Sparse Matrix Representations of Linear
Mixed Models

Douglas Bates
Department of Statistics
University of Wisconsin — Madison
Bates@wisc.edu

June 18, 2004

Abstract

We describe a representation of linear mixed-effects models using
a sparse semidefinite matrix. This representation provides for effi-
cient evaluation of the profiled log-likelihood or profiled restricted log-
likelihood of the model, given the relative precision parameters for the
random effects. The evaluation is based upon the LDLT form of the
Cholesky decomposition of the augmented sparse representation. Ad-
ditionally, we can use information from this representation to evaluate
ECME updates and the gradient of the criterion being optimized.

The sparse matrix methods that we employ have both a symbolic
phase, in which the number and the positions of nonzero elements in
the result are determined, and a numeric phase, in which the actual
numeric values are determined. The symbolic phase need only be done
once and it can be accomplished knowing only the grouping factors
with which the random effects are associated. An important part of
the symbolic phase is determination of a fill-minimizing permutation of
the rows and columns of the sparse semidefinite matrix. This matrix
has a special structure in the linear mixed-effects problem and we
provide a new fill-minimizing algorithm tuned to this structure.
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1 Introduction

Mixed-effects models, also called multilevel models, panel data models, and
frailty models, are widely used in many areas of statistical applications (Pin-
heiro and Bates, 2000). The basic form of the model, the linear mixed model,
also serves as an approximation in iterative estimation of the parameters in
more general forms such as the generalized linear mixed model (GLMM) and
the nonlinear mixed model (NMM).

In §2| we define a general form of a linear mixed model using grouping
factors and model matrices associated with these grouping factors. This form,
which can be used for multiple levels of random effects in either nested or
crossed configurations, can be represented and manipulated using a sparse,
symmetric, semidefinite matrix and several dense matrices. We show that a
profiled log-likelihood can be evaluated from the solution to a penalized least
squares problem and that this solution can be obtained from the Cholesky
decomposition of an augmented form of the sparse, symmetric matrix.

Many implementations of the Cholesky decomposition of sparse, symmet-
ric, semidefinite matrices have both a symbolic phase, in which the number
and the positions of nonzero elements in the result are determined, and a
numeric phase, in which the actual numeric values are determined. In §3}
we show that the symbolic analysis for the matrices we consider need only
be done once and can be accomplished knowing only the grouping factors.
An important part of the symbolic phase is determination of a fill-reducing
permutation of the rows and columns of the symmetric matrix. We show
that by suitably ordering the grouping factors and by restricting ourselves to
permutations that correspond to reorderings of the levels within the grouping
factors we can determine effective fill-reducing orderings.

Finally, in we show how these methods can be used to implement
general penalized least squares approaches to models such as the GLMM
and the NMM and then to implement more accurate approximations to the
marginal likelihood using Laplacian integration or adaptive Gauss-Hermite
integration.

2 Linear mixed models

We describe the form of the linear mixed-effects model that we will consider
and restate some of the formulas from Bates and DebRoy| (2004) using the



LDL form of the Cholesky decomposition of a sparse, semidefinite matrix.

2.1 Form of the model

We consider linear mixed-effects models that can be written as
y=XB+Zb+te e~N(0,0°T),b~N(0,0°Q "), e Lb (1)

where y is the n-dimensional response vector, X is an n X p model matrix
for the p-dimensional fixed-effects vector 3, Z is the n x ¢ model matrix for
the ¢g-dimensional random-effects vector b that has a Gaussian distribution
with mean O and relative precision matrix € (i.e., €2 is the precision of b
relative to the precision of €), and € is the random noise assumed to have
a spherical Gaussian distribution. The symbol L indicates independence of
random variables. We assume that X has full column rank and that €2, which
is a function of an (unconstrained) parameter vector 8, is positive definite.

