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This vignette is intended to give a short introduction into the methods of the
qualityTools package. The qualityTools package contains methods associated
with the Define Measure Analyze Improve and Control (i.e. DMAIC) prob-
lem solving cycle of the Six Sigma Quality Management methodology. Usage
of these methods is illustrated with the help of artificially created datasets.

• Define: Pareto Chart
• Measure: Probability and Quantile-Quantile Plots, Process Capability

Ratios for various distributions and Gage R&R
• Analyze: Pareto Chart, Multi-Vari Chart, Dot Plot
• Improve: Full and fractional factorial, response surface, mixture and

taguchi designs as well as the desirability approach for simultaneous
optimization of more than one response variable. Normal, Pareto and
Lenth Plot of effects as well as Interaction Plots
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1 Working with the qualityTools package
Working with the qualityTools package is straightforward as you will see in the next few
pages. The qualityTools package was implemented for teaching purposes in order to serve
as a (Six-Sigma)-Toolbox and contains methods that are associated to a problem solving
cycle. There are many problem solving cycles around with new ones emerging although
most of these new ones take on special aspects. A very popular problem solving cycle is the
PDCA cycle (i.e. plan y doy checky act	) which was made popular by Deming1 but
goes back to Shewart2. As part of the widely known and accepted Six-Sigma-Methodology
some enhancements to this problem solving cycle were made and a problem solving cycle
consisting of the five phases Define, Measure, Analyze, Improve and Control emerged.

Define Describe the problem and its (financial) consequences. Interdisciplinary work-
groups contribute to the problem and its consequences which is the pivotal stage in
narrowing down the problem. Process flow diagrams identify crucial process elements
(i.e. activities), creativity techniques such as Brainwriting and Brainstorming as well
as the SIPOC3 technique should lead, depending on the future size of the project,
to possibly a project charter. Amongst other things, the project charter serves
as a descripition of the process, customerś requirements in relation to corporate
objectives.

Measure Come up with a reasonable plan for collecting the required data and make
sure that the measurement systems are capable (i.e. no or known bias and as
little system immanent variation contributing to the measurements as possible).
Variation and bias are the enemy to finding effects. The bigger the background
noise the less probable are the chances of success using limited resources for all kinds
of experiments. Within the Measure phase a description of the situation is given
with the help of process- or gage capability indices (MSA4 Type I) or a Gage R&R
(MSA Type II)[MSA10].

Analyze Try to find the root causes of the problem using various statistical methods such
as histograms, regression, correlation, distribution identification, analysis of variance,
multi-vari-charts.

Improve Use designed experiments i.e. full and fractional factorials, response surface
designs, mixture designs, taguchi designs and the desirability concept to find optimal
settings or solutions for a problem.

Control Once an improvement was achieved it needs to be secured, meaning arrangements
need to be implemented in order to secure the level of improvement. Besides proper
documentation, the use of statistical process control (i.e. quality-control-charts) can
be used to monitor the behavior of a process. Although quite often referred to as
Show Programm for Customers, SPC is able to help to distinguish between
common causes and special causes in the process behavior.

1William E. Deming
2Walter A. Shewhart
3Suppliers, inputs, process, outputs, customers
4Measurement Systems Analysis
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Most techniques in the Define phase are not related to substantial use of statistical methods.
The objective of the DEFINE phase is to bring together all parties concerned, grasp their
knowledge and insights to the process involved, set a common objective and DEFINE how
each party contributes(or the role each party takes) to the solving of the problem. In order
not to get lost in subsequent meetings and ongoing discussion, this common objective,
the contribution of each party, milestones and responsibilities need to be written down in
what is known to be a Project Charter. Of course, problems with easy-to-identify causes
are not subject of these kind of projects.
However, a classical visualization technique that is used in this phase and available

in the qualityTools package is the pareto chart. Pareto charts are special forms of bar
charts that help to separate the vital few from the trivial many causes for a given problem
(e.g.the most frequent cause for a defective product). This way pareto charts visualize how
much a cause contributes to a specific issue.
Suppose a company is investigating non compliant units (products). 120 units were

investigated and 6 different types of defects (qualitative data) were found. The defects are
named A to F. The defects data can be found in defects.

> #create artificial defect data set
> de f e c t s = c ( rep ( "E" , 62) , rep ( "B" , 15) , rep ( "F" , 3 ) , rep ( "A" , 10) ,
+ rep ( "C" , 20 ) , rep ( "D" , 10) )
> paretoChart ( d e f e c t s )
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Figure 1: Pareto Chart

This pareto chart might convey the message that in order to solve 68 percent of the
problem 33 percent of the causes (vital few5) need to be subject of an investigation.

Besides this use case, pareto charts are also used for visualizing the effect sizes of different
factors for designed experiments (see paretoPlot).

5the vital few and the trivial many - 20 percent of the defects cause 80 percent of the problems
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Figure 2: Errors of judgement due to non-capable Measurement Systems
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Collecting data involves the use of measurement systems often referred to as gages. In
order to make a statement regarding the quality, i.e. the degree in which a set of inherent
characteristics meets requirements, of a product[DINa], the capability of the measurement
system used needs to be validated.
Gages can have two types of impairments:

• a bias (an assumed constant shift of values for measurements of equal magnitude)

• variation
– introduced by other factors e.g. operators using these gages
– system immanent variation of the measurement system itself

These impairments lead to varying measurements for repeated measurements of the
same unit (e.g. a product). The amount of tolerable variation of course depends on the
number of distinctive categories you need to be able to identify in order to characterize
the product. This tolerable amount of variation for a measurement system relates directly
to the tolerance range of the characteristics of a product.
The capability of a measurement system is crucial for any conclusion based on data.

Non-capable Measurement Systems due to a non adjusted bias, or a Measurement System
immanent variation implicate two serious errors of judgement.

• Accepting items that are actually out of tolerance

• Declining items that are actually within tolerance

Thus the capability of Measurement Systems is directly related to costs (see figure 2).

4
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3.1 Gage Capability - MSA Type I
Suppose an engineer wants to check the capability of an optical Measurement Device. An
unit with known characteristic (xm = 10.033mm) is repeatedly measured n = 25 times.
From the measurement values the mean xg and standard deviation sg

6 can be calculated.
Basically the calculation of an capability index comprises two steps. First a fraction

of the tolerance width (i.e. USL − LSL)7 is calculated. The fraction typically relates
to 0.2. In a second step this fraction is set in relation with a measure of the process
spread (i.e. the range in which 95.5% or 99.73% of the characteristics of a process are
to be expected). For normal distributed measurement values this relates to k = 2σg and
k = 3σg calculated from the measurement values. For non-normal distributed data the
corresponding quantiles can be taken. If there’s no bias this calculation represents the
capability index cg and reflects the true capability of the measurement device.

cg = 0.2 · (USL− LSL)
6 · sg

(1)

= 0.2 · (USL− LSL)
X0.99865 −X0.00135

(2)

However, if there’s a bias it is taken into account by substracting it from the numerator.
In this case cg reflects only the potential capability (i.e. capability if bias is corrected)
and cgk is an estimator of the actual capability. The bias is calculated as the difference
between the known characteristic xm and the mean of the measurement values xg

cgk = 0.1 · (USL− LSL)− |xm − xg|
3 · sg

(3)

