
composite (overall) desirability: 0.58

        A      B      C
coded 0.0  0.136 -0.816
real  1.2 51.361  1.892

                    y1       y2      y3     y4
Responses      130.660 1299.669 456.937 67.980
Desirabilities   0.213    0.999   0.569  0.936

Gage R&R
                 VarComp VarCompContrib Stdev StudyVar StudyVarContrib
totalRR           1.1539         0.9132 1.074    6.445           0.956
 repeatability    1.1380         0.9006 1.067    6.401           0.949
 reproducibility  0.0159         0.0126 0.126    0.756           0.112
   Operator       0.0159         0.0126 0.126    0.756           0.112
   Operator:Part  0.0000         0.0000 0.000    0.000           0.000
Part to Part      0.1097         0.0868 0.331    1.987           0.295
totalVar          1.2635         1.0000 1.124    6.744           1.000

Measure

Analyze

Improve

Control Define

Working with the qualityTools
package

A short introduction

Thomas Roth
November 5, 2010

This vignette is intended to give a short introduction into the methods of the
qualityTools package. The qualityTools package contains methods associated
with the Define Measure Analyze Improve and Control (i.e. DMAIC) prob-
lem solving cycle of the Six Sigma Quality Management methodology. Usage
of these methods is illustrated with the help of artificially created datasets.

• Define: Pareto Chart
• Measure: Probability and Quantile-Quantile Plots, Process Capability

Ratios for various distributions and Gage R&R
• Analyze: Pareto Chart, Multi-Vari Chart, Dot Plot
• Improve: Full and fractional factorial, response surface, mixture and

taguchi designs as well as the desirability approach for simultaneous op-
timization of more than one response variable. Normal, Pareto and Lenth
Plot of effects as well as Interaction Plots
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1. Working with the qualityTools package
Working with the qualityTools package is straightforward as you will see in the next few
pages. The qualityTools package was implemented for teaching purposes in order to serve
as a (Six-Sigma)-Toolbox and contains methods that are associated to a problem solving
cycle. There are many problem solving cycles around with new ones emerging although
most of these new ones take on special aspects. A very popular problem solving cycle is the
PDCA cycle (i.e. plan y doy checky act	) which was made popular by Deming1 but
goes back to Shewart2. As part of the widely known and accepted Six-Sigma-Methodology
some enhancements to this problem solving cycle were made and a problem solving cycle
consisting of the five phases Define, Measure, Analyze, Improve and Control emerged.

Define Describe the problem and its (financial) consequences. Interdisciplinary work-
groups contribute to the problem and its consequences which is the pivotal stage
in narrowing down the problem. Process flow diagrams identify crucial process ele-
ments (i.e. activities), creativity techniques such as Brainwriting and Brainstorming
as well as the SIPOC3 technique should lead, depending on the future size of the
project, to possibly a project charter.

Measure Come up with a reasonable plan for collecting the required data and make
sure that the measurement systems are capable (i.e. no or known bias and as
little system immanent variation contributing to the measurements as possible).
Variation and bias are the enemy to finding effects. The bigger the background
noise the less probable are the chances of success using limited resources for all kinds
of experiments.

Analyze Try to find the root causes of the problem using various statistical methods
such as histograms, regression, correlation, distribution identification, analysis of
variance, multi-vari-charts.

Improve Use designed experiments i.e. full and fractional factorials, response surface
designs, mixture designs, taguchi designs and the desirability concept to find optimal
settings or solutions for a problem.

Control Once an improvement was achieved it needs to be secured, meaning arrangements
need to be implemented in order to secure the level of improvement. Besides proper
documentation, the use of statistical process control (i.e. quality-control-charts) can
be used to monitor the behavior of a process. Although quite often referred to as
Show Programm for Customers, SPC is able to help to distinguish between
common causes and special causes in the process behavior.

1William E. Deming
2Walter A. Shewhart
3Suppliers, inputs, process, outputs, customers

2
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2. qualityTools in DEFINE
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Most techniques in the Define phase are not related to substantial use of statistical meth-
ods. The objective of the DEFINE phase is to bring together all parties concerned, grasp
their knowledge and insights to the process involved, set a common objective and DEFINE
how each party contributes(or the role each party takes) to the solving of the problem.
In order not to get lost in subsequent meetings and ongoing discussion, this common ob-
jective, the contribution of each party, milestones and responsibilities need to be written
down in what is known to be a Project Charter. Of course, problems with easy-to-identify
causes are not subject of these kind of projects.
However, a classical visualization technique that is used in this phase and available

in the qualityTools package is the pareto chart. Pareto charts are special forms of bar
charts that help to separate the vital few from the trivial many causes for a given problem
(e.g.the most frequent cause for a defective product). This way pareto charts visualize
how much a cause contributes to a specific issue.
Suppose a company is investigating non compliant units (products). 120 units were

investigated and 6 different types of defects (qualitative data) were found. The defects
are named A to F. The defects data can be found in defects.
#create artificial defect data set
> defects = c(rep("E", 62), rep("B", 15), rep("F", 3), rep("A", 10), rep

("C" ,20), rep("D", 10))
> paretoChart(defects)
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Figure 1: Pareto Chart

This pareto chart might convey the message that in order to solve 68 percent of the
problem 33 percent of the causes (vital few4) need to be subject of an investigation.
Besides this use case, pareto charts are also used for visualizing the effect sizes of

different factors for designed experiments (see paretoPlot).

4the vital few and the trivial many - 20 percent of the defects cause 80 percent of the problems
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3. qualityTools in MEASURE
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Collecting data involves the use of measurement systems often referred to as gages. In
order to make a statement regarding the quality, i.e. the degree in which a set of inherent
characteristics meets requirements, of a product[1], the capability of the measurement
system used needs to be validated.
Gages can have two types of impairments:

• a bias (an assumed constant shift of values for measurements of equal magnitude)

• variation
– introduced by other factors e.g. operators using these gages
– system immanent variation of the measurement system itself

These impairments lead to varying measurements for repeated measurements of the
same unit (e.g. a product). The amount of tolerable variation of course depends on the
number of distinctive categories you need to be able to identify in order to characterize
the product. This tolerable amount of variation for a measurement system relates directly
to the tolerance range of the characteristics of a product.

