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Abstract

A naive realization of JSON data in R maps JSON arrays to an unnamed list, and JSON objects to a

named list. However, in practice a list is an awkward, inefficient type to store and manipulate data.

Most statistical applications work with (homogeneous) vectors, matrices or data frames. Therefore

JSON packages in R typically define certain special cases of JSON structures which map to simpler R

types. Currently no formal guidelines or consensus exists on how R data should be represented in JSON.

Furthermore, upon closer inspection, even the most basic data structures in R actually do not perfectly

map to their JSON counterparts and leave some ambiguity for edge cases. These problems have resulted

in different behavior between implementations and can lead to unexpected output for edge cases. This

paper explicitly describes a mapping between R classes and JSON data, highlights potential problems,

and outlines conventions that generalize the mapping to cover all common structures. We emphasize the

importance of type consistency when using JSON to exchange dynamic data, and illustrate using examples

and anecdotes. The jsonlite package is used throughout the paper as a reference implementation.

1 Introduction

JavaScript Object Notation (JSON) is a text format for the serialization of structured data (Crockford,

2006a). It is derived from the object literals of JavaScript, as defined in the ECMAScript programming

language standard (Ecma International, 1999). Design of JSON is simple and concise in comparison with

other text based formats, and it was originally proposed by Douglas Crockford as a “fat-free alternative

to XML” (Crockford, 2006b). The syntax is easy for humans to read and write, easy for machines to parse

and generate and completely described in a single page at http://www.json.org. The character encoding

of JSON text is always Unicode, using UTF-8 by default (Crockford, 2006a), making it naturally compatible

with non-latin alphabets. Over the past years, JSON has become hugely popular on the internet as a general

purpose data interchange format. High quality parsing libraries are available for almost any programming

language, making it easy to implement systems and applications that exchange data over the network using

JSON. For R (R Core Team, 2014), several packages that assist the user in generating, parsing and validating

JSON are available through CRAN, including rjson (Couture-Beil, 2013), RJSONIO (Temple Lang, 2013),

and jsonlite (Ooms et al., 2014).
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The emphasis of this paper is not on discussing the JSON format or any particular implementation for using

JSON with R. We refer to Nolan and Temple Lang (2014) for a comprehensive introduction, or one of the

many tutorials available on the web. Instead we take a high level view and discuss how R data structures are

most naturally represented in JSON. This is not a trivial problem, particularly for complex or relational data

as they frequently appear in statistical applications. Several R packages implement toJSON and fromJSON

functions which directly convert R objects into JSON and vice versa. However, the exact mapping between

the various R data classes JSON structures is not self evident. Currently, there are no formal guidelines,

or even consensus between implementations on how R data should be represented in JSON. Furthermore,

upon closer inspection, even the most basic data structures in R actually do not perfectly map to their JSON

counterparts, and leave some ambiguity for edge cases. These problems have resulted in different behavior

between implementations, and can lead to unexpected output for certain special cases. Furthermore, best

practices of representing data in JSON have been established outside the R community. Incorporating these

conventions where possible is important to maximize interoperability.

1.1 Parsing and type safety

The JSON format specifies 4 primitive types (string, number, boolean, null) and two universal structures:

• A JSON object : an unordered collection of zero or more name-value pairs, where a name is a string and

a value is a string, number, boolean, null, object, or array.

• A JSON array : an ordered sequence of zero or more values.

Both these structures are heterogeneous; i.e. they are allowed to contain elements of different types. There-

fore, the native R realization of these structures is a named list for JSON objects, and unnamed list for

JSON arrays. However, in practice a list is an awkward, inefficient type to store and manipulate data in R.

Most statistical applications work with (homogeneous) vectors, matrices or data frames. In order to give

these data structures a JSON representation, we can define certain special cases of JSON structures which get

parsed into other, more specific R types. For example, one convention which all current implementations

have in common is that a homogeneous array of primitives gets parsed into an atomic vector instead of a

list. The RJSONIO documentation uses the term “simplify” for this behavior, and we adopt this jargon.

txt <- '[12, 3, 7]'

x <- fromJSON(txt)

is(x)

[1] "integer" "numeric" "vector"

[4] "data.frameRowLabels"

print(x)

[1] 12 3 7

This seems very reasonable and it is the only practical solution to represent vectors in JSON. However the

price we pay is that automatic simplification can compromise type-safety in the context of dynamic data.