2.1.1 Grouping factors for the random effects

Although ¢, the dimension of the vector b (and, correspondingly, the number
of columns in Z and the number of rows and columns in ZTZ and Q) can
be very large, these vectors and matrices are highly structured. They are
divided into components associated with grouping factors f;,i = 1,...,k
(each of length n, the same as the length of y) that are part of the data.
The number of distinct values in f;, also called the number of levels of f;, is
m;,i = 1,..., k. In the general form of the model, a model matrix Z; of size
n X ¢; is associated with grouping factor f;, ¢ = 1,..., k. Typically the g;
are very small. In fact, in one common form of the model, called a variance
components model, ¢ = ¢ = --- = q,. = 1 and each of the Z;,i =1,...,k is
a single column of 1’s.

In the general form, the random effects vector b, of length ¢ = Ele m;q;,
is partitioned into k “outer blocks”, where the i’th outer block is of size
miqi,i =1,..., k. The columns of Z and the rows and columns of ZTZ and
Q) are similarly partitioned. The ith outer block is further subdivided into
m,; inner blocks of size ¢;. Note that the grouping factors determine the outer
blocks and the levels of the grouping factors determine the inner blocks.

In the models that we will consider, the random effects associated with
different grouping factors are independent. That is, €2 is block-diagonal in
k blocks of sizes m;q; X m;q;,i = 1,..., k. Furthermore, the random effects
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associated with the levels of a given blocking factor are independent and
identically distributed. Thus the ’th diagonal block in €2 is itself block
diagonal and these diagonal blocks are m; repetitions of a ¢; X ¢; matrix €2;,
1=1,..., k, providing

k
log |22 =~ m;log € (2)

i=1
For a variance components model the matrices €2;,7 =1,...,k are 1 x 1

positive definite matrices which we can consider to be positive scalars w;,7 =
1,..., k. The matrix € is block-diagonal of size Zle m; and the diagonal
blocks are w;I,,, where I, is the m; x m; identity matrix. Thus log |Q2] =
Zle m;logw;. The k-dimensional vector @ where 6; = logw;,7 = 1,...,k
can be used as the unconstrained parameter vector.

The columns of the matrix Z are similarly divided into blocks. For the
variance components model the ith block is the set of indicator columns for
the m; levels of f;;4 = 1,...,k. Because each block is a set of indicators,
the diagonal blocks of ZTZ are themselves diagonal. However, unlike the
corresponding blocks in €2, these blocks are not necessarily a multiple of
the identity. The diagonal elements of the ith diagonal block are the m;
frequencies of occurence of each the levels of the ith grouping factor in the
data. (Because all the elements of Z are zero or one, the diagonals of ZTZ
are simply the counts of the number of ones in the corresponding column of
Z.)

The off-diagonal blocks of ZTZ in a variance components model are the
pairwise crosstabulations of the corresponding grouping factors.

2.1.2 The Scottish secondary school example

An example may help to clarify these descriptions.

Data on achievement scores of Scottish secondary school students are
described in Paterson (1991)) and are analyzed in Rasbash et al.| (2002, ch. 18)
and other references. In the Matrix package for R these data are available
as the data set ScotsSec containing the achievement scores (attain), some
demographic data (sex and social class), a verbal reasoning score based on
tests taken at entry to secondary school, and the primary and secondary
(second) schools attended by 3435 students.

The grouping factors for the random effects are primary (148 distinct
schools) and second (19 distinct schools). The locations of the nonzeros in

4



the 167 x 167 matrix Z'Z are shown in Figure [1| for a variance components
model using these grouping factors.

2.1.3 General structure of the sparse matrix

For the variance components model ZT Z is based on the pairwise crosstabu-
lation of the grouping factors. In the more general model, where some of the
Z; can have multiple columns, the structure of Z"Z can be derived from the
structure of the pairwise crosstabulation matrix. Both Z T Z and the pairwise
crosstabulation can be divided into a k x k grid of blocks. The pattern of
nonzeros in the (i,5) block of ZTZ is obtained by replacing each nonzero in
the (¢, j) block of the crosstabulation by a ¢; X ¢; matrix. Notice that we can
determine the patterns of nonzeros in Z"Z knowing only the ¢;,i = 1,...,k
and the pairwise crosstabulation of the grouping factors.