3.1. Gage Repeatability&Reproducibility
A common procedure applied in industry is to perform a Gage R&R analysis to assess the
repeatability and the reproducibility of a measurement system. R&R stands for repeata-
bility and reproducibility. Repeatability hereby refers to the precision of a measurement
system (i.e. the standard deviation of subsequent measurements of the same unit). Re-
producibility is the part of the overall variance that models the effect of different e.g.
operators performing measurements on the same unit and a possible interaction between
different operators and parts measured within this Gage R&R. The overall model is given
by

σ2
total = σ2

P arts + σ2
Operator + σ2

P arts×Operator + σ2
Error (1)

where σ2
P arts models the variation between different units of the same process. σ2

P arts is
thus an estimate of the inherent process variability. Repeatability is modeled by σ2

Error

and reproducibility by σ2
Operator + σ2

P arts×Operator.
Suppose 9 randomly chosen units were measured by 3 randomly chosen operators.

Each operator measured each unit three times in a randomly chosen order. The units
were presented in a way they could not be distinguished by the operators.
The corresponding gage R&R design can be created using the gageRRDesign method

of the qualityTools package. The measurements are assigned to this design using the
response method. Methods for analyzing this design are given by gageRR and plot.
#set start for random number generation
> set.seed (1234)
#create a gage RnR design
> design = gageRRDesign(Operators = 3, Parts = 9, Measurements = 3)
#set the response
> response(design) = rnorm (3*9*3, mean = 20)
#perform Gage RnR
> gdo = gageRR(design)

4
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AnOVa Table - crossed Design
Df Sum Sq Mean Sq F value Pr(>F)

Operator 2 1.456 0.72779 0.6325 0.5351
Part 8 11.696 1.46196 1.2706 0.2782
Operator:Part 16 11.937 0.74607 0.6484 0.8293
Residuals 54 62.131 1.15058

----------
AnOVa Table Without Interaction - crossed Design

Df Sum Sq Mean Sq F value Pr(>F)
Operator 2 1.456 0.72779 0.6878 0.5060
Part 8 11.696 1.46196 1.3817 0.2198
Residuals 70 74.068 1.05812

----------

Gage R&R
VarComp VarCompContrib Stdev StudyVar StudyVarContrib

totalRR 1.0851 0.8698 1.042 6.250 0.933
repeatability 1.0581 0.8482 1.029 6.172 0.921
reproducibility 0.0270 0.0216 0.164 0.985 0.147

Operator 0.0270 0.0216 0.164 0.985 0.147
Operator:Part 0.0000 0.0000 0.000 0.000 0.000

Part to Part 0.1624 0.1302 0.403 2.418 0.361
totalVar 1.2475 1.0000 1.117 6.702 1.000

---
* Contrib equals Contribution in %

#visualization of Gage RnR
>plot(gdo)
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Figure 2: Visualization of the Gage R&R with random data

The standard graphical output of a Gage R&R is given in figure 2. A complete expla-
nation of this output is beyond the scope of this vignette.
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4. qualityTools in ANALYZE
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4.1. Process Capability
Besides the capability of a measurement system, often the capability of a process is of
interest or needs to be assessed e.g. as part of a supplier customer relationship in industry.
Process Capability Indices basically tells one how much of the tolerance range is being
used by common cause variation of the considered process. Using these techniques one
can state how many units (e. g. products) are expected to fall outside the tolerance range
(i.e. defective regarding the requirements determined before) if for instance production
continues without intervention. It also gives insights into where to center the process if
shifting is possible and meaningful in terms of costs. There are three indices which are
also defined in the corresponding ISO 21747:2006 document[1] .

cp = USL− LSL
Q0.99865 −Q0.00135

(2)

cpkL = Q0.5 − LSL
Q0.5 −Q0.00135

(3)

cpkU = USL−Q0.5

Q0.5 −Q0.00135
(4)

cp is the potential process capability giving one the process capability that could be
achieved if the process can be centered within specification limits5 and cpk is the actual
process capability which incorporates the location of the distribution (i.e. the center) of
the characteristic within the specification limits. For one sided specification limits cpkL

and cpkU exist with cpk being equal to the smallest capability index. As one can imagine in
addition the location of the distribution of the characteristic the shape of the distribution
is relevant too. Assessing the fit of a specific distribution for given data can be done via
probability plots (ppPlot) and quantile-quantile plots (qqPlot), as well as formal test
methods like the Anderson Darling Test.
Process capabilities can be calculated with the pcr method of the qualityTools package.

The pcr method plots a histogram of the data, the fitted distribution and returns the
capability indices along with the estimated6 parameters of the distribution, an Anderson
Darling Test for the specified distribution and the corresponding QQ-Plot.
> set.seed (1234)
#generate some data
> norm = rnorm (20, mean = 20)
#generate some data
> weib = rweibull (20, shape = 2, scale = 8)
#process capability
> pcr(norm , "normal", lsl = 17, usl = 23)
#process cabapility
> pcr(weib , "weibull", usl = 20)

5USL - Upper Specification Limit
LSL - Lower Specification Limit

6Fitting the distribution itself is accomplished by the fitdistr method of the R-package MASS.

6
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Figure 3: Process Capability Ratios for weibull and normal distribution

Along with the graphical representation an Anderson Darling Test for the corresponding
distribution is returned.

Anderson Darling Test for weibull distribution

data: x[, 1]
A = 0.3505 , shape = 3.050 , scale = 7.916 , p-value > 0.25
alternative hypothesis: true distribution is not equal to weibull

Q-Q Plots can be calculated with the qqPlot function of the qualityTools package
(figure 4).
> par(mfrow = c(1,2))
> qqPlot(weib , "weibull"); qqPlot(weib , "normal")

Probability Plots can be calculated with the ppPlot function of the qualityTools pack-
age (figure 5).
> ppPlot(norm , "weibull"); ppPlot(norm , "normal")
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Figure 4: QQ-Plots for different distributions
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5. qualityTools in IMPROVE
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Each process has a purpose. The effectiveness of a process can be expressed with the help
of (quality) characteristics. Those characteristics can be denoted as the responses of a
process. In order to attain the desired values for the responses certain settings need to
be arranged for the process. Those settings refer to the input variables of the process.
Working with designed experiments it is helpful to refer to the (black box) process model
(figure 6).