For example, suppose an R package uses fromJSON to pull data from a JSON API on the web and that for
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some particular combination of parameters the result includes a null value, e.g: [12, null, 7]. This

is actually quite common, many API’s use null for missing values or unset fields. This case makes the

behavior of parser ambiguous, because the JSON array is technically no longer homogeneous. And indeed,

some implementations will now return a list instead of a vector. If the user had not anticipated this

scenario and the script assumes a vector, the code is likely to run into type errors.

The lesson here is that we need to be very specific and explicit about the mapping that is implemented to

convert between JSON data and R objects. When relying on JSON as a data interchange format, the behavior

of the parser must be consistent and unambiguous. Clients relying on JSON to get data in and out of R must

know exactly what to expect in order to facilitate reliable communication, even if the content of the data

is dynamic. Similarly, R code using dynamic JSON data from an external source is only reliable when the

conversion from JSON to R is consistent. Moreover a practical mapping must incorporate existing conventions

and use the most natural representation of certain structures in R. In the example above, we could argue

that instead of falling back on a list, the array is more naturally interpreted as a numeric vector where the

null becomes a missing value (NA). These principles will extrapolate as we start discussing more complex

JSON structures representing matrices and data frames.

1.2 Reference implementation: the jsonlite package

The jsonlite package provides a reference implementation of the conventions proposed in this document.

It is a fork of the RJSONIO package by Duncan Temple Lang, which builds on libjson C++ library from

Jonathan Wallace. jsonlite uses the parser from RJSONIO, but the R code has been rewritten from scratch.

Both packages implement toJSON and fromJSON functions, but their output is quite different. Finally, the

jsonlite package contains a large set of unit tests to validate that R objects are correctly converted to JSON

and vice versa. These unit tests cover all classes and edge cases mentioned in this document, and could be

used to validate if other implementations follow the same conventions.

library(testthat)

test_package("jsonlite")

Note that even though JSON allows for inserting arbitrary white space and indentation, the unit tests assume

that white space is trimmed.

1.3 Class-based versus type-based encoding

The jsonlite package actually implements two systems for translating between R objects and JSON. This

document focuses on the toJSON and fromJSON functions which use R’s class-based method dispatch. For all

of the common classes in R, the jsonlite package implements toJSON methods as described in this document.

Users in R can extend this system by implementing additional methods for other classes. This also means that

classes that do not have the toJSON method defined are not supported. Furthermore, the implementation of

a specific toJSON method determines which data and metadata in the objects of this class gets encoded in

its JSON representation, and how. In this respect, toJSON is similar to e.g. the print function, which also
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provides a certain representation of an object based on its class and optionally some print parameters. This

representation does not necessarily reflect all information stored in the object, and there is no guaranteed

one-to-one correspondence between R objects and JSON. I.e. calling fromJSON(toJSON(object)) will return

an object which only contains the data that was encoded by the toJSON method for this particular class,

and which might even have a different class than the original.

The alternative to class-based method dispatch is to use type-based encoding, which jsonlite implements in

the functions serializeJSON and unserializeJSON. All data structures in R get stored in memory using one

of the internal SEXP storage types, and serializeJSON defines an encoding schema which captures the type,

value, and attributes for each storage type. The resulting JSON closely resembles the internal structure of the

underlying C data types, and can be perfectly restored to the original R object using unserializeJSON. This

system is relatively straightforward to implement, but the resulting JSON is very verbose, hard to interpret,

and cumbersome to generate in the context of another language or system. For most applications this is

actually impractical because it requires the client/consumer to understand and manipulate R data types,

which is difficult and reduces interoperability. Instead we can make data in R more accessible to third parties

by defining sensible JSON representations that are natural for the class of an object, rather than its internal

storage type. This document does not discuss the serializeJSON system in any further detail, and solely

treats the class based system implemented in toJSON and fromJSON. However the reader that is interested

in full serialization of R objects into JSON is encouraged to have a look at the respective manual pages.