2.1.4 Crossed and nested grouping factors

In the Scottish secondary school example if all the students from a given
primary school attended the same secondary school we would say that pri-
mary is nested within second. That is not the case. We can see in Figure
that there is a moderate amount of crossing of these two grouping factors. If
there was at least one student in the study from each combination of primary
school and secondary school we would describe the grouping factors primary
and second as being fully crossed. Again, that is not the case for the Scottish
secondary data. Grouping factors like these, which are neither nested nor
fully crossed, are said to be partially crossed.

2.2 Estimation criteria and related quantities

For ease of reference we restate some of the results from |Bates and DebRoy
(2004)) in the form in which they will be calculated.

Given the observed responses y and the model matrices X and Z, we wish
to determine either the maximum likelihood (ML) or the restricted maximum
likelihood (REML) estimates of the parameters 8, 3, and o2. Because the
conditional estimates of 3 and o2, given a value of 0, for either criterion can
be determined from the solution to a penalized least squares problem, we can
reduce the optimization problem to one involving 0 only. This reduction of
the dimension of the optimization problem is called profiling the objective.
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Figure 1: Location of nonzero elements in Z'Z for a variance components
model for the ScotsSec data. Darker squares indicate larger magnitudes.
Rows and columns are numbered from zero. The first 148 rows and columns
correspond to the levels of the primary grouping factor and the last 19 rows
and columns correspond to levels of the second grouping factor.



The conditional, penalized least squares problem can be solved using the
Cholesky decomposition

Z'Z+Q Z'X ZTy Ry, Rzx 71y
X"Z X'X X"y|=R'R where R=| 0 Ryy rx,
y'zZ y'X yly 0 0 Tyy

(3)

The matrices Rz; and Rxy are upper triangular of dimension ¢ x ¢ and p x p

respectively. The corresponding vectors, rz, and rx,, are of dimension ¢ and

p, and ry, is a scalar. The conditions that €2 be positive definite and X have
full column rank ensure that R;; and Rxx are nonsingular.

In our implementation we do not form the upper triangular Cholesky

factor Ryzz. Instead we use Tim Davis’s LDL package (Davis, [2004) to factor

Z'Z +Q=LDL' (4)

where L is a sparse, unit, lower triangular matrix and D is diagonal with pos-
itive diagonal elements. Because the diagonal elements of the unit triangular
matrix L are, by definition, unity, they are not explicitly stored.

In general the matrices ZTX and X TX are dense. We use functions
from the LDL package to solve for Rzx in

D'V?’L'R,x =Z"X (5)

Having solved for Rzx we can downdate X 'X and determine the dense
upper triangular Cholesky factor Ry satisfying

Rl Rxx =X"X - R}, R;x (6)

Similar relationships are used to determine rz,, rx,, and r,,. In fact, in our
implementation we append y to X when forming ZTX and X "X so that
(5) provides both Rzx and 7z, and @ provides Rxx, Txy, and 7.

The conditional estimates of 3 satisfy

RxxP(0) = ry, (7)
and the conditional modes of the random effects satisfy

D'2L™b(0) = r,, — Rzx 3. (8)



The conditional ML estimate of o2 is 02(0) = r>,/n and the conditional

REML estimate is 025(8) = 2,/ (n—p).

The profiled optimization problem, expressed in terms of the deviance, is

6 = arg moin —20(8)

= arg min {log (%) tn [1 4 log (27;7;3@/)} } 9)

O = arg mein —20,(6)

g {log (’D':%f“'j +(n—p) {1 +log (iﬁf%;)} } (10)

for MLL and REML estimation, respectively. The gradients of these criteria
are

- ~~T
_ bb
V(-20() =tr DR ((ZTZ +Q)7 -+ =2 )] (11)
o0
- ~ ~T
_ ., bb
V(-20p) =tr [DQ( Vs — Q7'+ —— (12)
OROR
where
Vo =L "D V(I + R;x R34\ Ry\ RLy) D™V2L™ (13)

and D denotes the Frechet derivative.

