
Writing functions with the ”raster” package

Robert J. Hijmans

August 11, 2010

1 Introduction

The ’raster’ package has a number of ’low-level’ functions (e.g. to read
and write files) that allow you to write your own ’high-level’ functions. Here I
explain how to use these low-level functions in developing ’memory-safe’ high-
level functions. With ’memory-safe’ I refer to function that can process raster
files that are too large to be loaded into memory. To understand this article you
should be already somewhat familiar with the raster package. It is also helpful
to have some general knowledge of S4 classes and methods.

2 How not to do it

Let’s start with two simple example functions, f1 and f2, that are NOT mem-
ory safe. The purpose of these simple example functions is to add a numerical
constant ’a’ to all values of RasterLayer ’x’.

To test the functions, we create a RasterLayer with 100 cells and values 1
to 100.

> library(raster)

> r <- raster(ncol=10, nrow=10)

> r[] <- 1:100

> r

class : RasterLayer

filename :

nrow : 10

ncol : 10

ncell : 100

min value : 1

max value : 100

projection : +proj=longlat +datum=WGS84

xmin : -180

xmax : 180

ymin : -90

ymax : 90

1

xres : 36

yres : 18

Now we write a simple function, f1, and use it to add 5 to all cell values of
’r’

> f1 <- function(x, a) {

+ x@data@values <- x@data@values + a

+ return(x)

+ }

> s <- f1(r, 5)

> s

class : RasterLayer

filename :

nrow : 10

ncol : 10

ncell : 100

min value : 1

max value : 100

projection : +proj=longlat +datum=WGS84

xmin : -180

xmax : 180

ymin : -90

ymax : 90

xres : 36

yres : 18

f1 is a really bad example. It looks efficient but it has several problems.
First of all, the slot x@data@values may be empty, which is typically the case
when a raster object is derived from a file on disk. But even if all values are
in memory the returned object will be invalid. This is because the values of
a multiple slots may need to be adjusted when chaging values. For example,
the returned ’x’ may still point to a file (now incorectly, because the values
no longer correspond). And the slots with the minimum and maximum values
have not been updated. While it is OK (but normally not necessary) to directly
read values of slots, you should not set them directly. The raster package has
functions set values of slots as shown in the next example.

> f2 <- function(x, a) {

+ v <- getValues(x)

+ v <- v + a

+ x <- setValues(x, v)

+ return(x)

+ }

> s <- f2(r, 5)

> s

2

class : RasterLayer

filename :

nrow : 10

ncol : 10

ncell : 100

min value : 6

max value : 105

projection : +proj=longlat +datum=WGS84

xmin : -180

xmax : 180

ymin : -90

ymax : 90

xres : 36

yres : 18

f2 is much better. Function getValues gets the cell values whether they
are on disk or in memory (and will return NA values if neither is the case).
setValues sets the values to the RasterLayer object assuring that other slots
are updated as well.

However, this function could fail for very large raster files, depending on the
amount of RAM your computer has and R can access, because all values are
read into memory at once. Processing data in chuncks circumvents this problem.

3 Row by row

The next example shows how you can read, process, and write values row
by row.

> f3 <- function(x, a, filename) {

+ out <- raster(x)

+ out <- writeStart(out, filename, overwrite=TRUE)

+ for (r in 1:nrow(out)) {

+ v <- getValues(x, r)

+ v <- v + a

+ writeValues(out, v, r)

+ }

+ out <- writeStop(out)

+ return(out)

+ }

> s <- f3(r, 5, filename='test')
> s

class : RasterLayer

filename : /srv/R/pkgs/raster/inst/doc/test.grd

nrow : 10

ncol : 10

3

ncell : 100

min value : Inf

max value : -Inf

projection : +proj=longlat +datum=WGS84

xmin : -180

xmax : 180

ymin : -90

ymax : 90

xres : 36

yres : 18

Note how, in the above example, first a new empty RasterLayer, ’out’ is
created using the bf raster function. ’out’ has the same extent and resolution
as ’x’, but it does not have the values of ’x’.

4 Multiple rows at once

Row by row processing is easy to do but it can be a bit inefficient. There is
some overhead associated with each read and write operation. An alternative
is to read, calculate, and write by block; here defined as a number of rows (1 or
more). The function bf blocksize is a helper function to determine appropriate
block size (number of rows).