1.4 Scope and limitations

Before continuing, we want to stress some limitations of encoding R data structures in JSON. Most importantly,

there are limitations to the types of objects that can be represented. In general, temporary in-memory

properties such as connections, file descriptors and (recursive) memory references are always difficult if not

impossible to store in a sensible way, regardless of the language or serialization method. This document

focuses on the common R classes that hold data, such as vectors, factors, lists, matrices and data frames. We

do not treat language level constructs such as expressions, functions, promises, which hold little meaning

outside the context of R. We also don’t treat special compound classes such as linear models or custom

classes defined in contributed packages. When designing systems or protocols that interact with R, it is

highly recommended to stick with the standard data structures for the interface input/output.

Then there are limitations introduced by the format. Because JSON is a human readable, text-based format,

it does not support binary data, and numbers are stored in their decimal notation. The latter leads to loss

of precision for real numbers, depending on how many digits the user decides to print. Several dialects of

JSON exists such as BSON (Chodorow, 2013) or MSGPACK (Furuhashi, 2014), which extend the format with

various binary types. However, these formats are much less popular, less interoperable, and often impractical,

precisely because they require binary parsing and abandon human readability. The simplicity of JSON is what

makes it an accessible and widely applicable data interchange format. In cases where it is really needed to

include some binary data in JSON, we can encode a blob as a string using base64.

Finally, as mentioned earlier, fromJSON is not a perfect inverse function of toJSON, as is the case for

serialializeJSON and unserializeJSON. The class based mappings are designed for concise and practical
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encoding of the various common data structures. Our implementation of toJSON and fromJSON approxi-

mates a reversible mapping between R objects and JSON for the standard data classes, but there are always

limitations and edge cases. For example, the JSON representation of an empty vector, empty list or empty

data frame are all the same: "[ ]". Also some special vector types such as factors, dates or timestamps get

coerced to strings, as they would in for example CSV. This is a quite typical and expected behavior among

text based formats, but it does require some additional interpretation on the consumer side.

2 Converting between JSON data and R classes

This section lists examples of how the common R classes are represented in JSON. As explained before, the

toJSON function relies on method dispatch, which means that objects get encoded according to their class

attribute. If an object has multiple class values, R uses the first occurring class which has a toJSON method.

If none of the classes of an object has a toJSON method, an error is raised.

2.1 Atomic vectors

The most basic data type in R is the atomic vector. Atomic vectors hold an ordered, homogeneous set of

values of type logical (booleans), character (strings), raw (bytes), numeric (doubles), complex (complex

numbers with a real and imaginary part), or integer. Because R is fully vectorized, there is no user level

notion of a primitive: a scalar value is considered a vector of length 1. Atomic vectors map to JSON arrays:

x <- c(1, 2, pi)

toJSON(x)

[1,2,3.1416]

The JSON array is the only appropriate structure to encode a vector, even though vectors in R are homoge-

neous, whereas the JSON array is actually heterogeneous, but JSON does not make this distinction.

2.1.1 Missing values

A typical domain specific problem when working with statistical data is presented by missing values: a

concept foreign to many other languages. Besides regular values, each vector type in R except for raw can

hold NA as a value. Vectors of type double and complex define three additional types of non finite values:

NaN, Inf and -Inf. The JSON format does not natively support any of these types; therefore such values

values need to be encoded in some other way. There are two obvious approaches. The first one is to use the

JSON null type. For example:

x <- c(TRUE, FALSE, NA)

toJSON(x)

[true,false,null]
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The other option is to encode missing values as strings by wrapping them in double quotes:

x <- c(1,2,NA,NaN,Inf,10)

toJSON(x)

[1,2,"NA","NaN","Inf",10]

Both methods result in valid JSON, but both have a limitation: the problem with the null type is that it

is impossible to distinguish between different types of missing data, which could be a problem for numeric

vectors. The values Inf, -Inf, NA and NaN carry different meanings, and these should not get lost in the

encoding. The problem with encoding missing values as strings is that this method can not be used for

character vectors, because the consumer won’t be able to distinguish the actual string "NA" and the missing

value NA. This would create a likely source of bugs, where clients mistakenly interpret "NA" as an actual

string value, which is a common problem with text-based formats such as CSV. For this reason, jsonlite

uses the following defaults:

• Missing values in non-numeric vectors (logical, character) are encoded as null.

