
a filename=”” and ... arguments. The default filename is an empty character ””.
If you do not specify a filename, the default action for the function is to return
a RasterLayer that only exists in memory. However, if the function will create
a RasterLayer that is too large to hold memory it is written to a temporary
file instead. The ... argument allows for setting additional arguments that are
relevant when writing values to a file: the file format, datatype, and a logical
value indicating whether existing files should be overwritten.

7

5.1 Structural modification

There are several functions that deal with modifying the structure of Raster-
Layer objects. aggregate and disaggregate allow for changing the resolution
of a RasterLayer. In the case of aggregate, you need to specify a function
determining what to do with the grouped cell values (e.g. mean). It is possible
to specify different (dis) aggregation factors in the x and y direction. aggre-
gate and disaggregate are the best functions when adjusting cells size only,
and with an integer fraction (e.g. each side 2 times smaller or larger), but in
some cases that is not possible. For example, you may need nearly the same
cell size, while shifting the cell centers. In those cases, the resample function
might be used. It can do either nearest neighbor assignments (for categorical
data) or bilinear interpolation (for non-categorical data). Simple linear shifts of
a Raster object can be accomplished with the shift function or with the extent
function.

The crop function lets you take a geographic subset of a larger RasterLayer.
You can crop a RasterLayer by providing an extent object or another spatial
object from which an extent can be extracted (objects from classes deriving
from Raster and from Spatial in the sp package). An easy way to get an extent
object is to plot the larger RasterLayer and then use drawExtent() to visually
determine the new extent (bounding box) to provide to the crop function.

trim crops a RasterLayer by removing the outer rows and columns that only
contain NA values. In contrast, expand adds new rows and/or columns with
NA values. The purpose of this could be to create a new RasterLayer of the
same extent of another larger RasterLayer such that the can be used in raster
algebra.

The merge function lets you merge 2 or more RasterLayer objects into a
single new object. The input objects must have the same resolution and origin
(that is their cells neatly fit in a single larger RasterLayer).

With the projectRaster function you can transform values of RasterLayer
to a new coordinate reference system.

> r <- raster()

> r[] <- 1:ncell(r)

> ra <- aggregate(r, 10)

> r1 <- crop(r, extent(-180,0,0,30))

> r2 <- crop(r, extent(-10,180,-20,10))

> m <- merge(r1, r2, filename='test.grd', overwrite=TRUE)

flip lets you flip the data (reverse order) in horizontal or vertical direction –
typically to correct for a ’communication problem’ between different R packages
or a misinterpreted file. rotate lets you rotate longitude/latitude rasters that
have longitudes from 0 to 360 degrees to the standard -180 to 180 degrees system.

8

5.2 Overlay

As an alternative to the raster algebra discussed above, the following ’high-
level’ functions are available to accomplish the same things: overlay, calc,
reclass, subs, cover and mask. These provide either easy to use short-hand,
or more efficient computation (for disk based RasterLayers). calc allows you
to do a computation for a single RasterLayer whereas with overlay you can
combine multiple layers. Use reclass to replace ranges of values with single
values, or subs to substitute (replace) single values with other values. Function
mask removes all values from one layer that are NA in another layer, and cover
combines two layers by taking the values of the first layer except where these
are NA.

> r <- raster(ncol=10, nrow=10)

> r[] <- round(runif(ncell(r))*10)

> s <- calc(r, function(x){ x[x < 2] <- NA; return(x)})

> t <- overlay(r, s, fun=function(x, y){ x / (2 * sqrt(y)) + 5 })

> u <- mask(r, t)

> v = u==s

> w <- cover(t, r)

> x <- reclass(w, c(0,1,1, 1,5,2, 4,10,3))

> y <- subs(w, data.frame(id=c(0,2), v=c(40,50)))

5.3 Focal functions

There are three focal (neighorhood) functions: focal, focalFilter, focalNA.
These functions make a computation using values in a neighborhood of cells
around a focal cell, and putting the result in the focal cell of the output Raster-
Layer. With focal, the neighborhood can only be a rectangle. With focalFil-
ter, the neighborhood is a user-defined a matrix of weights and could approxi-
mate any shape by giving some cells zero weight. The focalNA function only
computes new values for cells that are NA in the input RasterLayer.