Figure 6: Black Box model of a process

In general input variables can be distinguished into controllable and disturbance vari-
ables. Input variables that can be controlled and have an assumed effect on the responses
are denoted as factors. Input variables that are not factors are either hard to change (e.g.
the hydraulic fluid in a machine) or varying them does not make good economic sense (e.g.
the temperature or humidity in a factory building). These hard-to-change factors are also
called uncontrollable input variables. It is attempted to held those variables constant.
Disturbance variables affect the outcomes of a process by introducing noise such as small
variations in the controllable and uncontrollable input variables which leads to variations
in the response variables despite identical factor settings in an experiment.

5.1. 2k Factorial Designs
In order to find more about this black box model one can come up with a 2k factorial
design by using the method facDesign of the qualityTools package. As used in textbooks
k denotes the number of factors. A design with k factors and 2 combinations per factor
gives you 2k different factor combinations and thus what is called runs.
Suppose a process has 5 factors A, B, C, D and E. The yield (i.e. response) of the

process is measured in percent. Three of the five factors are assumed by the engineers
to be relevant to the yield of the process. These three factors are to be named Factor 1,
Factor 2 and Factor 3 (A, B and C). The (unknown relations of the factors of the) process
(are) is simulated by the method simProc of the qualityTools package. Factor 1 is to be
varied from 80 to 120, factor B from 120 to 140 and factor C from 1 to 2 . Low factor
settings are assigned a -1 and high values a +1.
> set.seed (1234)
#fdo - factorial design object
> fdo = facDesign(k = 3, centerCube = 4)
#optional
> names(fdo) = c("Factor␣1", "Factor␣2", "Factor␣3")

9
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#optional
> lows(fdo) = c(80, 120, 1)
#optional
> highs(fdo) = c(120, 140, 2)
#information about the factorial design
> summary(fdo)

Information about the factors:

A B C
low 80 120 1
high 120 140 2
name Factor 1 Factor 2 Factor 3
unit
type numeric numeric numeric

-----------
StandOrd RunOrder Block A B C y

1 1 1 1 -1 -1 -1 NA
6 6 2 1 1 -1 1 NA
8 8 3 1 1 1 1 NA
3 3 4 1 -1 1 -1 NA
2 2 5 1 1 -1 -1 NA
4 4 6 1 1 1 -1 NA
5 5 7 1 -1 -1 1 NA
7 7 8 1 -1 1 1 NA
9 9 9 1 0 0 0 NA
10 10 10 1 0 0 0 NA
11 11 11 1 0 0 0 NA
12 12 12 1 0 0 0 NA

The response of this fictional process is given by the simProc method of the qualityTools
package. The yield for Factor 1, Factor 2 and Factor 3 taking values of 80, 120 and 1 can
be calculated using
#set first value
> yield = simProc(x1 = 80, x2 = 120, x3 = 1)

Setting all the yield of this artificial black box process gives a very long line of R-Code.
> yield = c(simProc (80,120, 1),simProc (120,120, 2),simProc (120,140, 2),

simProc (80,140, 1),simProc (120 ,120 , 1),simProc (120,140 , 1),simProc
(80,120, 2),simProc (80,140, 2), simProc (90,130, 1.5), simProc (90,130,
1.5), simProc (90,130, 1.5), simProc (90,130, 1.5))

Assigning the yield to the factorial design can be done using the response method.
>response(fdo) = yield #assign yield to the factorial design object

Analyzing this design is quite easy using the methods effectPlot, interactionPlot,
lm as well as wirePlot and contourPlot (figure 7)
> effectPlot(fdo)
> interactionPlot(fdo)

The factorial design in fdo can be handed without any further operations directly to
the base lm method of R.
> lm.1 = lm(yield ~ A*B*C, data = fdo)
> summary(lm.1)

10
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Figure 7: effect- and interaction plot for the factorial design

Call:
lm(formula = yield ~ A * B * C, data = fdo)

Residuals:
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2136547 0.0017484 122.198 2.69e-08 ***
A 0.0709026 0.0021414 33.111 4.96e-06 ***
B 0.1150478 0.0021414 53.726 7.18e-07 ***
C -0.0012866 0.0021414 -0.601 0.580
A:B 0.0784133 0.0021414 36.618 3.32e-06 ***
A:C 0.0017168 0.0021414 0.802 0.468
B:C 0.0007944 0.0021414 0.371 0.729
A:B:C -0.0014677 0.0021414 -0.685 0.531
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’␣’ 1

Residual standard error: 0.006057 on 4 degrees of freedom
Multiple R-squared: 0.9992 , Adjusted R-squared: 0.9979
F-statistic: 760.8 on 7 and 4 DF, p-value: 4.431e-06

The effects of A and B as well as the interaction A:B are identified to be significant. A
Pareto plot of the standardized effects visualizes these findings and can be created with
the paretoPlot method of the qualityTools package (figure 8).
> paretoPlot(fdo)

The relation between the factors A and B can be visualized as 3D representation in
form of a wireframe or contour plot using the wirePlot and contourPlot method of the
qualityTools package (figure 11). Again, no further transformation of the data is needed!
> wirePlot(A, B, yield , data = fdo)
> contourPlot(A, B, yield , data = fdo)

One question that arises is whether this linear fit adequately describes the process. In
order to find out, one can simply compare values predicted in the center of the design (i.e.
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A=0, B=0 and C=0) with the values observed in the center of the design. This difference
could also be tested using a specialized t-Test. For now, let’s assume the model is less
wrong than others (i.e. we don’t know of any better model).