• Missing values in numeric vectors (double, integer, complex) are encoded as strings.

We expect that these conventions are most likely to result in the correct interpretation of missing values.

Some examples:

toJSON(c(TRUE, NA, NA, FALSE))

[true,null,null,false]

toJSON(c("FOO", "BAR", NA, "NA"))

["FOO","BAR",null,"NA"]

toJSON(c(3.14, NA, NaN, 21, Inf, -Inf))

[3.14,"NA","NaN",21,"Inf","-Inf"]

#Non-default behavior

toJSON(c(3.14, NA, NaN, 21, Inf, -Inf), na="null")

[3.14,null,null,21,null,null]

2.1.2 Special vector types: dates, times, factor, complex

Besides missing values, JSON also lacks native support for some of the basic vector types in R that frequently

appear in data sets. These include vectors of class Date, POSIXt (timestamps), factors and complex vectors.

By default, the jsonlite package coerces these types to strings (using as.character):

toJSON(Sys.time() + 1:3)

["2014-10-21 08:27:29","2014-10-21 08:27:30","2014-10-21 08:27:31"]

toJSON(as.Date(Sys.time()) + 1:3)
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["2014-10-22","2014-10-23","2014-10-24"]

toJSON(factor(c("foo", "bar", "foo")))

["foo","bar","foo"]

toJSON(complex(real=runif(3), imaginary=rnorm(3)))

["0.4193-0.9043i","0.369-1.013i","0.7459+0.5912i"]

When parsing such JSON strings, these values will appear as character vectors. In order to obtain the

original types, the user needs to manually coerce them back to the desired type using the corresponding as

function, e.g. as.POSIXct, as.Date, as.factor or as.complex. In this respect, JSON is subject to the same

limitations as text based formats such as CSV.

2.1.3 Special cases: vectors of length 0 or 1

Two edge cases deserve special attention: vectors of length 0 and vectors of length 1. In jsonlite these are

encoded respectively as an empty array, and an array of length 1:

#vectors of length 0 and 1

toJSON(vector())

[]

toJSON(pi)

[3.1416]

#vectors of length 0 and 1 in a named list

toJSON(list(foo=vector()))

{"foo":[]}

toJSON(list(foo=pi))

{"foo":[3.1416]}

#vectors of length 0 and 1 in an unnamed list

toJSON(list(vector()))

[[]]

toJSON(list(pi))

[[3.1416]]

This might seem obvious but these cases result in very different behavior between different JSON packages.

This is probably caused by the fact that R does not have a scalar type, and some package authors decided to

treat vectors of length 1 as if they were a scalar. For example, in the current implementations, both RJSONIO

and rjson encode a vector of length one as a JSON primitive when it appears within a list:
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# Other packages make different choices:

cat(rjson::toJSON(list(n = c(1))))

{"n":1}

cat(rjson::toJSON(list(n = c(1, 2))))

{"n":[1,2]}

When encoding a single dataset this seems harmless, but in the context of dynamic data this inconsistency

is almost guaranteed to cause bugs. For example, imagine an R web service which lets the user fit a linear

model and sends back the fitted parameter estimates as a JSON array. The client code then parses the JSON,

and iterates over the array of coefficients to display them in a GUI. All goes well, until the user decides to

fit a model with only one predictor. If the JSON encoder suddenly returns a primitive value where the client

is expecting an array, the application will likely break. Therefore, any consumer or client would need to

be aware of the special case where the vector becomes a primitive, and explicitly take this exception into

account when processing the result. When the client fails to do so and proceeds as usual, it will probably call

an iterator or loop method on a primitive value, resulting in the obvious errors. To avoid this, jsonlite uses

consistent encoding schemes which do not depend on variable object properties such as its length. Hence, a

vector is always encoded as an array, even when it is of length 0 or 1.