If good starting estimates of @ are not available, the initial Newton itera-
tions for @ or can be unstable. We can refine our initial estimates with
a moderate number of ECME steps for which 6, satisfies

(6:)b(0)" | 7 W orm )|
DQ (A(ei) 56 +(Z27Z +Q(6,)) Q(6;41) >] =0 (14)

S~

tr

Q

for ML estimates or

tr [DQ <§(02> LCON + Vi (6;) — Q(Oi+1)1>] =0 (15)

or(6;) Tr(0:)

for REML.
At this point it is easy to formulate a general method of obtaining ML or
REML estimates for a linear mixed model:



1. Given the data y and the model matrices X and Z, formulate initial
estimates @y. Some heuristics for doing so are given in Pinheiro and
Bates (2000, ch. 3).

2. Use a moderate number of ECME steps, or . to refine these
starting estimates. Each ECME step requires evaluatmg Q(0) followed

by the decomposition ([3) and the solutions to @ and ( .

3. Use a Newton method to optimize the criterion @ or with gradient
or (12). Each evaluation of the criterion requires evaluating £2(6)
followed by the decomposition and the solutions to and @
Gradient evaluations require the solutions to and .

In Bates and DebRoy (2004) we show that similar calculations can be used
to evaluate the Hessian of the profiled criteria and that the deviance forms of
the criteria are bounded below throughout the parameter space. Reasonable
starting values determined by the ECME iterations and analytic expressions
for the gradients and Hessians help to make @D and very well controlled
optimization problems. The most difficult computational step in the ECME
or Newton iterations is the sparse Cholesky decomposition ((3).

3 Symbolic analysis

Although the decomposition will be performed many times for different
trial values of @, the structure of ZTZ + € — in particular, the number and
the positions of nonzeros in Z7Z + Q and in L — will be the same for each
evaluation. Because the LDL package provides one function to perform the
symbolic analysis and another function to determine the numerical values in
the decomposition, we can do the symbolic analysis separately.

The number and the positions of the nonzeros in L depend on the po-
sitions of the nonzeros in ZTZ. Any nonzero position in the lower triangle
of ZTZ can be nonzero in L. However other positions in L can become
nonzero during the course of the decomposition. This is called “fill-in”. The
extent of the fill-in can be altered by reordering the components of b (and
correspondingly the columns of Z).

Although there are general approaches, such as approximate minimal de-
gree (Davis, |1996) or graph-partitioning algorithms (Karapis, 2003)), for de-
termining a fill-minimizing permutation, it is more effective for us to exploit
the special structure of ZTZ in searching for such a permutation.

9



As mentioned above, when considering the structure of ZT Z + € we need
only consider the structure for the variance components model because the
structure for the general model is obtained from the structure for the variance
components model by replacing each nonzero in the (, j) block of the variance
components model by a ¢; X ¢; nonzero matrix. Similarly we can derive the
structure of the L matrix for the general model from that of the variance
components model provided we restrict our attention to permutations that
do not mix levels from different grouping factors. That is, we consider only
those fill-reducing permutations that consist of, at most, a permutation of
the grouping factors and permutations of the levels within each grouping
factor. Note that we can determine such a permutation based only on the
pairwise crosstabulation of the grouping factors. That is, the fill-reducing
permutation for the variance components model provides the fill-reducing
permutation for the general model. Hence, in what follows, we consider only
the variance components model.

Fill-in is determined by the elimination tree (Liu, 1990) for the symmetric
matrix. We can determine the Cholesky decomposition, and hence the elim-
ination tree and the extent of the fill-in, column-wise starting with the first
column. We know that there will be “original” nonzeros in L wherever there
are nonzeros in the lower triangle of Z7Z + € and, possibly, some additional,
“induced” nonzeros. If there are nonzeros, either original or induced, below
the diagonal in column 7, say in rows ¢ and k, then a nonzero is induced in
the (i, k) position of L. Consider again the division of ZTZ + Q and L into
a k X k array of blocks determined by the grouping factors. For a variance
components model, the diagonal blocks are themselves diagonal. Because the
(1,1) block is diagonal the row numbers of any nonzeros below the diagonal
must be greater than m;. That is, there will not be any induced nonzeros
in the first m; columns. Because this first block of m; rows and columns
will not experience any fill-in, we choose the first grouping factor to have the
greatest number of levels. In general we order the grouping factors so that
mp 2> Mg 2 -+ 2 My,.