Determining if the bias is due to chance or not can be done with the help of a t-test
which has the general form:

t = difference in means
standard error of the difference = Bias

sBias√
n

(4)

Besides bias and standard deviation it is important to check the run-chart of the
measurement values. Using the qualityTools package, all this is easily achieved using the
cg method. The output of the cg method is shown in figure 3.
> x = c (9 .991 , 10 .013 , 10 .001 , 10 .007 , 10 .010 , 10 .013 , 10 .008 , 10 .017 , 10 .005 ,
+ 10 .005 , 10 .002 , 10 .017 , 10 .005 , 10 .002 , 9 .996 , 10 .011 , 10 .009 , 10 .006 ,
+ 10 .008 , 10 .003 , 10 .002 , 10 .006 , 10 .010 , 9 .992 , 10 .013 )
> cg (x , t a r g e t = 10 .003 , t o l e r an c e = c (9 .903 , 10 .103 ) )

3.2 Gage Repeatability&Reproducibility - MSA Type II
A common procedure applied in industry is to perform a Gage R&R analysis to assess
the repeatability and the reproducibility of a measurement system. R&R stands for

6σg denotes the standard deviation of the gage which is also referred to as repeatability
7Upper Specification Limit and Lower Specification Limit
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Figure 3: Potentially capable gage with bias

repeatability and reproducibility. Repeatability hereby refers to the precision of a measure-
ment system (i.e. the standard deviation of subsequent measurements of the same unit).
Reproducibility is the part of the overall variance that models the effect of different e.g.
operators performing measurements on the same unit and a possible interaction between
different operators and parts measured within this Gage R&R. The overall model is given
by

σ2
total = σ2

P arts + σ2
Operator + σ2

P arts×Operator + σ2
Error (5)

where σ2
P arts models the variation between different units of the same process. σ2

P arts is
thus an estimate of the inherent process variability. Repeatability is modeled by σ2

Error

and reproducibility by σ2
Operator + σ2

P arts×Operator.
Suppose 10 randomly chosen units were measured by 3 randomly chosen operators.

Each operator measured each unit two times in a randomly chosen order. The units were
presented in a way they could not be distinguished by the operators.
The corresponding gage R&R design can be created using the gageRRDesign method

of the qualityTools package. The measurements are assigned to this design using the
response method. Methods for analyzing this design are given by gageRR and plot.
> #create a gage RnR design
> des ign = gageRRDesign ( Operators=3, Parts=10, Measurements=2, randomize=FALSE)
> #set the response
> response ( des ign ) = c (23 ,22 ,22 ,22 ,22 ,25 ,23 ,22 ,23 ,22 ,20 ,22 ,22 ,22 ,24 ,25 ,27 ,28 ,
+ 23 ,24 ,23 ,24 ,24 ,22 ,22 ,22 ,24 ,23 ,22 ,24 ,20 ,20 ,25 ,24 ,22 ,24 ,21 ,20 ,21 ,22 ,21 ,22 ,21 ,
+ 21 ,24 ,27 ,25 ,27 ,23 ,22 ,25 ,23 ,23 ,22 ,22 ,23 ,25 ,21 ,24 ,23 )
> #perform Gage RnR
> gdo = gageRR( des ign )

AnOVa Table − c ro s s ed Design
Df Sum Sq Mean Sq F value Pr(>F)

Operator 2 20 .633 10.3167 8 .5972 0.001118 ∗∗
Part 9 107.067 11.8963 9 .9136 7 .31 e−07 ∗∗∗

6
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Operator : Part 18 22 .033 1 .2241 1 .0201 0.467324
Res idua l s 30 36 .000 1 .2000
−−−
S i g n i f . codes : 0 '∗∗∗ ' 0 .001 '∗∗ ' 0 .01 '∗ ' 0 .05 ' . ' 0 . 1 ' ' 1

−−−−−−−−−−
AnOVa Table Without I n t e r a c t i o n − c ro s s ed Design

Df Sum Sq Mean Sq F value Pr(>F)
Operator 2 20 .633 10 .317 8 .5330 0.000675 ∗∗∗
Part 9 107.067 11 .896 9 .8396 2 .386 e−08 ∗∗∗
Res idua l s 48 58 .033 1 .209
−−−
S i g n i f . codes : 0 '∗∗∗ ' 0 .001 '∗∗ ' 0 .01 '∗ ' 0 .05 ' . ' 0 . 1 ' ' 1

−−−−−−−−−−

Gage R&R
VarComp VarCompContrib Stdev StudyVar StudyVarContrib

totalRR 1.664 0 .483 1 .290 7 .74 0 .695
r e p e a t a b i l i t y 1 .209 0 .351 1 .100 6 .60 0 .592
r e p r o d u c i b i l i t y 0 .455 0 .132 0 .675 4 .05 0 .364

Operator 0 .455 0 .132 0 .675 4 .05 0 .364
Operator : Part 0 .000 0 .000 0 .000 0 .00 0 .000

Part to Part 1 .781 0 .517 1 .335 8 .01 0 .719
tota lVar 3 .446 1 .000 1 .856 11 .14 1 .000

−−−
∗ Contrib equa l s Contr ibut ion in %
∗∗Number o f D i s t i n c t Categor i e s ( truncated s i gna l−to−noise−r a t i o ) = 1

> #visualization of Gage RnR
> plo t ( gdo )

The standard graphical output of a Gage R&R is given in figure 4.
The barplot gives a visual representation of the Variance Components. totalRR de-

picts the total Repeatability and Reproducibility. 48% of the variance is due to 35%
repeatability (i.e. variation from the gage itself) and 13% reproducibility (i.e. effect of
operator and the interaction between operator and part). It can be seen from the AnOVa
table that an interaction between parts and operators is not existing. The remaining
52% (51.7 in column VarCompContrib) of variation stems from differences between parts
taken from the process (i.e. process inherent variation) which can be seen also in the
Measurement by Part plot. The variaton for measurements taken by one operator is
roughly equal for all three operators (Measurement by Operator) although operator
C seems to produce values that are most of the time larger than the values from the other
operators (Interaction Operator: Part).
Besides this interpretation of the results critical values (see table 1) for totalRR also

refered to as GRR8 are used within industry. However, a measurement system should
never be judged by critical values alone.

Checking for interaction The interaction plot provides a visual check of possible
interactions between Operator and Part. For each Operator the average measurement
value is shown as a function of the part number. Crossing lines indicate that operators
are assigning different readings to identical depending on the combination of Operator