2.2 Matrices

Arguably one of the strongest sides of R is its ability to interface libraries for basic linear algebra subpro-

grams (Lawson et al., 1979) such as LAPACK (Anderson et al., 1987). These libraries provide well tuned,

high performance implementations of important linear algebra operations to calculate anything from inner

products and eigen values to singular value decompositions, which are in turn building blocks of statistical

methods such as linear regression or principal component analysis. Linear algebra methods operate on ma-

trices, making the matrix one of the most central data classes in R. Conceptually, a matrix consists of a 2

dimensional structure of homogeneous values. It is indexed using 2 numbers (or vectors), representing the

rows and columns of the matrix respectively.

x <- matrix(1:12, nrow=3, ncol=4)

print(x)

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

print(x[2,4])

[1] 11

A matrix is stored in memory as a single atomic vector with an attribute called "dim" defining the dimensions

of the matrix. The product of the dimensions is equal to the length of the vector.
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attributes(volcano)

$dim

[1] 87 61

length(volcano)

[1] 5307

Even though the matrix is stored as a single vector, the way it is printed and indexed makes it conceptually

a 2 dimensional structure. In jsonlite a matrix maps to an array of equal-length subarrays:

x <- matrix(1:12, nrow=3, ncol=4)

toJSON(x)

[[1,4,7,10],[2,5,8,11],[3,6,9,12]]

We expect this representation will be the most intuitive to interpret, also within languages that do not have

a native notion of a matrix. Note that even though R stores matrices in column major order, jsonlite

encodes matrices in row major order. This is a more conventional and intuitive way to represent matrices

and is consistent with the row-based encoding of data frames discussed in the next section. When the JSON

string is properly indented (recall that white space and line breaks are optional in JSON), it looks very similar

to the way R prints matrices:

[ [ 1, 4, 7, 10 ],

[ 2, 5, 8, 11 ],

[ 3, 6, 9, 12 ] ]

Because the matrix is implemented in R as an atomic vector, it automatically inherits the conventions

mentioned earlier with respect to edge cases and missing values:

x <- matrix(c(1,2,4,NA), nrow=2)

toJSON(x)

[[1,4],[2,"NA"]]

toJSON(x, na="null")

[[1,4],[2,null]]

toJSON(matrix(pi))

[[3.1416]]

2.2.1 Matrix row and column names

Besides the "dim" attribute, the matrix class has an additional, optional attribute: "dimnames". This

attribute holds names for the rows and columns in the matrix. However, we decided not to include this

information in the default JSON mapping for matrices for several reasons. First of all, because this attribute
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is optional, either row or column names or both could be NULL. This makes it difficult to define a practical

mapping that covers all cases with and without row and/or column names. Secondly, the names in matrices

are mostly there for annotation only; they are not actually used in calculations. The linear algebra subrou-

tines mentioned before completely ignore them, and never include any names in their output. So there is

often little purpose of setting names in the first place, other than annotation.

When row or column names of a matrix seem to contain vital information, we might want to transform the

data into a more appropriate structure. Wickham (2014) calls this “tidying” the data and outlines best

practices on storing statistical data in its most appropriate form. He lists the issue where “column headers

are values, not variable names” as the most common source of untidy data. This often happens when the

structure is optimized for presentation (e.g. printing), rather than computation. In the following example

taken from Wickham, the predictor variable (treatment) is stored in the column headers rather than the

actual data. As a result, these values do not get included in the JSON output:

x <- matrix(c(NA,1,2,5,NA,3), nrow=3)

row.names(x) <- c("Joe", "Jane", "Mary");

colnames(x) <- c("Treatment A", "Treatment B")

print(x)

Treatment A Treatment B

Joe NA 5

Jane 1 NA

Mary 2 3

toJSON(x)

[["NA",5],[1,"NA"],[2,3]]

Wickham recommends that the data be melted into its tidy form. Once the data is tidy, the JSON encoding

will naturally contain the treatment values:

library(reshape2)

y <- melt(x, varnames=c("Subject", "Treatment"))

print(y)