5.2. 2k−p Fractional Factorial Designs
Imagine testing 5 different factors in a 2k design giving you 25 = 32 runs. This is likely to
be quite expensive if run on any machine, process or setting within production, research
or a similar environment. Before dismissing the design, it’s advisable to reflect what this
design is capable of in terms of what types of interactions it can estimate. The highest
interaction in a 25 design is the interaction between the five factors ABCDE. This inter-
action, even if significant, is really hard to interpret, and likely to be non-existent. The
same applies for interactions between four factors and some of the interactions between
3 factors which is why most of the time fractional factorial designs are considered in the
first stages of experimentation.
A fractional factorial design is denoted 2k−p meaning k factors are tested in 2k−p runs.

In a 25−1 design five factors are tested in 24 runs (hence p=1 additional factor is tested
without further runs). This works by confounding interactions with additional factors.
This section will elaborate on this idea with the help of the methods of the qualityTools
package.
For fractional factorial designs the method fracDesign of the qualityTools package can

be used. The generators can be given in the same notation that is used in textbooks on this
matter. For a 23−1 design (i.e. 3 factors that are to be tested in a 22 by confounding the
third factor with the interaction between the first two factors) this would be given by the
argument gen = "C = AB" meaning the interaction between A and B is to be confounded
with the effect of a third factor C. The effect estimated for C is then confounded with the
interaction AB; they cannot be separately estimated, hence C = AB (alias) or the alias
of C is AB.
> fdo.frac = fracDesign(k = 3, gen = "C␣=␣AB", centerCube = 4)

In order to get more specific information about a design the summary method can be
used. For this example you will see on the last part the identity I = ABC of the design.
The identity I of a design is the left part of the generator multiplied by the generator.
The resolution is the (character-) length of the shortest identity.
> summary(fdo.frac)

Information about the factors:

A B C
low -1 -1 -1
high 1 1 1
name
unit
type numeric numeric numeric

-----------
StandOrd RunOrder Block A B C y

1 1 1 1 -1 -1 1 NA
2 2 2 1 1 -1 -1 NA
3 3 3 1 -1 1 -1 NA
4 4 4 1 1 1 1 NA
5 5 5 1 0 0 0 NA
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6 6 6 1 0 0 0 NA
7 7 7 1 0 0 0 NA
8 8 8 1 0 0 0 NA

---------

Defining relations:
I = ABC Columns: 1 2 3

Resolution: III

The following rules apply

I × A = A (5)
A× A = I (6)
A×B = B × A (7)

By multiplying A, B and C you will find all confounded effects or aliases. A more
convenient way to get an overview of the alias structure of a factorial design is to call the
method aliasTable or confounds of the qualityTools package. The latter gives a more
human readable version of the first.
> aliasTable(fdo.frac)

C AC BC ABC
Identity 0 0 0 1
A 0 0 1 0
B 0 1 0 0
AB 1 0 0 0

Fractional factorial designs can be generated by assigning the appropriate generators.
However, most of the time standard fractional factorial designs known as minimum aber-
ration designs [4] will be used. Such a design can be chosen from predefined tables by
using the method fracChoose of the qualityTools package and simply clicking onto the
desired design (figure 10).
> fracChoose ()

5.3. Replicated Designs and Center Points
A replicated design with additional center points can be created by using the replicates
and centerCube argument.
> fdo1 = facDesign(k = 3, centerCube = 2, replicates = 2)

5.4. Multiple Responses
Once you have observed the response for the different factor combinations one can add
one or more response vectors to the design with the response method of the qualityTools
package . A second response to be named y2 is created with the help of random numbers.
> set.seed (1234)
> y2 = rnorm (12, mean = 20)
> response(fdo) = data.frame(yield , y2)
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Figure 10: Choosing minimum aberration designs

A 3D visualization is done with the help of the methods wirePlot and contourPlot of
the qualityTools package with no need to first create arrays of values or the like. Simply
specify the formula you would like to fit with e.g. form = "yield ∼ A+B". Specifying this
fit for response yield one can see that there’s actually no practical difference to the fit
that included an interaction term (figure 11).
> par(mfrow = c(1,2))
> wirePlot(A, B, yield , data = fdo , form = "yield~A+B+C+A*B")
> contourPlot(A, B, y2 , data = fdo , form = "y2~A+B+C+A*B")

Using the wirePlot and contourPlot methods of the qualityTools package settings of
the other n-2 factors can be set using the factors argument. A wireplot with the third
factor C on -1 an C = 1 can be created as follows (figure 12)
> wirePlot(A,B,y2 , data = fdo , factors = list(C=-1), form = "y2~A*B*C")
> wirePlot(A,B,y2 , data = fdo , factors = list(C=1), form = "y2~A*B*C")

If no formula is explicitly given the methods default to the full fit or the fit stored in
the factorial design object fdo. Storing a fit can be done using the fits method of the
qualityTools package and is especially useful when working with more than one response
(see 5.4). Of course lm can be used to analyze the fractional factorial designs.
> fits(fdo) = lm(yield ~ A+B, data = fdo)
> fits(fdo) = lm(y2 ~ A*B*C, data = fdo)
> fits(fdo)

$yield

Call:
lm(formula = yield ~ A + B, data = fdo)

Coefficients:
...
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5.5. Moving to a process setting with an expected higher yield
Since our process can be adequately modeled by a linear relationship the direction in
which to go for an expected higher yield is easy to determine. A contour plot of factor A
and B illustrate that we simply need to "step up the stairs". The shortest way to get up
these stairs (figure 9) can be figured out graphically or calculated using the steepAscent
method of the qualityTools package.
> sao =steepAscent(factors=c("A","B"),response="yield",data=fdo ,steps

=20)
> sao

Steepest Ascent for fdo

Run Delta A.coded B.coded A.real B.real
1 1 0 0.0 0.000 100 130
...
12 12 11 2.2 3.570 144 166
13 13 12 2.4 3.894 148 169
14 14 13 2.6 4.219 152 172
...
21 21 20 4.0 6.490 180 195

Since we set the real values earlier using the highs and lows methods of the qualityTools
package factors settings are displayed in coded as well as real values. Again the values of
the response of sao7 can be set using the response method of the qualityTools package
and then be plotted using the plot method. Of course one can easily use the base plot
method itself. However for documentation purposes the plot method for a steepest ascent
object might be more convenient.
> predicted = simProc(sao[,5], sao[,6])
> response(sao) = predicted
> plot(sao , type = "b")

At this point the step size was chosen quite small for illustration purposes.