8Gage Repeatability Reproducibility

7



3 qualityTools in MEASURE | ©Roth

Components of Variation

component

totalRR repeatability PartToPart

0.
0

0.
4

0.
8 VarCompContrib

StudyVarContrib

A B C D E F G H I J

20
22

24
26

28

Measurement by Part

Part

M
ea

su
re

m
en

t

●●●●●●
●●●●●●

●●●●●● ●●●●●● ●●●●●●

●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

●

●

● ●

A B C

20
22

24
26

28

Measurement by Operator

Operator

M
ea

su
re

m
en

t

● ●

●

x Chart

Operator

x

21
23

25
27

LCL = 22.06

UCL = 23.81
x = 22.93

●

●

●●
●

●

●
●

●●

A

●

●

●
●

●

●

●
●

●
●

B

●

●

●●

●

●

●

●

●

●

C

1

1
1 1

1

1

1
1

1 1

21
23

25
27

Interaction Operator:Part

Part

m
ea

n 
of

 M
ea

su
re

m
en

t

2
2

2
2

2

2

2
2

2
2

3
3

3 3

3

3

3

3

3
3

A C E G I J

1
2
3

Operator

A
B
C

R Chart

Operator

R

0.
0

1.
0

2.
0

3.
0

LCL = 0.32

UCL = 2.25

R = 1.27

●

●●

●

●

●

●

●

●

●

A

●

●

●

●●

●●

●●

●

B

●

●

●

●●

●

●

●

●●

C

Figure 4: Visualization of the Gage R&R

Table 1: critical values for judging the suitability of measurement system

Contribution of total RR Capabability
≤ 0.1 suitable

< 0.1 and < 0.3 limited suitability depending upon circumstances
≥ 0.3 not suitable
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and Part. Different readings means in the case of an interaction between Operator and
Part that on average sometimes smaller or bigger values are assigned depending on the
combination of Operator and Part. In this case, lines are practically not crossing but
Operator C seems to systematically assign larger readings to the parts than his colleagues.

Operators To check for an operator dependent effect, measurements are plotted grouped
by operators in form of boxplots. Boxplots that differ in size or location might indicate
e.g. possible different procedures within the measurement process, which then lead to a
systematic difference in the readings. In this case one might discuss a possible effect for
operator C which is also supported by the interaction plot.

Inherent process variation Within this plot Measurements are grouped by operator.
Due to the repeated measurements by different Operators per Part an insight into the
process is given. A line connecting the mean of the measurements of each part provides
an insight into the inherent process variation. Each part is measured number of operator
times number of measurements per part.

Components of variation In order to understand the output of a Gage R&R study
formula 5 should be referenced. The variance component totalRR (VarComp column) repre-
sents the total Repeatability and Reproducibility. Since variances are simply added 1.664
is the sum of 1.209 (repeatability given by σ2

Error) and 0.455 (reproducibility). Re-
producibility itself is the sum of Operator (σ2

Operator) and Operator:Part (σ2
P arts×Operator).

Since there’s no interaction Reproducibility amounts to 0.455. Part to Part amounts to
1.781. Together with the total of repeatability and reproducibility this gives σ2

T otal = 3.446

3.2.1 Relation to the Measurement Systems Terminology

The Measurement Systems Analysis Manual [MSA10]uses a specific Terminology for the
terms repeatability, reproducibility, Operator, Part to Part, totalRR and the
interaction Operator:Part. The objective of this paragraph is to give a short overview
of these terms and how they relate to the terms used in the gageRR methods of the
qualityTools package.

EV stands for Equipment Variation which is the variation due to the repeatability

AV stands for Appraiser Variation which is the variation due to the operators.

INT stands for the interaction Appraiser:Part which is the Operator:Part interaction

GRR stands for Gage Repeatability&Reproducibility and refers to the variation introduced
by the measurement system. The equivalent to this term is totalRR which is the
sum of repeatability and reproducibility.

PV stands for Part Variation which relates to Part to Part

9



4 qualityTools in ANALYZE | ©Roth

4 qualityTools in ANALYZE  Define      M
easure    Analyze    I

m
pr

ov
e 

    
Control

4.1 Process Capability
Besides the capability of a measurement system, often the capability of a process is of
interest or needs to be assessed e.g. as part of a supplier customer relationship in industry.
Process Capability Indices basically tells one how much of the tolerance range is being
used by common cause variation of the considered process. Using these techniques one
can state how many units (e. g. products) are expected to fall outside the tolerance range
(i.e. defective regarding the requirements determined before) if for instance production
continues without intervention. It also gives insights into where to center the process if
shifting is possible and meaningful in terms of costs. There are three indices which are
also defined in the corresponding ISO 21747:2006 document[DINa] .

cp = USL− LSL
Q0.99865 −Q0.00135

(6)

cpkL = Q0.5 − LSL
Q0.5 −Q0.00135

(7)

cpkU = USL−Q0.5

Q0.5 −Q0.00135
(8)

cp is the potential process capability giving one the process capability that could be
achieved if the process can be centered within specification limits9 and cpk is the actual
process capability which incorporates the location of the distribution (i.e. the center) of
the characteristic within the specification limits. For one sided specification limits cpkL

and cpkU exist with cpk being equal to the smallest capability index. As one can imagine in
addition the location of the distribution of the characteristic the shape of the distribution
is relevant too. Assessing the fit of a specific distribution for given data can be done via
probability plots (ppPlot) and quantile-quantile plots (qqPlot), as well as formal test
methods like the Anderson Darling Test.

Process capabilities can be calculated with the pcr method of the qualityTools package.
The pcr method plots a histogram of the data, the fitted distribution and returns the
capability indices along with the estimated10 parameters of the distribution, an Anderson
Darling Test for the specified distribution and the corresponding QQ-Plot.
> s e t . s e e d (1234)
> #generate some data
> norm = rnorm (20 , mean = 20)
> #generate some data
> weib = rwe i bu l l (20 , shape = 2 , s c a l e = 8)
> #process capability
> pcr (norm , " normal " , l s l = 17 , u s l = 23)

> #process cabapility
> pcr (weib , " we ibu l l " , u s l = 20)

9USL - Upper Specification Limit
LSL - Lower Specification Limit

10Fitting the distribution itself is accomplished by the fitdistr method of the R-package MASS.

10
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Figure 5: Process Capability Ratios for weibull and normal distribution

Along with the graphical representation an Anderson Darling Test for the corresponding
distribution is returned.

Anderson Dar l ing Test f o r we ibu l l d i s t r i b u t i o n

data : x [ , 1 ]
A = 0.3505 , shape = 3 .050 , s c a l e = 7 .916 , p−value > 0.25
a l t e r n a t i v e hypothes i s : t rue d i s t r i b u t i o n i s not equal to we ibu l l

Q-Q Plots can be calculated with the qqPlot function of the qualityTools package
(figure 6).
> par (mfrow = c (1 , 2 ) )
> qqPlot ( weib , " we ibu l l " ) ; qqPlot ( weib , " normal " )

Probability Plots can be calculated with the ppPlot function of the qualityTools package
(figure 7).
> par (mfrow = c (1 , 2 ) )
> ppPlot (norm , " we ibu l l " ) ; ppPlot (norm , " normal " )
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Figure 6: QQ-Plots for different distributions
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Each process has a purpose. The effectiveness of a process can be expressed with the help
of (quality) characteristics. Those characteristics can be denoted as the responses of a
process. In order to attain the desired values for the responses certain settings need to
be arranged for the process. Those settings refer to the input variables of the process.
Working with designed experiments it is helpful to refer to the (black box) process model
(figure 8).

Figure 8: Black Box model of a process

In general input variables can be distinguished into controllable and disturbance variables.
Input variables that can be controlled and have an assumed effect on the responses are
denoted as factors. Input variables that are not factors are either hard to change (e.g.
the hydraulic fluid in a machine) or varying them does not make good economic sense
(e.g. the temperature or humidity in a factory building). These hard-to-change factors are
also called uncontrollable input variables. It is attempted to held those variables constant.
Disturbance variables affect the outcomes of a process by introducing noise such as small
variations in the controllable and uncontrollable input variables which leads to variations
in the response variables despite identical factor settings in an experiment.