> f4 <- function(x, a, filename) {

+ out <- raster(x)

+ bs <- blockSize(r)

+ out <- writeStart(out, filename, overwrite=TRUE)

+ for (i in 1:bs$n) {

+ v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])

+ v <- v + a

+ writeValues(out, v, bs$row[i])

+ }

+ out <- writeStop(out)

+ return(out)

+ }

> s <- f4(r, 5, filename='test.grd')
> blockSize(s)

$size

[1] 5

$row

[1] 1 6

$nrows

[1] 5 5

4

$n

[1] 2

5 Filename optional

In the above examples (functions f3 and f4) you must supply a filename. In
the raster package that is never the case, it is always optional. If a filename is
provided, values are written to disk. If no filename is provided the values are
only written to disk if they cannot be stored in RAM. To determine whether the
output needs to be written to disk, the function canProcessInMemory is used.
This function uses the size of the output raster to determine the total memory
size needed. However, additional copies of the values are often made when doing
computations. And perhaps you are combining values from several RasterLayer
objects in which case you need to be able to use much more memory than for
the output RasterLayer object alone. To account for this you can supply an
additional parameter, indicating the total memory need. In the examples below
we use ’3’, indicating that we would need RAM equivalent to three times the
size of the output RasterLayer. That seems reasonably safe in this case.

First an example for row by row processing:

> f5 <- function(x, a, filename='') {

+ out <- raster(x)

+ small <- canProcessInMemory(out, 3)

+ filename <- trim(filename)

+

+ if (small & filename == '') {

+ filename <- rasterTmpFile()

+ }

+ if (filename != '') {

+ out <- writeStart(out, filename, overwrite=TRUE)

+ todisk <- TRUE

+ } else {

+ vv <- matrix(ncol=nrow(out), nrow=ncol(out))

+ }

+

+ for (r in 1:nrow(out)) {

+ v <- getValues(x, r)

+ v <- v + a

+ if (todisk) {

+ writeValues(out, v, r)

+ } else {

+ vv[,r] <- v

+ }

+ }

5

+ if (todisk) {

+ out <- writeStop(out)

+ } else {

+ out <- setValues(out, as.vector(vv))

+ }

+ return(out)

+ }

> s <- f5(r, 5)

Now, the same function, but looping over blocks of multiple rows, instead of
a single row at a time (which can make a function very slow).

> f6 <- function(x, a, filename='') {

+ out <- raster(x)

+ small <- canProcessInMemory(out, 3)

+ filename <- trim(filename)

+

+ if (! small & filename == '') {

+ filename <- rasterTmpFile()

+ }

+ if (filename != '') {

+ out <- writeStart(out, filename, overwrite=TRUE)

+ todisk <- TRUE

+ } else {

+ vv <- matrix(ncol=nrow(out), nrow=ncol(out))

+ todisk <- FALSE

+ }

+

+ bs <- blockSize(r)

+ for (i in 1:bs$n) {

+ v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])

+ v <- v + a

+ if (todisk) {

+ writeValues(out, v, bs$row[i])

+ } else {

+ cols <- bs$row[i]:(bs$row[i]+bs$nrows[i]-1)

+ vv[,cols] <- matrix(v, nrow=out@ncols)

+ }

+ }

+ if (todisk) {

+ out <- writeStop(out)

+ } else {

+ out <- setValues(out, as.vector(vv))

+ }

+ return(out)

+ }

> s <- f6(r, 5)

6

The next example is an alternative implementation that you might prefer if
you wanted to optimze speed when values can be processed in memory. Optimiz-
ing for that situation is generally not that important as it tends to be relatively
fast in any case. Moreover, while the below example is fine, this may not be
an ideal approach for more complex functions as you would have to implement
some parts of your algorithm twice. If you are not careful, your function might
then give different results depending on whether the output must be written to
disk or not. In other words, debugging and code maintenance can become more
difficult. Having said that, there certainly are cases where processing chuck by
chunk is inefficient, and where avoiding it can be worth the effort.