5.6. Response Surface Designs
Not all relations are linear and thus in order to detect and model non-linear relationships
sometimes more than two combinations per factor are needed. At the beginning all a black
box might need is a 2k or 2k−p design. In order to find out whether a response surface
design (i.e. a design with more than two combination per factors) is needed one can
compare the expected value of one’s response variable(s) with the observed one(s) using
centerpoints (i.e. the 0, 0, . . . , 0 setting). The bigger the difference between observed
and expected values, the more unlikely this difference is the result of random noise.
For now, let’s return to the initial simulated process. The project started off with a

2k design containing center points. Sticking to a linear model we used the steepAscent
method of the qualityTools package to move to a better process region. The center of the
new process region is defined by 144 and 165 in real values. This region is the start of a
new design. Again one starts by using a factorial design
#set the seed for randomization of the runs
> set.seed (1234)
> fdo2 = facDesign(k = 2, centerCube = 3)

7steepest ascent object
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Figure 13: predicted maximum at Delta = 11 (see sao)

> names(fdo2) = c("Factor␣1", "Factor␣2")
> lows(fdo2) = c(134, 155)
> highs(fdo2) = c(155, 175)

and the yield is calculated by using the simProc and assigned to the design with the
help of the generic response method of the qualityTools package.
> yield = c(simProc (134 ,155), simProc (155 ,155), simProc (134 ,175),

simProc (155 ,175), simProc (144 ,165), simProc (144 ,165), simProc
(144 ,165))

> response(fdo2) = yield

Looking at the residual graphics one will notice a substantial difference between ex-
pected and observed values (a test for lack of fit could of course be performed and will be
significant). To come up with a model that describes the relationship one needs to add
further points which are referred to as the star portion of the response surface design.
Adding the star portion is easily done using the starDesign method of the qualityTools

package. By default the value of alpha is chosen so that both criteria, orthogonality
and rotatability are approximately met. Simply call the starDesign method on the
factorial design object fdo2. Calling rsdo8 will show you the resulting response surface
design. It should have a cube portion consisting of 4 runs, 3 center points in the cube
portion, 4 axial and 3 center points in the star portion.
> rsdo = starDesign(data = fdo2)

Using the star method of the qualityTools package one can easily assemble designs
sequentially. This sequential strategy saves resources since compared to starting off with
a response surface design from the very beginning, the star portion is only run if re-
ally needed. The yields for the process are still given by the simProc method of the
qualityTools package.

8response surface design object
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> yield2 = c(yield , simProc (130 ,165), simProc (149 ,165), simProc (144 ,151)
,simProc (144 ,179),simProc (144 ,165),simProc (144 ,165),simProc (144 ,165)

)
> response(rsdo) = yield2

A full quadratic model is fitted using the lm method
> lm.3 = lm(yield2 ~ A*B + I(A^2) + I(B^2), data = rsdo)

and one sees that there are significant quadratic components. The response surface can
be visualized using the wirePlot and contourPlot method of the qualityTools package.
> wirePlot(A,B,yield2 ,form="yield2~A*B+I(A^2)+I(B^2)",data=rsdo ,theta

=-70)
> contourPlot(A,B,yield2 ,form="yield2~A*B+I(A^2)+I(B^2)",data=rsdo)
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Figure 14: quadratic fit of the response surface design object rsdo

Figure 15 can be used to compare the outcomes of the factorial and response surface
designs with the simulated process. The inactive Factor 3 was omitted.
Besides this sequential strategy, response surface designs can be created using the

method rsmDesign of the qualityTools package. A design with alpha = 1.633, 0 center-
points in the cube portion and 6 center points in the star portion can be created with:
> fdo = rsmDesign(k = 3, alpha = 1.633 , cc = 0, cs = 6)

and the design can be put in standard order using the randomize method with argument
so=TRUE (i.e. standard order). cc stands for centerCube and cs for centerStar.
> fdo = randomize(fdo , so = TRUE)

Response Surface Designs can also be chosen from a table by using the method rsmChoose
of the qualityTools package.
> rsdo = rsmChoose ()
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Figure 16: choosing a predefined response surface design from a table
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5.6.1. Sequential Assembly of Response Surface Designs

Sequential assembly is a very important feature of Response Surface Designs. Depending
on the features of the (fractional) factorial design a star portion can be augmented using
the starDesign method of the qualityTools package. A star portion consists of axial runs
and optional center points (cs) in the axial part as opposed to center points (cc) in the
cube part.
> fdo3 = facDesign(k = 6)
> rsdo = starDesign(alpha = "orhtogonal", data = fdo3)

In case no existing (fractional) factorial design is handed to the starDesign method
a list with data.frames is returned which can be assigned to the existing (fractional)
factorial design using the star, centerStar and centerCube methods of the qualityTools
package.

5.6.2. Randomization

Randomization is achieved by using the randomize method of the qualityTools package.
At this point randomization works for most of the designs types. A random.seed needs
to be supplied which is helpful to have the same run order on any machine.
> randomize(fdo , random.seed = 123)

5.6.3. Blocking

Blocking is another relevant feature and can be achieved by the blocking method of the
qualityTools package. At this point blocking a design afterwards is not always successful.
However, it is unproblematic during the sequential assembly.