5.1 2k Factorial Designs
In order to find more about this black box model one can come up with a 2k factorial
design by using the method facDesign of the qualityTools package. As used in textbooks
k denotes the number of factors. A design with k factors and 2 combinations per factor
gives you 2k different factor combinations and thus what is called runs.
Suppose a process has 5 factors A, B, C, D and E. The yield (i.e. response) of the

process is measured in percent. Three of the five factors are assumed by the engineers
to be relevant to the yield of the process. These three factors are to be named Factor 1,
Factor 2 and Factor 3 (A, B and C). The (unknown relations of the factors of the) process
(are) is simulated by the method simProc of the qualityTools package. Factor 1 is to be
varied from 80 to 120, factor B from 120 to 140 and factor C from 1 to 2 . Low factor
settings are assigned a -1 and high values a +1.
> s e t . s e e d (1234)
> fdo = facDes ign (k = 3 , centerCube = 4) #fdo - factorial design object
> names ( fdo ) = c ( " Factor 1 " , " Factor 2 " , " Factor 3 " ) #optional
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> lows ( fdo ) = c (80 , 120 , 1) #optional
> highs ( fdo ) = c (120 , 140 , 2) #optional
> summary( fdo ) #information about the factorial design

In format ion about the f a c t o r s :

A B C
low 80 120 1
high 120 140 2
name Factor 1 Factor 2 Factor 3
un i t
type numeric numeric numeric

−−−−−−−−−−−
StandOrd RunOrder Block A B C y

1 1 1 1 −1 −1 −1 NA
6 6 2 1 1 −1 1 NA
8 8 3 1 1 1 1 NA
3 3 4 1 −1 1 −1 NA
2 2 5 1 1 −1 −1 NA
4 4 6 1 1 1 −1 NA
5 5 7 1 −1 −1 1 NA
7 7 8 1 −1 1 1 NA
9 9 9 1 0 0 0 NA
10 10 10 1 0 0 0 NA
11 11 11 1 0 0 0 NA
12 12 12 1 0 0 0 NA

−−−−−−−−−

The response of this fictional process is given by the simProc method of the qualityTools
package. The yield for Factor 1, Factor 2 and Factor 3 taking values of 80, 120 and 1 can
be calculated using
> #set first value
> y i e l d = simProc ( x1 = 80 , x2 = 120 , x3 = 1)

Setting all the yield of this artificial black box process gives a very long line of R-Code.
> y i e l d = c ( simProc (80 ,120 , 1 ) , simProc (120 ,120 , 2 ) , simProc (120 ,140 , 2 ) ,
+ simProc (80 ,140 , 1 ) , simProc (120 ,120 , 1 ) , simProc (120 ,140 , 1 ) ,
+ simProc (80 ,120 , 2 ) , simProc (80 ,140 , 2 ) , simProc (90 ,130 , 1 . 5 ) ,
+ simProc (90 ,130 , 1 . 5 ) , simProc (90 ,130 , 1 . 5 ) , simProc (90 ,130 , 1 . 5 ) )

Assigning the yield to the factorial design can be done using the response method.
> response ( fdo ) = y i e l d #assign yield to the factorial design object

Analyzing this design is quite easy using the methods effectPlot, interactionPlot,
lm as well as wirePlot and contourPlot (figure 9)
> e f f e c t P l o t ( fdo , c l a s s i c = TRUE)

> in t e r a c t i o nP l o t ( fdo )

The factorial design in fdo can be handed without any further operations directly to the
base lm method of R.
> lm.1 = lm( y i e l d ∼ A∗B∗C, data = fdo )
> summary( lm.1 )
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Figure 9: effect- and interaction plot for the factorial design

Cal l :
lm( formula = y i e l d ∼ A ∗ B ∗ C, data = fdo )

Res idua l s :
1 2 3 4 5 6 7

−0.0019367 −0.0019367 −0.0019367 −0.0019367 −0.0019367 −0.0019367 −0.0019367
8 9 10 11 12

−0.0019367 0.0036199 0.0098852 0.0023967 −0.0004083

Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

( I n t e r c ep t ) 0 .2136547 0.0017484 122.198 2 .69 e−08 ∗∗∗
A 0.0709026 0.0021414 33 .111 4 .96 e−06 ∗∗∗
B 0.1150478 0.0021414 53 .726 7 .18 e−07 ∗∗∗
C −0.0012866 0.0021414 −0.601 0 .580
A:B 0.0784133 0.0021414 36 .618 3 .32 e−06 ∗∗∗
A:C 0.0017168 0.0021414 0 .802 0 .468
B:C 0.0007944 0.0021414 0 .371 0 .729
A:B:C −0.0014677 0.0021414 −0.685 0 .531
−−−
S i g n i f . codes : 0 '∗∗∗ ' 0 .001 '∗∗ ' 0 .01 '∗ ' 0 .05 ' . ' 0 . 1 ' ' 1

Res idua l standard e r r o r : 0 .006057 on 4 degree s o f freedom
Mult ip l e R2 : 0 . 9992 , Adjusted R2 : 0 .9979
F−s t a t i s t i c : 760 .8 on 7 and 4 DF, p−value : 4 .431 e−06

The effects of A and B as well as the interaction A:B are identified to be significant. A
Pareto plot of the standardized effects visualizes these findings and can be created with
the paretoPlot method of the qualityTools package (figure 10).
> paretoPlot ( fdo )

The relation between the factors A and B can be visualized as 3D representation in
form of a wireframe or contour plot using the wirePlot and contourPlot method of the
qualityTools package (figure 13). Again, no further transformation of the data is needed!
> par (mfrow = c (1 , 2 ) )
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Figure 10: pareto plot of the standardized effects

> wirePlot (A, B, y i e ld , data = fdo )
> contourPlot (A, B, y i e ld , data = fdo )

One question that arises is whether this linear fit adequately describes the process. In
order to find out, one can simply compare values predicted in the center of the design (i.e.
A=0, B=0 and C=0) with the values observed in the center of the design. This difference
could also be tested using a specialized t-Test. For now, let’s assume the model is less
wrong than others (i.e. we don’t know of any better model).

5.2 2k−p Fractional Factorial Designs
Imagine testing 5 different factors in a 2k design giving you 25 = 32 runs. This is likely to
be quite expensive if run on any machine, process or setting within production, research
or a similar environment. Before dismissing the design, it’s advisable to reflect what
this design is capable of in terms of what types of interactions it can estimate. The
highest interaction in a 25 design is the interaction between the five factors ABCDE. This
interaction, even if significant, is really hard to interpret, and likely to be non-existent. The
same applies for interactions between four factors and some of the interactions between 3
factors which is why most of the time fractional factorial designs are considered in the
first stages of experimentation.
A fractional factorial design is denoted 2k−p meaning k factors are tested in 2k−p runs.

In a 25−1 design five factors are tested in 24 runs (hence p=1 additional factor is tested
without further runs). This works by confounding interactions with additional factors.
This section will elaborate on this idea with the help of the methods of the qualityTools
package.