Subject Treatment value

1 Joe Treatment A NA

2 Jane Treatment A 1

3 Mary Treatment A 2

4 Joe Treatment B 5

5 Jane Treatment B NA

6 Mary Treatment B 3

toJSON(y, pretty=TRUE)

[

{
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"Subject": "Joe",

"Treatment": "Treatment A"

},

{

"Subject": "Jane",

"Treatment": "Treatment A",

"value": 1

},

{

"Subject": "Mary",

"Treatment": "Treatment A",

"value": 2

},

{

"Subject": "Joe",

"Treatment": "Treatment B",

"value": 5

},

{

"Subject": "Jane",

"Treatment": "Treatment B"

},

{

"Subject": "Mary",

"Treatment": "Treatment B",

"value": 3

}

]

In some other cases, the column headers actually do contain variable names, and melting is inappropriate.

For data sets with records consisting of a set of named columns (fields), R has more natural and flexible

class: the data-frame. The toJSON method for data frames (described later) is more suitable when we want

to refer to rows or fields by their name. Any matrix can easily be converted to a data-frame using the

as.data.frame function:

toJSON(as.data.frame(x), pretty=TRUE)

[

{

"Treatment B": 5,

"_row": "Joe"

},
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{

"Treatment A": 1,

"_row": "Jane"

},

{

"Treatment A": 2,

"Treatment B": 3,

"_row": "Mary"

}

]

For some cases this results in the desired output, but in this example melting seems more appropriate.

2.3 Lists

The list is the most general purpose data structure in R. It holds an ordered set of elements, including

other lists, each of arbitrary type and size. Two types of lists are distinguished: named lists and unnamed

lists. A list is considered a named list if it has an attribute called "names". In practice, a named list is

any list for which we can access an element by its name, whereas elements of an unnamed lists can only be

accessed using their index number:

mylist1 <- list("foo" = 123, "bar"= 456)

print(mylist1$bar)

[1] 456

mylist2 <- list(123, 456)

print(mylist2[[2]])

[1] 456

2.3.1 Unnamed lists

Just like vectors, an unnamed list maps to a JSON array:

toJSON(list(c(1,2), "test", TRUE, list(c(1,2))))

[[1,2],["test"],[true],[[1,2]]]

Note that even though both vectors and lists are encoded using JSON arrays, they can be distinguished from

their contents: an R vector results in a JSON array containing only primitives, whereas a list results in a JSON

array containing only objects and arrays. This allows the JSON parser to reconstruct the original type from

encoded vectors and arrays:
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x <- list(c(1,2,NA), "test", FALSE, list(foo="bar"))

identical(fromJSON(toJSON(x)), x)

[1] FALSE

The only exception is the empty list and empty vector, which are both encoded as [ ] and therefore

indistinguishable, but this is rarely a problem in practice.

2.3.2 Named lists

A named list in R maps to a JSON object :

toJSON(list(foo=c(1,2), bar="test"))

{"foo":[1,2],"bar":["test"]}

Because a list can contain other lists, this works recursively:

toJSON(list(foo=list(bar=list(baz=pi))))

{"foo":{"bar":{"baz":[3.1416]}}}

Named lists map almost perfectly to JSON objects with one exception: list elements can have empty names:

x <- list(foo=123, "test", TRUE)

attr(x, "names")

[1] "foo" "" ""

x$foo

[1] 123

x[[2]]

[1] "test"

In a JSON object, each element in an object must have a valid name. To ensure this property, jsonlite

uses the same solution as the print method, which is to fall back on indices for elements that do not have

a proper name:

x <- list(foo=123, "test", TRUE)

print(x)

$foo

[1] 123

[[2]]

[1] "test"
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[[3]]

[1] TRUE

toJSON(x)

{"foo":[123],"2":["test"],"3":[true]}

This behavior ensures that all generated JSON is valid, however named lists with empty names should be

avoided where possible. When actually designing R objects that should be interoperable, it is recommended

that each list element is given a proper name.