5.7. Desirabilites
Many problems involve the simultaneous optimization of more than one response variable.
Optimization can be achieved by either maximizing or minimizing the value of the response
or by trying to set the response on a specific target. Optimization using the Desirabilities
approach [6], the (predicted) values of the response variables are transformed into values
within the interval [0,1] using three different desirability methods for the three different
optimization criterias (i.e. minimize, maximize, target). Each value of a response variable
can be assigned a specific desirability, optimizing more than one response variable. The
geometric mean of the specific desirabilities characterizes the overall desirability.

n

√√√√ n∏
i=1

di (8)

This means, for the predicted values of the responses, each factor combination has a
corresponding specific desirability and an overall desirability can be calculated. Suppose
we have three responses. For a specific setting of the factors the responses have desirabil-
ities such as d1 = 0.7 for y1, d2 = 0.8 for y2 and d3 = 0.2 for y3. The overall desirability
dall is then given by the geometric mean
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dall = n

√
d1, d2, . . . , dn (9)

= 3
√
d1, d2, d3 (10)

= 3
√

0.7 · 0.8 · 0.2 (11)

Desirability methods can be defined using the desires method of the qualityTools
package. The optimization direction for each response variable is defined via the min,
max and target argument of the desires method. The target argument is set with max
for maximization, min for minimization and a specific value for optimization towards a
specific target. Three settings arise from this constellation

target = max: min is the lowest acceptable value. If the response variable takes values
below min the corresponding desirability will be zero. For values equal or greater
than min the desirability will be greater zero.

target = min: max is the highest acceptable value. If the response variable takes values
above max the corresponding desirability will be zero. For values equal or less than
max the desirability will be greater zero.

target = value: a response variable with a value of value relates to the highest achievable
desirability of 1. Values outside min or max lead to a desirability of zero, inside min
and max to values within (0,1]

Besides these settings the scale factor influences the shape of the desirability method.
Desirability methods can be created and plotted using the desires and plot method of
the qualityTools package. Desirabilities are always attached to a response and thus should
be assigned to factorial designs (figure 17).
> d1 = desirability(y1 , 120, 170, scale = c(1,1), target = "max")
> d3 = desirability(y3 , 400, 600, target = 500)
> d1

Target is to maximize y1
lower Bound: 120
higher Bound: 170
Scale factor is: 1 1
importance: 1

Besides having a summary on the command line, the desirability method can be
conveniently visualized using the plot method. With the desirabilities d1 and d3 one
gets the following plots.
> plot(d1); plot(d3)

5.8. Using desirabilities together with designed experiments
The desirability methodology is supported by the factorial design objects. The output
of the desirability method can be stored in the design object, so that information that
belongs to each other is stored in the same place (i.e. the design itself). In the following
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Figure 17: plotted desirabilities for y1 and y3

few R lines a designed experiment that uses desirabilities will be shown. The data used
comes from [6]. Four responses y1, y2, y3, and y4 were defined. Factors used in this
experiment were silica, silan, and sulfur with high factor settings of 1.7, 60, 2.8 and low
factor settings of 0.7, 40, 1.8. It was desired to have y1 and y2 maximized and y3 and y4
set on a specific target (see below).
First of all the corresponding design that was used in the paper is created using the

method rsmDesign of the qualityTools package. Then we use the randomize method to
obtain the standard order of the design.
> ddo = rsmDesign(k = 3, alpha = 1.633 , cc = 0, cs = 6)
> ddo = randomize(ddo , so = TRUE)
#optional
> names(ddo) = c("silica", "silan", "sulfur")
#optional
> highs(ddo) = c(1.7, 60, 2.8)
#optional
> lows(ddo) = c(0.7, 40, 1.8)

The summary method gives an overview of the design. The values of the responses are
incorporated with the response method of the qualityTools package.
> y1 = c(102, 120, 117, 198, 103, 132, 132, 139, 102, 154, 96, 163, 116,

153, 133, 133, 140, 142, 145, 142)
> y2 = c(900, 860, 800, 2294, 490, 1289, 1270, 1090, 770, 1690, 700,

1540, 2184, 1784, 1300, 1300, 1145, 1090, 1260, 1344)
> y3 = c(470, 410, 570, 240, 640, 270, 410, 380, 590, 260, 520, 380,

520, 290, 380, 380, 430, 430, 390, 390)
> y4 = c(67.5 , 65, 77.5, 74.5, 62.5, 67, 78, 70, 76, 70, 63, 75, 65, 71,

70, 68.5, 68, 68, 69, 70)

The sorted data.frame of these 4 responses is assigned to the design object ddo.
> response(ddo) = data.frame(y1, y2, y3, y4)[c(5,2,3,8,1,6,7,4,9:20) ,]

23



5 qualityTools in IMPROVE | c©Roth

The desirabilities are incorporated with the desires method of the qualityTools pack-
age. y1 and y3 were already defined which leaves the desirabailities for y2 and y4 to be
defined.
> d2 = desirability(y2 , 1000, 1300, target = "max")
> d4 = desirability(y4 , 60, 75, target = 67.5)

The desirabilities need to be defined with the names of the response variables in order
to use them with the responses of the design object. The desires method is used as
follows.
> desires(ddo)=d1; desires(ddo)=d2; desires(ddo)=d3; desires(ddo)=d4

Fits are set as in [6] using the fits methods of the qualityTools package.
> fits(ddo) = lm(y1 ~ A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2), data = ddo

)
> fits(ddo) = lm(y2 ~ A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2), data = ddo

)
> fits(ddo) = lm(y3 ~ A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2), data = ddo

)
> fits(ddo) = lm(y4 ~ A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2), data = ddo

)

The overall optimum can now be calculated using the method optimum of the quality-
Tools package giving the same factor settings as stated in [6] for an overall desirability of
0.58 and individual desirabilities of 0.187, 1, 0.664, 0.934 for y1, y2, y3 and y4.
> optimum(ddo , type = "optim")

composite (overall) desirability: 0.583

A B C
coded -0.0533 0.144 -0.872
real -0.0533 0.144 -0.872

y1 y2 y3 y4
Responses 129.333 1300 466.397 67.997
Desirabilities 0.187 1 0.664 0.934

5.9. Mixture Designs
At this time the generation of the different kinds of mixture designs is fully supported
including a ternary contour and 3D plot. Analyzing these designs however needs to be
done without any specific support by a method of the qualityTools package.
Following the introduced name convention of the qualityTools package the method

mixDesign can be used to e.g. create simplex lattice design and simplex centroid de-
signs. The generic methods response, names, highs, lows, units and types are again
supported. A famous data set [5] is given by the elongation of yarn for various mixtures
of three factors. This example can be reconstructed using the method mixDesign of the
qualityTools package. mdo is an abbreviation of mix design object.
> mdo = mixDesign (3,2, center = FALSE , axial = FALSE , randomize = FALSE ,

replicates = c(1,1,2,3))
> names(mdo) = c("polyethylene", "polystyrene", "polypropylene")