For fractional factorial designs the method fracDesign of the qualityTools package can
be used. The generators can be given in the same notation that is used in textbooks on this
matter. For a 23−1 design (i.e. 3 factors that are to be tested in a 22 by confounding the
third factor with the interaction between the first two factors) this would be given by the
argument gen = "C = AB" meaning the interaction between A and B is to be confounded
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Figure 11: response surface and contour plot

with the effect of a third factor C. The effect estimated for C is then confounded with the
interaction AB; they cannot be separately estimated, hence C = AB (alias) or the alias of
C is AB.
> f d o . f r a c = f racDes ign (k = 3 , gen = "C = AB" , centerCube = 4)

In order to get more specific information about a design the summary method can be
used. For this example you will see on the last part the identity I = ABC of the design.
The identity I of a design is the left part of the generator multiplied by the generator. The
resolution is the (character-) length of the shortest identity.
> summary( f d o . f r a c )

In format ion about the f a c t o r s :

A B C
low −1 −1 −1
high 1 1 1
name
uni t
type numeric numeric numeric

−−−−−−−−−−−
StandOrd RunOrder Block A B C y

1 1 1 1 −1 −1 1 NA
2 2 2 1 1 −1 −1 NA
3 3 3 1 −1 1 −1 NA
4 4 4 1 1 1 1 NA
5 5 5 1 0 0 0 NA
6 6 6 1 0 0 0 NA
7 7 7 1 0 0 0 NA
8 8 8 1 0 0 0 NA

−−−−−−−−−
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Def in ing r e l a t i o n s :
I = ABC Columns : 1 2 3

Reso lut ion : I I I

The following rules apply

I × A = A (9)
A× A = I (10)
A×B = B × A (11)

By multiplying A, B and C you will find all confounded effects or aliases. A more
convenient way to get an overview of the alias structure of a factorial design is to call the
method aliasTable or confounds of the qualityTools package. The latter gives a more
human readable version of the first.
> a l i a sTab l e ( f d o . f r a c )

C AC BC ABC
Iden t i t y 0 0 0 1
A 0 0 1 0
B 0 1 0 0
AB 1 0 0 0

Fractional factorial designs can be generated by assigning the appropriate generators.
However, most of the time standard fractional factorial designs known as minimum
aberration designs [BHH05] will be used. Such a design can be chosen from predefined
tables by using the method fracChoose of the qualityTools package and simply clicking
onto the desired design (figure 12).
> fracChoose ( )

C = AB

2III
(3−1)

D = ABC

2IV
(4−1)

E = AC

D = AB

2III
(5−2)

F = BC

E = AC

D = AB

2III
(6−3)

G = ABC

F = BC

E = AC

D = AB

2III
(7−4)

E = ABCD

2V
(5−1)

F = BCD

E = ABC

2IV
(6−2)

G = ACD

F = BCD

E = ABC

2IV
(7−3)

H = ABD

G = ABC

F = ACD

E = BCD

2IV
(8−4)

J = ABCD

H = ABD

G = ACD

F = BCD

E = ABC

2III
(9−5)

K = AB

J = ABCD

H = ABD

G = ACD

F = BCD

E = ABC2III
(10−6)

L = AC

K = AB

J = ABCD

H = ABD

G = ACD

F = BCD

E = ABC2III
(11−7)

F = ABCDE

2VI
(6−1)

G = ABDE

F = ABCD

2IV
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H = BCDE

G = ABD

F = ABC
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Figure 12: Choosing minimum aberration designs
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5.3 Replicated Designs and Center Points
A replicated design with additional center points can be created by using the replicates
and centerCube argument.
> fdo1 = facDes ign (k = 3 , centerCube = 2 , r e p l i c a t e s = 2)

5.4 Multiple Responses
Once you have observed the response for the different factor combinations one can add
one or more response vectors to the design with the response method of the qualityTools
package . A second response to be named y2 is created with the help of random numbers.
> s e t . s e e d (1234)
> y2 = rnorm (12 , mean = 20)
> response ( fdo ) = data . f rame ( y i e ld , y2 )

A 3D visualization is done with the help of the methods wirePlot and contourPlot of
the qualityTools package with no need to first create arrays of values or the like. Simply
specify the formula you would like to fit with e.g. form = "yield ∼ A+B". Specifying this
fit for response yield one can see that there’s actually no practical difference to the fit that
included an interaction term (figure 13).
> par (mfrow = c (1 , 2 ) )
> wirePlot (A, B, y i e ld , data = fdo , form = " y i e l d∼A+B+C+A∗B" )
> contourPlot (A, B, y2 , data = fdo , form = " y2∼A+B+C+A∗B" )
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Figure 13: wire plot with different formulas specified

Using the wirePlot and contourPlot methods of the qualityTools package settings of
the other n-2 factors can be set using the factors argument. A wireplot with the third
factor C on -1 an C = 1 can be created as follows (figure 14)
> par (mfrow = c (1 , 2 ) )
> wirePlot (A,B, y2 , data = fdo , f a c t o r s = l i s t (C=−1) , form = " y2∼A∗B∗C" )
> wirePlot (A,B, y2 , data = fdo , f a c t o r s = l i s t (C=1) , form = " y2∼A∗B∗C" )
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Figure 14: wire plot with formula and setting for factor C

If no formula is explicitly given the methods default to the full fit or the fit stored in
the factorial design object fdo. Storing a fit can be done using the fits method of the
qualityTools package and is especially useful when working with more than one response
(see 5.4). Of course lm can be used to analyze the fractional factorial designs.
> f i t s ( fdo ) = lm( y i e l d ∼ A+B, data = fdo )
> f i t s ( fdo ) = lm( y2 ∼ A∗B∗C, data = fdo )
> f i t s ( fdo )

$y i e l d

Ca l l :
lm( formula = y i e l d ∼ A + B, data = fdo )

C o e f f i c i e n t s :
( I n t e r c ep t ) A B

0.2137 0 .0709 0 .1150

$y2

Cal l :
lm( formula = y2 ∼ A ∗ B ∗ C, data = fdo )

C o e f f i c i e n t s :
( I n t e r c ep t ) A B C A:B A:C

19.55774 0.87140 −0.02832 0.35726 0.24931 −0.25059
B:C A:B:C

0.23710 −0.05458

5.5 Moving to a process setting with an expected higher yield
Since our process can be adequately modeled by a linear relationship the direction in
which to go for an expected higher yield is easy to determine. A contour plot of factor A
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and B illustrate that we simply need to "step up the stairs". The shortest way to get up
these stairs (figure 11) can be figured out graphically or calculated using the steepAscent
method of the qualityTools package.
> sao =steepAscent ( f a c t o r s=c ( "A" , "B" ) , r e sponse=" y i e l d " , data=fdo , s t ep s =20)

Steepe s t Ascent f o r fdo

Run Delta A. coded B. coded A. r e a l B. r e a l
1 1 0 0 .0 0 .000 100 130
2 2 1 0 .2 0 .325 104 133
3 3 2 0 .4 0 .649 108 136
4 4 3 0 .6 0 .974 112 140
5 5 4 0 .8 1 .298 116 143
6 6 5 1 .0 1 .623 120 146
7 7 6 1 .2 1 .947 124 149
8 8 7 1 .4 2 .272 128 153
9 9 8 1 .6 2 .596 132 156
10 10 9 1 .8 2 .921 136 159
11 11 10 2 .0 3 .245 140 162
12 12 11 2 .2 3 .570 144 166
13 13 12 2 .4 3 .894 148 169
14 14 13 2 .6 4 .219 152 172
15 15 14 2 .8 4 .543 156 175
16 16 15 3 .0 4 .868 160 179
17 17 16 3 .2 5 .192 164 182
18 18 17 3 .4 5 .517 168 185
19 19 18 3 .6 5 .841 172 188
20 20 19 3 .8 6 .166 176 192
21 21 20 4 .0 6 .490 180 195