5.4 Distance

There are a number of distance related functions. distance computes the
shortest distance to cells that are not NA. pointDistance computes the sh-
prtest distance to any point in a set of points. gridDistance computes the
distance when following grid cells that can be traversed (e.g. exluding water
bodies). direction computes the direction towards (or from) the nearest cell
that is not NA. adjacency determines which cells are adjacent to other cells,
and pointDistance computes distance between points. See the gdistance pack-
age for more adanced distance calculations (cost distance, resistance distance)

9

5.5 Spatial configuration

Function clump identifies groups of cells that are connected. edge identifies
edges, that is transitions beween cell values. area computes the size of each grid
cell (for unprojected rasters)

5.6 Predictions

The package has two functions to make model predictions to (potentially very
large) rasters. predict takes a multilayer raster and a fitted model as arguments.
Fitted models can be of various classes, including glm, gam, randomforest, and
brt. Function interpolate is similar but is for models that use coordinates as
predictor variables, for example in kriging and spline interpolation.

5.7 Vector to raster conversion

The raster packages supports point, line, and polygon to raster conversion.
For vector type data (points, lines, polygons), objects of classes defined in the
sp package are used; but points can also be represented by a two-column matrix
(x and y).

Point to raster conversion is often done with the purpose to analyze the
point data. For example to count the number of distinct species (represented
by point observations) that occur in each raster cell. pointsToRaster takes a
RasterLayer to set the spatial extent and resolution, and a function to determine
how to summarize the points (or an attribute of each point) by cell.

Polygon to raster conversion (with polygonsToRaster) is typically done to
create a RaterLayer that can act as a mask, i.e. to set to NA a set of cells of a
RasterLayer, or to summarize values on a raster by zone. For example a country
polygon is transferred to a raster that is then used to set all the cells outside
that country to NA; whereas polygons representing administrative regions such
as states can be transferred to a raster to summarize raster values by state.

It is also possible to convert the valus of a RasterLayer to points or polygons,
using rasterToPoints and rasterToPolygons. Both functions only return
values for cells that are not NA. Unlike rasterToPolygons, rasterToPoints
is reasonably efficient and allows you to provide a function to subset the output
before it is produced (which can be necessary for very large rasters as the point
object is created in memory).

6 Summary functions

When used with a RasterLayer as first argument, normal summary statistics
functions such as min, max and mean return a RasterLayer. To, instead, obtain
a summary for all cells of a single RasterLayer you can use cellStats. You can
use freq to make a frequency table, or count to count the number of cells with
a specified value. Use zonal to summarize a RasterLayer using zones (areas

10

with the same integer number) defined in another RasterLayer and crosstab to
cross-tabulate two RasterLayer objects.

> r <- raster(ncol=36, nrow=18)

> r[] <- runif(ncell(r))

> cellStats(r, mean)

[1] 0.4739577

> s = r

> s[] <- round(runif(ncell(r)) * 5)

> zonal(r,s,median)

zone median

1 0 0.5201368

2 1 0.4990637

3 2 0.4752063

4 3 0.4809930

5 4 0.4324076

6 5 0.4784375

> freq(s)

value count

[1,] 0 70

[2,] 1 140

[3,] 2 124

[4,] 3 129

[5,] 4 110

[6,] 5 75

> count(s, 3)

[1] 129

> crosstab(r*3, s)

second

first 0 1 2 3 4 5

0 14 25 27 32 23 15

1 20 47 37 38 38 27

2 24 47 41 38 31 23

3 12 21 19 21 18 10

7 Plotting

Several generic functions have been implemented for Raster* objects to cre-
ate maps and other plot types. Use ’plot’ to create a map of a RasterLayer.

11

When plot is used with a RasterLayer, it uses code taken from the image.plot
function in the fields package, which calls the function ’image’ (but, by default,
adds a legend). It is also possible to directly call image. You can zoom in using
’zoom’ and clicking on the map twice (to indicate where to zoom to). After
plotting a RasterLayer you can add vector type spatial data (points, lines, poly-
gons). You can do this with functions points, lines, polygons if you are using
the basic R data structures or plot(object, add=TRUE) if you are using Spa-
tial* objects as defined in the sp package. When plot is used with a multi-layer
Raster* object, all layers are plotted (up to 16), unless the layers desired are
indicated with an additional argument.