There is no need to permute the levels of the first grouping factor, which
can result in a considerable savings in the effort required to determine a
fill-reducing permutation. For the Scottish secondary school example we
can leave the first 148 columns in their original order and consider only
permutations of the last 19 columns.

We obtain the matrix to determine the permutation of the second and
subsequent groups by “projecting” the first m; columns onto the last ¢ — my
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columns. If there are only two grouping factors we record as potentially
nonzero the positions (i, k) with ¢, k > m; and both (7, ) and (k, j) nonzero
for some j < my. If there are more than two grouping factors we record all
these positions plus any of the original nonzeros below the m;st row and to
the right of the mqst column.

In the case of two nested grouping factors there will only be one nonzero
element below the diagonal in each of the first m; columns, hence there is
no fill-in. For more than two nested grouping factors, any pair of nonzeros
occuring in the first m; columns must be in rows associated with differ-
ent grouping factors and, furthermore, the nonzero off-diagonal that would
be generated in the projected matrix for that combination must already be
nonzero. That is, nested grouping factors do not generate any fill-in. Not
only can the matrix L be created “in place” (that is, with exactly the same
positions of nonzeros as in the lower triangle of Z7Z) but also L™! has the
same pattern of nonzeros. This is unusual. In most cases L~! has many more
nonzeros than does L.

Notice that a single grouping factor is, trivially, a nested sequence.

3.1 Examples

In Figure [2] we show the projection of the symmetric matrix in Figure
onto the 19 x 19 block for the second factor. We also show the patterns of
nonzeros in L from the LDL decomposition of this block (using the original
ordering of the rows and columns); the symmetric block with its rows and
columns permuted according to a fill-reducing permutation determined by
Metis (Karapis|, |2003)); and the nonzeros in the L matrix from the decompo-
sition of the permuted symmetric matrix.

In this case the fill-minimizing permutation does not produce a great
savings in the amount of storage, even relative to dense storage of the ma-
trix which would have 171 elements below the diagonal. Without the fill-
minimizing permutation there are 154 off-diagonal nonzeros in L. With the
permutation there are 131.

Even so, only 470 floating point values are required to store ZTZ and a
total of 601 for the decomposition (167 for D and 434 for L). Dense storage of
the (2, 1) block of ZTZ, as suggested in Rasbash et al. (2002)), would require
2812 floating point locations for that block alone, plus a similar number for
the decomposition. In this example it is the sparse storage, more than the
fill-reducing permutation, that reduces both the space and the computational
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Figure 2: Projection of the pairwise crosstabulation for the Scottish sec-
ondary school data onto the 19 x 19 lower right block for the second factor.
The “Projected” panel shows the original (black squares) and projected (gray
squares) nonzero positions. The “L” panel shows the implicit diagonal (black
squares) and the nonzero off-diagonal (gray squares) for this ordering of the
levels of the factor. The “Permuted” panel shows the symmetric matrix after
permuting the rows and columns according to the fill-reducing permutation
determined by the Metis package and the “L-perm” panel shows the L matrix
from this ordering.
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time required, relative to previous methods.

In other cases, however, the storage savings from the fill-reducing permu-
tation can be substantial. We have used these methods to analyze 378,047
test scores of 134,713 students in 3722 schools. There are 377,111 nonredun-
dant nonzeros in the pairwise crosstabulation (138,435 diagonals and 238,676
off-diagonals). The projection of the (2, 1) block into the (2, 2) block produces
a symmetric 3722 x 3722 matrix with 49,305 non-redundant nonzeros (3722
diagonals and 45,583 off-diagonals). Without the fill-reducing permutation
the L matrix has 4,469,124 nonzero off-diagonals or 64.5% of the maximum
possible number (6,924,781). With the permutation the number of nonzero
off-diagonals is reduced to 193,562 or 2.8% of the maximum.