> f7 <- function(x, a, filename='') {

+ out <- raster(x)

+ small <- canProcessInMemory(out, 3)

+

+ if (small) {

+ v <- getValues(x) + a

+ out <- setValues(out, v)

+ if (filename != '') {

+ out <- writeRaster(out, filename, overwrite=TRUE)

+ }

+ return(out)

+ }

+

+ filename <- trim(filename)

+ if (filename == '') {

+ filename <- rasterTmpFile()

+ }

+ out <- writeStart(out, filename)

+

+ bs <- blockSize(r)

+ for (i in 1:bs$n) {

+ v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])

+ v <- v + a

+ writeValues(out, v, bs$row[i])

+ }

+ out <- writeStop(out)

+ return(out)

+ }

> s <- f7(r, 5)

6 A complete function

Finally, let’s add some useful bells and whistles. For example, you may want
to specify a file format and data type, be able to overwrite an existing file,

7

and use a progress bar. So far, default values have been used. If you use the
below function, the dots ’...’ allow you to change these by providing additional
arguments ’overwrite’, ’format’, and ’datatype’. (In all cases you can also set
default values with setOptions).

> f8 <- function(x, a, filename='', progress='', ...) {

+ out <- raster(x)

+ big <- canProcessInMemory(out, 3)

+ filename <- trim(filename)

+ if (big & filename == '') {

+ filename <- rasterTmpFile()

+ }

+ if (filename != '') {

+ out <- writeStart(out, filename, ...)

+ todisk <- TRUE

+ } else {

+ vv <- matrix(ncol=nrow(out), nrow=ncol(out))

+ }

+

+ bs <- blockSize(r)

+ pb <- pbCreate(bs$n, type=progress)

+

+ for (i in 1:bs$n) {

+ v <- getValues(x, row=bs$row[i], nrows=bs$nrows[i])

+ v <- v + a

+ if (todisk) {

+ writeValues(out, v, bs$row[i])

+ } else {

+ cols <- bs$row[i]:(bs$row[i]+bs$nrows[i]-1)

+ vv[,cols] <- matrix(vv, nrow=out@ncols)

+ }

+ pbStep(pb, i)

+ }

+ if (todisk) {

+ out <- writeStop(out)

+ } else {

+ out <- setValues(out, as.vector(vv))

+ }

+ pbClose(pb)

+ return(out)

+ }

> s <- f8(r, 5, filename='test', overwrite=TRUE, progress=TRUE)

> if(require(rgdal)) { # only if rgdal is installed

+ s <- f8(r, 5, filename='test.tif', format='GTiff', overwrite=TRUE)

+ }

> s

8

class : RasterLayer

filename : /srv/R/pkgs/raster/inst/doc/test.tif

nrow : 10

ncol : 10

ncell : 100

min value : Inf

max value : -Inf

projection : +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0

xmin : -180

xmax : 180

ymin : -90

ymax : 90

xres : 36

yres : 18

Note that most of the additional arguments are passed on to writeStart:
out <- writeStart(out, filename, ...)

7 Debugging

Typically functions are developed and tested with small (RasterLayer) ob-
jects. But you also need to test your functions for the case it needs to write
values to disk. You can use a very large raster for that, but then you may need
to wait a long time each time you run it. Depening on how you desing your
function you may be able to test alternate forks in your function by provid-
ing a file name. But this would not necessarily work for function f7. You can
force functions of that type to treat the input as a very large raster by setting
to option ’todisk’ to TRUE as in setOptions(todisk=TRUE). If that option is
set, ’canProcessInMemory’ always returns FALSE. This should only be used in
debugging.

8 Methods

The raster package is build with S4 classes and methods. If you are devel-
oping a package that builds on the raster package I would advise to also use
S4 classes and methods. Thus, rater than using plain functions, define generic
methods (where necessary) and implement them for a RasterLayer, as in the
example below (the function does not do anything; replace ’return(x)’ with
something meaningful along the pattern explained above.

> if (!isGeneric("f9")) {

+ setGeneric("f9", function(x, ...)

+ standardGeneric("f9"))

+ }

[1] "f9"

9

> setMethod('f9', signature(x='RasterLayer'),
+ function(x, filename='', ...) {

+ return(x)

+ }

+)

[1] "f9"

> s <- f9(r)

10

	Introduction
	How not to do it
	Row by row
	Multiple rows at once
	Filename optional
	A complete function
	Debugging
	Methods