You can also use the following functions with a RasterLayer as argument:
hist, persp, contour, and density. See the help files for more info. You can
use plot3D to create an interactive 3D plot (you need the rgl package for this).

With click it is possible to interactively query a Raster* object by clicking
once or several times on a map plot.

8 Row, column and cell numbers

The cell number is an important concept in the raster package. Raster data
can be thought of as a matrix, but in a RasterLayer it is more commonly treated
as a vector. Cells are numbered from the upper left cell to the upper right cell
and then continuing on the left side of the next row, and so on until the last
cell at the lower-right side of the raster. There are several helper functions
to determine the column or row number from a cell and vice versa, and to
determine the cell number for x, y coordinates and vice versa.

> library(raster)

> r <- raster(ncol=36, nrow=18)

> ncol(r)

[1] 36

> nrow(r)

[1] 18

> ncell(r)

[1] 648

> rowFromCell(r, 100)

[1] 3

> colFromCell(r, 100)

[1] 28

12

> cellFromRowCol(r,5,5)

[1] 149

> xyFromCell(r, 100)

x y

[1,] 95 65

> cellFromXY(r, c(0,0))

[1] 343

> colFromX(r, 0)

[1] 19

> rowFromY(r, 0)

[1] 10

9 Accessing cell values

Cell values can be accessed with several methods. Use getValues to get all
values or a single row; and getValuesBlock to read a block (rectangle) of cell
values.

> r <- raster(system.file("external/test.grd", package="raster"))

> getValues(r, 50)[35:39]

[1] 456.878 485.538 550.788 580.339 590.029

> getValuesBlock(r, 50, 1, 35, 5)

[1] 456.878 485.538 550.788 580.339 590.029

You can also read values using cell numbers or coordinates (xy).

> cells <- cellFromRowCol(r, 50, 35:39)

> cells

[1] 3955 3956 3957 3958 3959

> cellValues(r, cells)

[1] 456.878 485.538 550.788 580.339 590.029

> xy = xyFromCell(r, cells)

> xy

13

x y

[1,] 179780 332020

[2,] 179820 332020

[3,] 179860 332020

[4,] 179900 332020

[5,] 179940 332020

> xyValues(r, xy)

[1] 456.878 485.538 550.788 580.339 590.029

In addition, you can use standard R indexing to access values. You can
also to replace values (assignn new values to cells). If you replace a value in a
RasterLayer based on a file, the connection to that file is lost (because it now
is different from that file). Setting raster values for very large files will be very
slow with this approach as each time a new (temporary) file, with all the values,
is written to disk.

> r[cells]

[1] 456.878 485.538 550.788 580.339 590.029

> r[1:4]

[1] NA NA NA NA

> filename(r)

[1] "/tmp/Rinst906389636/raster/external/test.grd"

> r[2:3] <- 10

> r[1:4]

[1] NA 10 10 NA

> filename(r)

[1] ""

Note that in the above examples values are retrieved using cell numbers.
That is, a raster is represented as a (one-dimensional) vector. Values can also
be inspected using a (two-dimensional) matrix notation. To do so you need to
use double brackets. As in ordinary R matrices, the first index represents the
row number, the second the column number.

> r[1]

[1] NA

> r[[1,1]]

14

[1] NA

> r[[1:3,1:3]]

[,1] [,2] [,3]

[1,] NA 10 10

[2,] NA NA NA

[3,] NA NA NA

> r[[75:90, 15]]

[1] NA 946.029 1274.400 1103.470 746.170 706.596

[7] 662.454 608.678 610.869 566.225 530.387 495.301

[13] 475.535 461.082 439.506 419.139

Accessing values through this type of indexing should be avoided inside func-
tions as it is less efficient accessing values via functions like getValues.

10 Writing files

10.1 File format

Raster can read most, and write several raster file formats, via the rgdal

package. However, it directly reads and writes a native ’rasterfile’ format. A
rasterfile consists of two files: a binary sequential data file and a text header file.
The header file is of the ”windows .ini” type. When reading, you do not have to
specify the file format, but you do need to do that when writing (except when
using the default native format). This file format is also used in DIVA-GIS
(http://www.diva-gis.org/). See the help files for functions writeRaster
and saveAs.