#set response (i.e. yarn elongation)
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> elongation = c(11.0 , 12.4, 15.0, 14.8, 16.1, 17.7, 16.4, 16.6, 8.8,
10.0, 10.0, 9.7, 11.8, 16.8, 16.0)

> response(mdo) = elongation

Again the values of the response are associated with the method response of the
qualityTools package. Calling mdo prints the design. The generic summary method can
be used for a more detailed overview.
> mdo

StandOrder RunOrder Type A B C elongation
1 1 1 1-blend 1.0 0.0 0.0 11.0
2 2 2 1-blend 1.0 0.0 0.0 12.4
3 3 3 2-blend 0.5 0.5 0.0 15.0
4 4 4 2-blend 0.5 0.5 0.0 14.8
5 5 5 2-blend 0.5 0.5 0.0 16.1
6 6 6 2-blend 0.5 0.0 0.5 17.7
7 7 7 2-blend 0.5 0.0 0.5 16.4
8 8 8 2-blend 0.5 0.0 0.5 16.6
9 9 9 1-blend 0.0 1.0 0.0 8.8
10 10 10 1-blend 0.0 1.0 0.0 10.0
11 11 11 2-blend 0.0 0.5 0.5 10.0
12 12 12 2-blend 0.0 0.5 0.5 9.7
13 13 13 2-blend 0.0 0.5 0.5 11.8
14 14 14 1-blend 0.0 0.0 1.0 16.8
15 15 15 1-blend 0.0 0.0 1.0 16.0

The data can be visualized using the wirePlot3 and contourPlot3 methods (figure
18). In addition to the wirePlot and contourPlot methods the name of the third factor
(i.e. C) and the type of standard fit must be given. Of course it is possible to specify a
fit manually using the form argument with a formula.
> contourPlot3(A, B, C, elongation , data = mdo , form = "quadratic")
> wirePlot3(A, B, C, elongation , data=mdo , form="quadratic", theta = -170)
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Figure 18: ternary plots for the elongation example
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5.10. Taguchi Designs
Taguchi Designs are available using the method taguchiDesign of the qualityTools pack-
age. There are two types of taguchi designs:

• Single level: all factors have the same number of levels (e.g. two levels for a L4_2)

• Mixed level: factors have different number of levels (e.g. two and three levels for
L18_2_3)

Most of the designs that became popular as taguchi designs however are simple 2k

fractional factorial designs with a very low resolution of III (i.e. main effects are con-
founded with two factor interactions) or other mixed level designs and are originally due
to contributions by other e.g. Plackett and Burman, Fisher, Finney and Rao [3]. A de-
sign can be created using the taguchiDesign method of the qualityTools package. The
generic method names, units, values, summary, plot, lm and other methods again are
supported. This way the relevant information for each factor can be stored in the design
object tdo9 itself.
> set.seed (1234)
> tdo = taguchiDesign("L9_3")
> values(tdo) = list(A = c(20, 40, 60), B = c("mateial␣1", "material␣2"

, "material␣3"), C = c(1,2,3))
> names(tdo) = c("Factor␣1", "Factor␣2", "Factor␣3", "Factor␣4")
> summary(tdo)

Taguchi SINGLE Design
Information about the factors:

A B C D
value 1 20 mateial 1 1 1
value 2 40 material 2 2 2
value 3 60 material 3 3 3
name Factor 1 Factor 2 Factor 3 Factor 4
unit
type numeric numeric numeric numeric

-----------

StandOrder RunOrder Replicate A B C D y
1 7 1 1 3 1 3 2 NA
2 1 2 1 1 1 1 1 NA
3 6 3 1 2 3 1 2 NA
4 4 4 1 2 1 2 3 NA
5 2 5 1 1 2 2 2 NA
6 8 6 1 3 2 1 3 NA
7 5 7 1 2 2 3 1 NA
8 3 8 1 1 3 3 3 NA
9 9 9 1 3 3 2 1 NA

The response method is used to assign the values of the response variables. effectPlot
can be used once more to visualize the effect sizes of the factors (figure 19).
> response(tdo) = rnorm (9)
> effectPlot(tdo)

9taguchi design object
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Figure 19: effect plot for the taguchi experiment
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A. R-code

qualityTools in DEFINE

defects=c(rep("E" ,62),rep("B" ,15),rep("F" ,3),rep("A", 10),rep
("C" ,20),rep("D" ,10))
paretoChart(defects)

qualityTools in MEASURE

set.seed (1234)
design=gageRRDesign(Operators=3,Parts=9, Measurements =3)
response(design)=rnorm (3*9*3,mean =20)
gdo=gageRR(design)
plot(gdo)

qualityTools in ANALYZE

set.seed (1234)
norm=rnorm (20,mean =20)
weib=rweibull (20, shape=2,scale =8)
pcr(norm ,"normal",lsl=17,usl =23)
pcr(weib ,"weibull",usl =20)
par(mfrow=c(1 ,2))
qqPlot(weib ,"weibull");qqPlot(weib ,"normal")
ppPlot(norm ,"weibull");ppPlot(norm ,"normal")

qualityTools in IMPROVE
2k Fractional Factorial Designs

set.seed (1234)
fdo=facDesign(k=3, centerCube =4)
names(fdo)=c("Factor␣1","Factor␣2","Factor␣3")
lows(fdo)=c(80 ,120 ,1)
highs(fdo)=c(120 ,140 ,2)
summary(fdo)
yield=simProc(x1=80,x2=120,x3=1)
yield=c(simProc (80 ,120 ,1),simProc (120 ,120 ,2),simProc (120 ,140 ,2),
simProc (80 ,140 ,1),simProc (120 ,120 ,1),simProc (120 ,140 ,1),simProc
(80 ,120 ,2),simProc (80 ,140 ,2),simProc (90 ,130 ,1.5),simProc (90,130,
1.5),simProc (90 ,130 ,1.5),simProc (90 ,130 ,1.5))
response(fdo)=yield
effectPlot(fdo)
interactionPlot(fdo)
lm.1=lm(yield~A*B*C,data=fdo)
summary(lm.1)
paretoPlot(fdo)
wirePlot(A,B,yield ,data=fdo)
contourPlot(A,B,yield ,data=fdo)