> sao

Run Delta A. coded B. coded A. r e a l B. r e a l " y i e l d "
1 1 0 0 .0 0.0000000 100 130.0000 NA
2 2 1 0 .2 0.3245234 104 133.2452 NA
3 3 2 0 .4 0.6490468 108 136.4905 NA
4 4 3 0 .6 0.9735701 112 139.7357 NA
5 5 4 0 .8 1.2980935 116 142.9809 NA
6 6 5 1 .0 1.6226169 120 146.2262 NA
7 7 6 1 .2 1.9471403 124 149.4714 NA
8 8 7 1 .4 2.2716636 128 152.7166 NA
9 9 8 1 .6 2.5961870 132 155.9619 NA
10 10 9 1 .8 2.9207104 136 159.2071 NA
11 11 10 2 .0 3.2452338 140 162.4523 NA
12 12 11 2 .2 3.5697571 144 165.6976 NA
13 13 12 2 .4 3.8942805 148 168.9428 NA
14 14 13 2 .6 4.2188039 152 172.1880 NA
15 15 14 2 .8 4.5433273 156 175.4333 NA
16 16 15 3 .0 4.8678506 160 178.6785 NA
17 17 16 3 .2 5.1923740 164 181.9237 NA
18 18 17 3 .4 5.5168974 168 185.1690 NA
19 19 18 3 .6 5.8414208 172 188.4142 NA
20 20 19 3 .8 6.1659442 176 191.6594 NA
21 21 20 4 .0 6.4904675 180 194.9047 NA

Since we set the real values earlier using the highs and lows methods of the qualityTools
package factors settings are displayed in coded as well as real values. Again the values of
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the response of sao11 can be set using the response method of the qualityTools package
and then be plotted using the plot method. Of course one can easily use the base plot
method itself. However for documentation purposes the plot method for a steepest ascent
object might be more convenient.
> pred i c t ed = simProc ( sao [ , 5 ] , sao [ , 6 ] )
> response ( sao ) = pred i c t ed
> p lo t ( sao , type = "b " , c o l = 2)
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Figure 15: predicted maximum at Delta = 11 (see sao)

At this point the step size was chosen quite small for illustration purposes.

5.6 Response Surface Designs
Not all relations are linear and thus in order to detect and model non-linear relationships
sometimes more than two combinations per factor are needed. At the beginning all a black
box might need is a 2k or 2k−p design. In order to find out whether a response surface
design (i.e. a design with more than two combination per factors) is needed one can
compare the expected value of one’s response variable(s) with the observed one(s) using
centerpoints (i.e. the 0, 0, . . . , 0 setting). The bigger the difference between observed and
expected values, the more unlikely this difference is the result of random noise.
For now, let’s return to the initial simulated process. The project started off with a

2k design containing center points. Sticking to a linear model we used the steepAscent
method of the qualityTools package to move to a better process region. The center of the
new process region is defined by 144 and 165 in real values. This region is the start of a
new design. Again one starts by using a factorial design
> #set the seed for randomization of the runs
> s e t . s e e d (1234)
> fdo2 = facDes ign (k = 2 , centerCube = 3)
> names ( fdo2 ) = c ( " Factor 1 " , " Factor 2 " )

11steepest ascent object
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> lows ( fdo2 ) = c (134 , 155)
> highs ( fdo2 ) = c (155 , 175)

and the yield is calculated by using the simProc and assigned to the design with the
help of the generic response method of the qualityTools package.
> y i e l d = c ( simProc (134 ,155) , simProc (155 ,155) , simProc (134 ,175) ,
+ simProc (155 ,175) , simProc (144 ,165) , simProc (144 ,165) , simProc (144 ,165) )
> response ( fdo2 ) = y i e l d

Looking at the residual graphics one will notice a substantial difference between expected
and observed values (a test for lack of fit could of course be performed and will be significant).
To come up with a model that describes the relationship one needs to add further points
which are referred to as the star portion of the response surface design.

Adding the star portion is easily done using the starDesign method of the qualityTools
package. By default the value of alpha is chosen so that both criteria, orthogonality and
rotatability are approximately met. Simply call the starDesign method on the factorial
design object fdo2. Calling rsdo12 will show you the resulting response surface design. It
should have a cube portion consisting of 4 runs, 3 center points in the cube portion, 4
axial and 3 center points in the star portion.
> rsdo = starDes ign ( data = fdo2 )

Using the star method of the qualityTools package one can easily assemble designs
sequentially. This sequential strategy saves resources since compared to starting off with
a response surface design from the very beginning, the star portion is only run if really
needed. The yields for the process are still given by the simProc method of the qualityTools
package.
> y i e l d 2 = c ( y i e ld , simProc (130 ,165) , simProc (149 ,165) , simProc (144 ,151) ,
+ simProc (144 ,179) , simProc (144 ,165) , simProc (144 ,165) , simProc (144 ,165) )
> response ( rsdo ) = y i e l d 2

A full quadratic model is fitted using the lm method
> lm.3 = lm( y i e l d 2 ∼ A∗B + I (A∧ 2) + I (B∧ 2) , data = rsdo )

and one sees that there are significant quadratic components. The response surface can
be visualized using the wirePlot and contourPlot method of the qualityTools package.
> par (mfrow=c (1 , 2 ) )
> wirePlot (A,B, y i e ld2 , form=" y i e l d 2∼A∗B+I (A∧2)+ I (B∧ 2) " , data=rsdo , theta=−70)
> contourPlot (A,B, y i e ld2 , form=" y i e l d 2∼A∗B+I (A∧2)+ I (B∧ 2) " , data=rsdo )

Figure 17 can be used to compare the outcomes of the factorial and response surface
designs with the simulated process. The inactive Factor 3 was omitted.

Besides this sequential strategy, response surface designs can be created using the method
rsmDesign of the qualityTools package. A design with alpha = 1.633, 0 centerpoints in
the cube portion and 6 center points in the star portion can be created with:
> fdo = rsmDesign (k = 3 , alpha = 1 .633 , cc = 0 , cs = 6)

and the design can be put in standard order using the randomize method with argument
so=TRUE (i.e. standard order). cc stands for centerCube and cs for centerStar.
> fdo = randomize ( fdo , so = TRUE)

Response Surface Designs can also be chosen from a table by using the method rsmChoose
of the qualityTools package.
12response surface design object
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> rsdo = rsmChoose ( )
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Figure 18: choosing a predefined response surface design from a table

5.6.1 Sequential Assembly of Response Surface Designs

Sequential assembly is a very important feature of Response Surface Designs. Depending
on the features of the (fractional) factorial design a star portion can be augmented using
the starDesign method of the qualityTools package. A star portion consists of axial runs
and optional center points (cs) in the axial part as opposed to center points (cc) in the
cube part.
> fdo3 = facDes ign (k = 6)
> rsdo = starDes ign ( alpha = " orthogona l " , data = fdo3 )

In case no existing (fractional) factorial design is handed to the starDesign method
a list with data.frames is returned which can be assigned to the existing (fractional)
factorial design using the star, centerStar and centerCube methods of the qualityTools
package.