11 Session options

There are a number of session options that can be set and these can be saved
to make them persistent in between sessions. We would advice against changing
the default values unless you have pressing need to do so. They all have to do
with reading and writing files. You can set the preferred file format and data
type. You can set the default value for overwrite to TRUE (be careful with
that one!), and you specify a default progress-bar. All of these values can also
be provided as arguments of functions where they apply. Except for generic
functions like mean, ’+’, and sqrt. These functions may write a file when the
result is too large to hold in memory and then these options can only be set
through the session options. You can also set the tmpdir, the location where
such files are written. The option chunksize determines the maximum size (in
number of cells) of a single chunk of values that is read/written in chunk-by-
chunk processing of very large files.

15

http://www.diva-gis.org/

12 Coercion to objects of other classes

Although the raster package defines its own set of classes, it is easy to coerce
objects of these classes to objects of the ’spatial’ family defined in the sp package.
This allows for using functions defined by sp (e.g. spplot) and for using other
packages that expect spatial* objects. To create a Raster object from variable
n in a SpatialGrid* x use raster(x, n) or stack(x) or brick(x). Vice versa
use as(,)

You can also convert objects of class ”im” (spatstat) and ”asc” (adehabitat)
to a RasterLayer and ”kasc” (adehabitat) to a RasterStack or Brick using the
raster(x), stack(x) or brick(x) function.

> r1 <- raster(ncol=36, nrow=18)

> r2 <- r1

> r1[] <- runif(ncell(r1))

> r2[] <- runif(ncell(r1))

> s <- stack(r1, r2)

> sgdf <- as(s, 'SpatialGridDataFrame')
> newr2 <- raster(sgdf, 2)

> news <- stack(sgdf)

13 Extending raster objects

It is straightforward to build on the Raster* objecs using the S4 inheritance
mechanism. Say you need objects that behave like a RasterLayer, but have some
additional proerties that you need to use in your own functions (S4 methods).
See John Chambers’ book ”Software for Data Analysis, Programming with R”
(Springer, 2008), and the help pages of the Methods package for more info.
Below is an example:

> setClass ('myRaster',
+ contains = 'RasterLayer',
+ representation (

+ important = 'data.frame',
+ essential = 'character'
+) ,

+ prototype (

+ important = data.frame(),

+ essential = ''
+)

+)

[1] "myRaster"

> r = raster(nrow=10, ncol=10)

> m <- as(r, 'myRaster')

16

> m@important <- data.frame(id=1:10, value=runif(10))

> m@essential <- 'my own slot'
> m[] <- 1:ncell(m)

> plot(m)

−150 −100 −50 0 50 100 150

−
50

0
50

20

40

60

80

100

> setMethod ('show' , 'myRaster',
+ function(object) {

+ callNextMethod(object) # call show(RasterLayer)

+ cat('essential:', object@essential, '\n')
+ cat('important information:\n')
+ print(object@important)

+ })

[1] "show"

> m

class : myRaster

filename :

nrow : 10

ncol : 10

ncell : 100

min value : 1

17

max value : 100

projection : +proj=longlat +datum=WGS84

xmin : -180

xmax : 180

ymin : -90

ymax : 90

xres : 36

yres : 18

essential: my own slot

important information:

id value

1 1 0.83651480

2 2 0.43007440

3 3 0.51562014

4 4 0.15843850

5 5 0.61032019

6 6 0.32062910

7 7 0.72898998

8 8 0.04638493

9 9 0.75315833

10 10 0.72704378

18

	Introduction
	Classes
	RasterLayer
	RasterStack
	RasterBrick
	Other classes

	Creating Raster objects
	Raster algebra
	'High-level' functions
	Structural modification
	Overlay
	Focal functions
	Distance
	Spatial configuration
	Predictions
	Vector to raster conversion

	Summary functions
	Plotting
	Row, column and cell numbers
	Accessing cell values
	Writing files
	File format

	Session options
	Coercion to objects of other classes
	Extending raster objects