2k−p Factorial Designs

fdo.frac=fracDesign(k=3,gen="C␣=␣AB",centerCube =4)
summary(fdo.frac)
aliasTable(fdo.frac)
fracChoose ()
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Replicated Designs and Center Points

fdo1=facDesign(k=3, centerCube =2, replicates =2)

Multiple Responses

set.seed (1234)
y2=rnorm (12,mean =20)
response(fdo)=data.frame(yield ,y2)
par(mfrow=c(1 ,2))
wirePlot(A,B,yield , data=fdo ,form="yield~A+B+C+A*B")
contourPlot(A,B, y2, data=fdo ,form="y2~A+B+C+A*B")
wirePlot(A,B,y2,data=fdo ,factors=list(C=-1),form="y2~A*B*C")
wirePlot (A,B,y2,data=fdo ,factors=list(C=1),form="y2~A*B*C")
fits(fdo)=lm(yield~A+B,data=fdo)
fits(fdo)=lm(y2~A*B*C,data=fdo)
fits(fdo)

Moving to a process setting with an expected higher yield

sao=steepAscent(factors=c("A","B"),response="yield",data=fdo ,steps =20)
sao
predicted=simProc(sao[,5],sao[,6])
response(sao)=predicted
plot(sao ,type="b")

Response Surface Designs

set.seed (1234)
fdo2=facDesign(k=2, centerCube =3)
names(fdo2)=c("Factor␣1","Factor␣2")
lows(fdo2)=c(134 ,155)
highs(fdo2)=c(155 ,175)
yield=c(simProc (134 ,155),simProc (155 ,155),simProc (134 ,175),
simProc (155 ,175),simProc (144 ,165),simProc (144 ,165),simProc (144 ,165))
response(fdo2)=yield
rsdo=starDesign(data=fdo2)
yield2=c(yield ,simProc (130 ,165),simProc (149 ,165),simProc (144 ,151),

simProc (144 ,179)
,simProc (144 ,165),simProc (144 ,165),simProc (144 ,165))
response(rsdo)=yield2
lm.3=lm(yield2~A*B+I(A^2)+I(B^2),data=rsdo)
wirePlot(A,B,yield2 ,form="yield2~A*B+I(A^2)+I(B^2)",data =rsdo ,theta

=-70)
contourPlot(A,B,yield2 ,form="yield2~A*B+I(A^2)+I(B^2)",data=rsdo)
fdo=rsmDesign(k=3,alpha =1.633 ,cc=0,cs=6)
fdo=randomize(fdo ,so=TRUE)
rsdo=rsmChoose ()

Sequential Assembly of Response Surface Designs

fdo3=facDesign(k=6)
rsdo=starDesig(alpha="orhtogonal",data=fdo3)

Randomization

randomize(fdo ,random.seed =123)
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Desirabilites

d1=desirability(y1 ,120 ,170, scale=c(1,1),target="max")
d3=desirability(y3 ,400 ,600, target =500)
d1
plot(d1);plot(d3)

Using desirabilities together with designed experiments

ddo=rsmDesign(k=3,alpha =1.633 ,cc=0,cs=6)
ddo=randomize(ddo ,so=TRUE)
names(ddo)=c("silica","silan","sulfur")
highs(ddo)=c(1.7 ,60 ,2.8)
lows(ddo)=c(0.7 ,40 ,1.8)
y1=c(102 ,120 ,117 ,198 ,103 ,132 ,132 ,139 ,102 ,154 ,96 ,163 ,116 ,
153 ,133 ,133 ,140 ,142 ,145 ,142)
y2=c(900 ,860 ,800 ,2294 ,490 ,1289 ,1270 ,1090 ,770 ,1690 ,700 ,1540 ,
2184 ,1784 ,1300 ,1300 ,1145 ,1090 ,1260 ,1344)
y3=c(470 ,410 ,570 ,240 ,640 ,270 ,410 ,380 ,590 ,260 ,520 ,380 ,520 ,
290 ,380 ,380 ,430 ,430 ,390 ,390)
y4=c(67.5 ,65 ,77.5 ,74.5 ,62.5 ,67 ,78 ,70 ,76 ,70 ,63 ,75 ,65 ,71 ,
70 ,68.5 ,68 ,68 ,69 ,70)
response(ddo)=data.frame(y1,y2,y3,y4)[c(5,2,3,8,1,6,7,4,9:20) ,]
d2=desirability(y2 ,1000 ,1300 , target="max")
d4=desirability(y4 ,60,75, target =67.5)
desires(ddo)=d1; desires(ddo)=d2; desires(ddo)=d3; desires(ddo)=d4
fits(ddo)=lm(y1~A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2),data=ddo)
fits(ddo)=lm(y2~A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2),data=ddo)
fits(ddo)=lm(y3~A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2),data=ddo)
fits(ddo)=lm(y4~A+B+C+A:B+A:C+B:C+I(A^2)+I(B^2)+I(C^2),data=ddo)
optimum(ddo ,type="optim")

Mixture Designs

mdo=mixDesign (3,2,center=FALSE ,axial=FALSE ,randomize=FALSE ,
replicates=c(1,1,2,3))
names(mdo)=c("polyethylene","polystyrene","polypropylene")
elongation=c(11.0 ,12.4 ,15.0 ,14.8 ,16.1 ,17.7 ,16.4 ,16.6 ,8.8 ,10.0 ,
10.0 ,9.7 ,11.8 ,16.8 ,16.0)
response(mdo)=elongation
mdo
contourPlot3(A,B,C,elongation ,data=mdo ,form="quadratic")
wirePlot3(A,B,C,elongation ,data=mdo ,form="quadratic",theta =-170)

Taguchi Designs

set.seed (1234)
tdo=taguchiDesign("L9_3")
values(tdo)=list(A=c(20 ,40 ,60),B=c("mateial␣1","material␣2",
"material␣3"),C=c(1,2,3))
names(tdo)=c("Factor␣1","Factor␣2","Factor␣3","Factor␣4")
summary (tdo)
response(tdo)=rnorm (9)
effectPlot(tdo)
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