5.6.2 Randomization

Randomization is achieved by using the randomize method of the qualityTools package.
At this point randomization works for most of the designs types. A random.seed needs to
be supplied which is helpful to have the same run order on any machine.
> randomize ( fdo , random.seed = 123)

5.6.3 Blocking

Blocking is another relevant feature and can be achieved by the blocking method of the
qualityTools package. At this point blocking a design afterwards is not always successful.
However, it is unproblematic during the sequential assembly.
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5.7 Desirabilites
Many problems involve the simultaneous optimization of more than one response variable.
Optimization can be achieved by either maximizing or minimizing the value of the response
or by trying to set the response on a specific target. Optimization using the Desirabilities
approach [DS80], the (predicted) values of the response variables are transformed into
values within the interval [0,1] using three different desirability methods for the three
different optimization criterias (i.e. minimize, maximize, target). Each value of a response
variable can be assigned a specific desirability, optimizing more than one response variable.
The geometric mean of the specific desirabilities characterizes the overall desirability.

n

√√√√ n∏
i=1

di (12)

This means, for the predicted values of the responses, each factor combination has a
corresponding specific desirability and an overall desirability can be calculated. Suppose we
have three responses. For a specific setting of the factors the responses have desirabilities
such as d1 = 0.7 for y1, d2 = 0.8 for y2 and d3 = 0.2 for y3. The overall desirability dall is
then given by the geometric mean

dall = n

√
d1, d2, . . . , dn (13)

= 3
√
d1, d2, d3 (14)

= 3
√

0.7 · 0.8 · 0.2 (15)

Desirability methods can be defined using the desires method of the qualityTools
package. The optimization direction for each response variable is defined via the min,
max and target argument of the desires method. The target argument is set with max
for maximization, min for minimization and a specific value for optimization towards a
specific target. Three settings arise from this constellation

target = max: min is the lowest acceptable value. If the response variable takes values
below min the corresponding desirability will be zero. For values equal or greater
than min the desirability will be greater zero.

target = min: max is the highest acceptable value. If the response variable takes values
above max the corresponding desirability will be zero. For values equal or less than
max the desirability will be greater zero.

target = value: a response variable with a value of value relates to the highest achievable
desirability of 1. Values outside min or max lead to a desirability of zero, inside min
and max to values within (0,1]

Besides these settings the scale factor influences the shape of the desirability method.
Desirability methods can be created and plotted using the desires and plot method of
the qualityTools package. Desirabilities are always attached to a response and thus should
be assigned to factorial designs (figure 19).
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> d1 = d e s i r a b i l i t y ( y1 , 120 , 170 , s c a l e = c (1 , 1 ) , t a r g e t = "max" )
> d3 = d e s i r a b i l i t y ( y3 , 400 , 600 , t a r g e t = 500)
> d1

Target i s to maximize y1
lower Bound : 120
h igher Bound : 170
Sca l e f a c t o r i s : 1 1
importance : 1

Besides having a summary on the command line, the desirability method can be
conveniently visualized using the plot method. With the desirabilities d1 and d3 one gets
the following plots.
> par (mfrow = c (1 , 2 ) )
> p lo t (d1 , c o l = 2) ; p l o t (d3 , c o l = 2)
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Figure 19: plotted desirabilities for y1 and y3

5.8 Using desirabilities together with designed experiments
The desirability methodology is supported by the factorial design objects. The output
of the desirability method can be stored in the design object, so that information that
belongs to each other is stored in the same place (i.e. the design itself). In the following
few R lines a designed experiment that uses desirabilities will be shown. The data used
comes from [DS80]. Four responses y1, y2, y3, and y4 were defined. Factors used in this
experiment were silica, silan, and sulfur with high factor settings of 1.7, 60, 2.8 and low
factor settings of 0.7, 40, 1.8. It was desired to have y1 and y2 maximized and y3 and y4
set on a specific target (see below).
First of all the corresponding design that was used in the paper is created using the

method rsmDesign of the qualityTools package. Then we use the randomize method to
obtain the standard order of the design.
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> ddo = rsmDesign (k = 3 , alpha = 1 .633 , cc = 0 , cs = 6)
> ddo = randomize (ddo , so = TRUE)
> #optional
> names ( ddo ) = c ( " s i l i c a " , " s i l a n " , " s u l f u r " )
> #optional
> highs ( ddo ) = c (1 .7 , 60 , 2 . 8 )
> #optional
> lows ( ddo ) = c (0 .7 , 40 , 1 . 8 )

The summary method gives an overview of the design. The values of the responses are
incorporated with the response method of the qualityTools package.
> y1 = c (102 , 120 , 117 , 198 , 103 , 132 , 132 , 139 , 102 , 154 , 96 , 163 , 116 ,
+ 153 , 133 , 133 , 140 , 142 , 145 , 142)
> y2 = c (900 , 860 , 800 , 2294 , 490 , 1289 , 1270 , 1090 , 770 , 1690 , 700 , 1540 ,
+ 2184 , 1784 , 1300 , 1300 , 1145 , 1090 , 1260 , 1344)
> y3 = c (470 , 410 , 570 , 240 , 640 , 270 , 410 , 380 , 590 , 260 , 520 , 380 , 520 ,
+ 290 , 380 , 380 , 430 , 430 , 390 , 390)
> y4 = c (67 .5 , 65 , 77 .5 , 74 .5 , 62 .5 , 67 , 78 , 70 , 76 , 70 , 63 , 75 , 65 , 71 ,
+ 70 , 68 .5 , 68 , 68 , 69 , 70)

The sorted data.frame of these 4 responses is assigned to the design object ddo.
> response ( ddo ) = data . f rame ( y1 , y2 , y3 , y4 ) [ c ( 5 , 2 , 3 , 8 , 1 , 6 , 7 , 4 , 9 : 2 0 ) , ]

The desirabilities are incorporated with the desires method of the qualityTools package.
y1 and y3 were already defined which leaves the desirabailities for y2 and y4 to be defined.
> d2 = d e s i r a b i l i t y ( y2 , 1000 , 1300 , t a r g e t = "max" )
> d4 = d e s i r a b i l i t y ( y4 , 60 , 75 , t a r g e t = 67 . 5 )

The desirabilities need to be defined with the names of the response variables in order to
use them with the responses of the design object. The desires method is used as follows.
> de s i r e s ( ddo)=d1; d e s i r e s ( ddo)=d2; d e s i r e s ( ddo)=d3; d e s i r e s ( ddo)=d4

Fits are set as in [DS80] using the fits methods of the qualityTools package.
> f i t s ( ddo ) = lm( y1 ∼ A+B+C+A:B+A:C+B:C+I (A∧2)+ I (B∧2)+ I (C∧ 2) , data = ddo )
> f i t s ( ddo ) = lm( y2 ∼ A+B+C+A:B+A:C+B:C+I (A∧2)+ I (B∧2)+ I (C∧ 2) , data = ddo )
> f i t s ( ddo ) = lm( y3 ∼ A+B+C+A:B+A:C+B:C+I (A∧2)+ I (B∧2)+ I (C∧ 2) , data = ddo )
> f i t s ( ddo ) = lm( y4 ∼ A+B+C+A:B+A:C+B:C+I (A∧2)+ I (B∧2)+ I (C∧ 2) , data = ddo )