Fitting linear mixed models to data, such as these, that have a large
number of levels in one or more of a set of partially crossed grouping factors
has been very difficult, if not impossible, with existing multilevel modeling
software. Using a dense representation of the (2, 1) block (over 5x 10® floating
point values or 4 GB per copy, in double precision) is impractical on most
current computers. A sparse matrix representation combined with a fill-
reducing permutation makes it practical to perform multilevel analysis of
such data, which is becoming common (Lockwood et al., 2003).

4 Generalizations of linear mixed models

A generalized linear mixed model is similar to a linear mixed model except
that the linear predictor

n=XB+Zb=g(n) (16)

is a function g, called the link function, of the mean vector, p. Furthermore,
the conditional density of the responses, p(y|3,b,0), may be other than
Gaussian.

Usually the conditional density is a member of the exponential family,
such as the Bernoulli distribution for binary responses or the Poisson distri-
bution for count data, in which case there is a canonical link function (the
logit link for the Bernoulli and the log link for the Poisson).

In many cases, such as the Bernoulli and the Poisson, the conditional
distribution of the response depends only on the mean. In other cases, such as
the Gaussian and gamma distributions, there is a (common) scale parameter
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in the distribution. If there is a scale parameter we incorporate it in the
general dispersion parameter 6.

McCullagh and Nelder| (1989) describe an iteratively reweighted least
squares (IRLS) algorithm for determining the MLEs of the coefficients 3 and,
if used, the scale parameter, in a generalized linear model without random
effects. A penalized quasi-likelihood (PQL) algorithm for estimation of the
parameters in a GLMM can be implemented by replacing the least squares
problem in IRLS by the penalized least squares (PLS) problem represented
by . Within each of the IRLS iterations, we perform some ECME and/or
Newton iterations to optimize the log-likelihood (as a function of 0) repre-
sented by the PLS problem. Convergence of this PQL algorithm is indicated
by its reaching a stationary point.

Thus the techniques described in §2] and §3| provide the inner optimiza-
tion for the PQL algorithm. Although PQL is not guaranteed to produce
the maximum likelihood estimators of the parameters 3 and 6, it will gen-
erally get close to the MLEs. After PQL has converged we switch to direct
optimization of the marginal likelihood

L(8,0) = / p(y|B.b, 0)p(b|6) db. (17)

The integral does not, in general, have a closed form. Two effective
ways of approximating this integral are Laplacian integration (Tierney and
Kadane, 1986) and adaptive Gauss-Hermite integration (Pinheiro and Bates,
2000) for which the conditional modes of the random effects

b(8,0) = arg maxp(y| 8, b, 0)p(b, 6) (18)

are required.
The conditional modes can be determined by a penalized IRLS algorithm
implemented using the representations and decompositions described in

and
4.1 Nonlinear mixed models

In a nonlinear mixed model element i of the expected response E[Y] is a
function of covariates x; associated with that observed response and a r-
dimensional parameter ¢;.

{ElY]}, = f(di,zi) i=1,...,n. (19)
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The values of ¢ can be represented as an n x r matrix ®. Each column of
this matrix is a linear function of 3 and b

@]:X]ﬁ—i—Zjb jzl,,T’ (20)

If the function f is linear in all the elements of ¢; the NMM can be
reexpressed as a LMM, hence we will assume that f is nonlinear in at least
one of these elements.

For a fixed value of @ we can express the conditional estimates of the fixed
effects 3 and the condtional modes of the random effects as the solution to a
penalized nonlinear least squares (PNLS) problem. The algorithm proposed
in Lindstrom and Bates| (1990) is essentially the the same as the PQL al-
gorithm for generalized linear models but with the PIRLS step replaced by
PNLS. Just like PQL this algorithm will generally get close to the MLEs but
does not produce the exact MLEs except in special circumstances.