2.4 Data frame

The data frame is perhaps the most central data structure in R from the user point of view. This class holds

tabular data in which each column is named and (usually) homogeneous. Conceptually it is very similar to

a table in relational data bases such as MySQL, where fields are referred to as column names, and records

are called rows. Like a matrix, a data frame can be subsetted with two indices, to extract certain rows and

columns of the data:

is(iris)

[1] "data.frame" "list" "oldClass" "vector"

names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

[5] "Species"

print(iris[1:3, c(1,5)])

Sepal.Length Species

1 5.1 setosa

2 4.9 setosa

3 4.7 setosa

print(iris[1:3, c("Sepal.Width", "Species")])

Sepal.Width Species

1 3.5 setosa

2 3.0 setosa

3 3.2 setosa

For the previously discussed classes such as vectors and matrices, behavior of jsonlite was quite similar

to the other available packages that implement toJSON and fromJSON functions, with only minor differences

for missing values and edge cases. But when it comes to data frames, jsonlite takes a completely different

approach. The behavior of jsonlite is designed for compatibility with conventional ways of encoding table-

like structures outside the R community. The implementation is more involved, but results in a powerful and

more natural way of representing data frames in JSON.
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2.4.1 Column based versus row based tables

Generally speaking, tabular data structures can be implemented in two different ways: in a column based,

or row based fashion. A column based structure consists of a named collection of equal-length, homogeneous

arrays representing the table columns. In a row-based structure on the other hand, the table is implemented

as a set of heterogeneous associative arrays representing table rows with field values for each particular record.

Even though most languages provide flexible and abstracted interfaces that hide these implementation details

from the user, they can have huge implications for performance. A column based structure is efficient for

inserting or extracting certain columns of the data, but it is inefficient for manipulating individual rows. For

example to insert a single row somewhere in the middle, each of the columns has to be sliced and stitched

back together. For row-based implementations, it is the exact other way around: we can easily manipulate

a particular record, but to insert/extract a whole column we would need to iterate over all records in the

table and read/modify the appropriate field in each of them.

The data frame class in R is implemented in a column based fashion: it constitutes of a named list of

equal-length vectors. Thereby the columns in the data frame naturally inherit the properties from atomic

vectors discussed before, such as homogeneity, missing values, etc. Another argument for column-based

implementation is that statistical methods generally operate on columns. For example, the lm function fits a

linear regression by extracting the columns from a data frame as specified by the formula argument. R simply

binds the specified columns together into a matrix X and calls out to a highly optimized FORTRAN subroutine

to calculate the OLS estimates β̂ = (XTX)XT y using the QR factorization of X. Many other statistical

modeling functions follow similar steps, and are computationally efficient because of the column-based data

storage in R.

Unfortunately R is an exception in its preference for column-based storage: most languages, systems,

databases, API’s, etc, are optimized for record based operations. For this reason, the conventional way

to store and communicate tabular data in JSON seems to almost exclusively row based. This discrepancy

presents various complications when converting between data frames and JSON. The remaining of this section

discusses details and challenges of consistently mapping record based JSON data as frequently encountered

on the web, into column-based data frames which are convenient for statistical computing.

2.4.2 Row based data frame encoding

The encoding of data frames is one of the major differences between jsonlite and implementations from

other currently available packages. Instead of using the column-based encoding also used for lists, jsonlite

maps data frames by default to an array of records:

toJSON(iris[1:2,], pretty=TRUE)

[

{

"Sepal.Length": 5.1,

"Sepal.Width": 3.5,

"Petal.Length": 1.4,
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"Petal.Width": 0.2,

"Species": "setosa"

},

{

"Sepal.Length": 4.9,

"Sepal.Width": 3,

"Petal.Length": 1.4,

"Petal.Width": 0.2,

"Species": "setosa"

}

]

This output looks a bit like a list of named lists. However, there is one major difference: the individual

records contain JSON primitives, whereas lists always contain JSON objects or arrays:

toJSON(list(list(Species="Foo", Width=21)), pretty=TRUE)

[

{

"Species": [

"Foo"

],

"Width": [

21

]

}

]

This leads to the following convention: when encoding R objects, JSON primitives only appear in vectors

and data-frame rows. Primitives within a JSON array indicate a vector, and primitives appearing inside a

JSON object indicate a data-frame row. A JSON encoded list, (named or unnamed) will never contain JSON

primitives. This is a subtle but important convention that helps to distinguish between R classes from their

JSON representation, without explicitly encoding any metadata.