The overall optimum can now be calculated using the method optimum of the qualityTools
package giving the same factor settings as stated in [DS80] for an overall desirability of
0.58 and individual desirabilities of 0.187, 1, 0.664, 0.934 for y1, y2, y3 and y4.
> optimum(ddo , type = " optim " )

composite ( o v e r a l l ) d e s i r a b i l i t y : 0 .583

A B C
coded −0.0533 0 .144 −0.872
r e a l 1 .1733 51 .442 1 .864

y1 y2 y3 y4
Responses 129.333 1300 466.397 67 .997
D e s i r a b i l i t i e s 0 .187 1 0 .664 0 .934
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5.9 Mixture Designs
At this time the generation of the different kinds of mixture designs is fully supported
including a ternary contour and 3D plot. Analyzing these designs however needs to be
done without any specific support by a method of the qualityTools package.
Following the introduced name convention of the qualityTools package the method

mixDesign can be used to e.g. create simplex lattice design and simplex centroid designs.
The generic methods response, names, highs, lows, units and types are again supported.
A famous data set [Cor02] is given by the elongation of yarn for various mixtures of three
factors. This example can be reconstructed using the method mixDesign of the qualityTools
package. mdo is an abbreviation of mix design object.
> mdo = mixDesign (3 , 2 , c en t e r = FALSE, a x i a l = FALSE, randomize = FALSE,
+ r e p l i c a t e s = c (1 , 1 , 2 , 3 ) )
> names (mdo) = c ( " po lye thy l ene " , " po ly s ty r ene " , " po lypropy lene " )
> #set response (i.e. yarn elongation)
> e longa t i on = c (11 .0 , 12 .4 , 15 .0 , 14 .8 , 16 .1 , 17 .7 , 16 .4 , 16 .6 , 8 .8 , 10 .0 ,
+ 10 .0 , 9 .7 , 11 .8 , 16 .8 , 16 . 0 )
> response (mdo) = e l onga t i on

Again the values of the response are associated with the method response of the
qualityTools package. Calling mdo prints the design. The generic summary method can be
used for a more detailed overview.
> mdo

StandOrder RunOrder Type A B C e longa t i on
1 1 1 1−blend 1 .0 0 .0 0 .0 11 .0
2 2 2 1−blend 1 .0 0 .0 0 .0 12 .4
3 3 3 2−blend 0 .5 0 .5 0 .0 15 .0
4 4 4 2−blend 0 .5 0 .5 0 .0 14 .8
5 5 5 2−blend 0 .5 0 .5 0 .0 16 .1
6 6 6 2−blend 0 .5 0 .0 0 .5 17 .7
7 7 7 2−blend 0 .5 0 .0 0 .5 16 .4
8 8 8 2−blend 0 .5 0 .0 0 .5 16 .6
9 9 9 1−blend 0 .0 1 .0 0 .0 8 . 8
10 10 10 1−blend 0 .0 1 .0 0 .0 10 .0
11 11 11 2−blend 0 .0 0 .5 0 .5 10 .0
12 12 12 2−blend 0 .0 0 .5 0 .5 9 . 7
13 13 13 2−blend 0 .0 0 .5 0 .5 11 .8
14 14 14 1−blend 0 .0 0 .0 1 .0 16 .8
15 15 15 1−blend 0 .0 0 .0 1 .0 16 .0

The data can be visualized using the wirePlot3 and contourPlot3 methods (figure
20). In addition to the wirePlot and contourPlot methods the name of the third factor
(i.e. C) and the type of standard fit must be given. Of course it is possible to specify a fit
manually using the form argument with a formula.
> par (mfrow=c (1 , 2 ) )
> contourPlot3 (A, B, C, e longat ion , data = mdo, form = " quadrat i c " )
> wirePlot3 (A, B, C, e longat ion , data=mdo, form=" quadrat i c " , theta=−170)

5.10 Taguchi Designs
Taguchi Designs are available using the method taguchiDesign of the qualityTools package.
There are two types of taguchi designs:
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Figure 20: ternary plots for the elongation example

• Single level: all factors have the same number of levels (e.g. two levels for a L4_2)

• Mixed level: factors have different number of levels (e.g. two and three levels for
L18_2_3)

Most of the designs that became popular as taguchi designs however are simple 2k

fractional factorial designs with a very low resolution of III (i.e. main effects are confounded
with two factor interactions) or other mixed level designs and are originally due to
contributions by other e.g. Plackett and Burman, Fisher, Finney and Rao [BG88]. A
design can be created using the taguchiDesign method of the qualityTools package. The
generic method names, units, values, summary, plot, lm and other methods again are
supported. This way the relevant information for each factor can be stored in the design
object tdo13 itself.
> s e t . s e e d (1234)
> tdo = taguchiDes ign ( "L9_3" )
> va lues ( tdo ) = l i s t (A = c (20 , 40 , 60) , B = c ( " mate ia l 1 " , " mate r i a l 2 " ,
+ " mate r i a l 3 " ) , C = c (1 , 2 , 3 ) )
> names ( tdo ) = c ( " Factor 1 " , " Factor 2 " , " Factor 3 " , " Factor 4 " )
> summary( tdo )

Taguchi SINGLE Design
Informat ion about the f a c t o r s :

A B C D
value 1 20 mate ia l 1 1 1
value 2 40 mate r i a l 2 2 2
value 3 60 mate r i a l 3 3 3
name Factor 1 Factor 2 Factor 3 Factor 4
un i t
type numeric numeric numeric numeric

13taguchi design object
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−−−−−−−−−−−

StandOrder RunOrder Rep l i ca t e A B C D y
1 7 1 1 3 1 3 2 NA
2 1 2 1 1 1 1 1 NA
3 6 3 1 2 3 1 2 NA
4 4 4 1 2 1 2 3 NA
5 2 5 1 1 2 2 2 NA
6 8 6 1 3 2 1 3 NA
7 5 7 1 2 2 3 1 NA
8 3 8 1 1 3 3 3 NA
9 9 9 1 3 3 2 1 NA

−−−−−−−−−−−

The response method is used to assign the values of the response variables. effectPlot
can be used once more to visualize the effect sizes of the factors (figure 21).
> response ( tdo ) = rnorm (9)
> e f f e c t P l o t ( tdo , c o l = 2)
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Figure 21: effect plot for the taguchi experiment

6 Session Information
The version number of R and packages loaded for generating the vignette were:
> s e s s i o n I n f o ( )

R ve r s i on 2 . 1 3 . 0 (2011−04−13)
Platform : x86_64−pc−mingw32/x64 (64− b i t )

l o c a l e :
[ 1 ] LC_COLLATE=C LC_CTYPE=German_Germany .1252
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[ 3 ] LC_MONETARY=German_Germany .1252 LC_NUMERIC=C
[ 5 ] LC_TIME=German_Germany .1252

attached base packages :
[ 1 ] s t a t s g raph i c s grDev ices u t i l s da ta s e t s methods base

other attached packages :
[ 1 ] MASS_7.3−12 qual i tyTools_1 .43

loaded v ia a namespace ( and not attached ) :
[ 1 ] tools_2 . 1 3 . 0

7 R-Code in this Vignette
All of the R-Code used in this vignette can be found in the RCode.R file.
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