Estimates obtained by maximizing the Laplacian approximation or an
adaptive Gauss-Hermite approximation to the marginal likelihood should be
closer to the MLEs. As in the case of the GLMM these approximations
require the conditional modes of the random effects. These are the solutions
to a penalized nonlinear least squares problem for which the representation
and decompositions described in §2| and §3| can be used.

5 Implementation

The techniques described in §2] and §3| for linear mixed models, and the
PQL and Laplace methods for generalized linear mixed models are currently
implemented in the 1me4 package for R (R Development Core Team), [2004)).
In future versions of this package we will incorporate the adaptive Gauss-
Hermite method for GLMMs and the PQL, Laplace, and adaptive Gauss-
Hermite methods for NMMs.

Because both R and the 1me4 package are open source software, they pro-
vide a reference implementation of these methods against which other meth-
ods can be compared. However, the package is more than a “reference imple-
mentation”; it is carefully implemented and is suitable as a production sys-
tem. As part of the package we provide a “vignette” (a code/documentation
combination for literate data analysis) that fits the models from the ex-
amples in the comparative reviews of multilevel modeling software (http:
//multilevel.ioe.ac.uk/softrev/). These examples show that the lme
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function in the 1me4 package is fast and reliable on what would currently
be considered typical multilevel modeling examples. However, the sparse
matrix representation and the ease of model specification allows it to go
far beyond currently available software. We know of no other software that
can fit models with partially crossed grouping factors to data sets with 10°
or more observations, such as the longitudinal analysis of over 300,000 test
scores described in incorporating random effects for student and school
and allowing for student migration between schools.

6 Conclusions

We have presented a specification of linear mixed models using model ma-
trices and grouping factors, a computational representation based this spec-
ification, computational methods using the representation, and, to a lesser
extent, described an implementation of the specification, representation, and
computational methods. Furthermore, we show that the specification, repre-
sentation, methods, and implementation can be extended to generalizations
of the linear mixed model including GLMMs and NMMs.

Specification of the model is important. In many software implementa-
tions of methods for fitting linear mixed models it can be awkward to specify
the structure of the random effects. We contend that by concentrating on
the grouping factors in the data and on the model matrices associated with
these grouping factors, the specification of linear mixed models is made much
easier. Nesting or crossing of grouping factors can be determined from the
data, rather than having to be specified as part of the model. Common
forms of linear mixed models (including all those in the comparative review
of multilevel modeling software, http://multilevel.ioe.ac.uk/softrev/)
can be specified without using specialized forms of the precision matrices
Q0 = 1,...,k. We only require that these matrices are symmetric and
positive definite, which makes the implementation much simpler because we
do not need to work with esoteric forms of precision matrices, or variance-
covariance matrices, for the random effects.

A pairwise crosstabulation of the grouping factors, which we store as a
sparse symmetric matrix, is the basis of all the symbolic analysis. Even when
some of the ¢; > 1 we can do all the symbolic analysis on the crosstabulation
without needing the model matrices. It is only when the numeric representa-
tion is being formed that we need the model matrices. Because the number of
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nonzero elements in the LDL decomposition is determined during the sym-
bolic analysis we can allocate all the storage needed for later calculations
immediately after this stage.

We can “project out” the effect of the first grouping factor on the reorder-
ing of the columns of the matrix Z. Because it is common for the number
of levels in one of the grouping factors to be comparable to the number of
observations, ordering the grouping factors so that m1 > m2 > --- > my can
simplify the symbolic analysis considerably.

The representation provided by the sparse symmetric storage of ZTZ
and the dense storage of ZTX and XTX (where X actually contains both
X and y), provides a remarkably efficient means of evaluating the profiled
log-likelihood and restricted log-likelihood. ECME iterative steps can be
efficiently implemented with this representation. After a moderate number
of ECME steps it is advantageous to switch to a Newton or quasi-Newton
optimization method, for which the gradient and, optionally, the Hessian of
the objective can be evaluated.
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