2.4.3 Missing values in data frames

The section on atomic vectors discussed two methods of encoding missing data appearing in a vector: either

using strings or using the JSON null type. When a missing value appears in a data frame, there is a third

option: simply not include this field in JSON record:
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x <- data.frame(foo=c(FALSE, TRUE,NA,NA), bar=c("Aladdin", NA, NA, "Mario"))

print(x)

foo bar

1 FALSE Aladdin

2 TRUE <NA>

3 NA <NA>

4 NA Mario

toJSON(x, pretty=TRUE)

[

{

"foo": false,

"bar": "Aladdin"

},

{

"foo": true

},

{

},

{

"bar": "Mario"

}

]

The default behavior of jsonlite is to omit missing data from records in a data frame. This seems to be

the most conventional method used on the web, and we expect this encoding will most likely lead to the

correct interpretation of missingness, even in languages without an explicit notion of NA.

2.4.4 Relational data: nested records

Nested datasets are somewhat unusual in R, but frequently encountered in JSON. Such structures do not really

fit the vector based paradigm which makes them harder to manipulate in R. However, nested structures are

too common in JSON to ignore, and with a little work most cases still map to a data frame quite nicely. The

most common scenario is a dataset in which a certain field within each record contains a subrecord with

additional fields. The jsonlite implementation maps these subrecords to a nested data frame. Whereas

the data frame class usually consists of vectors, technically a column can also be list or another data frame

with matching dimension (this stretches the meaning of the word “column” a bit):
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options(stringsAsFactors=FALSE)

x <- data.frame(driver = c("Bowser", "Peach"), occupation = c("Koopa", "Princess"))

x$vehicle <- data.frame(model = c("Piranha Prowler", "Royal Racer"))

x$vehicle$stats <- data.frame(speed = c(55, 34), weight = c(67, 24), drift = c(35, 32))

str(x)

'data.frame': 2 obs. of 3 variables:

$ driver : chr "Bowser" "Peach"

$ occupation: chr "Koopa" "Princess"

$ vehicle :'data.frame': 2 obs. of 2 variables:

..$ model: chr "Piranha Prowler" "Royal Racer"

..$ stats:'data.frame': 2 obs. of 3 variables:

.. ..$ speed : num 55 34

.. ..$ weight: num 67 24

.. ..$ drift : num 35 32

toJSON(x, pretty=TRUE)

[

{

"driver": "Bowser",

"occupation": "Koopa",

"vehicle": {

"model": "Piranha Prowler",

"stats": {

"speed": 55,

"weight": 67,

"drift": 35

}

}

},

{

"driver": "Peach",

"occupation": "Princess",

"vehicle": {

"model": "Royal Racer",

"stats": {

"speed": 34,

"weight": 24,

"drift": 32

}

}

}
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]

myjson <- toJSON(x)

y <- fromJSON(myjson)

identical(x,y)

[1] FALSE

When encountering JSON data containing nested records on the web, chances are that these data were

generated from relational database. The JSON field containing a subrecord represents a foreign key pointing

to a record in an external table. For the purpose of encoding these into a single JSON structure, the tables

were joined into a nested structure. The directly nested subrecord represents a one-to-one or many-to-one

relation between the parent and child table, and is most naturally stored in R using a nested data frame.

In the example above, the vehicle field points to a table of vehicles, which in turn contains a stats field

pointing to a table of stats. When there is no more than one subrecord for each record, we easily flatten the

structure into a single non-nested data frame.

y <- fromJSON(myjson, flatten=TRUE)

str(y)

'data.frame': 2 obs. of 6 variables:

$ driver : chr "Bowser" "Peach"

$ occupation : chr "Koopa" "Princess"

$ vehicle.model : chr "Piranha Prowler" "Royal Racer"

$ vehicle.stats.speed : int 55 34

$ vehicle.stats.weight: int 67 24

$ vehicle.stats.drift : int 35 32

2.4.5 Relational data: nested tables

The one-to-one relation discussed above is relatively easy to store in R, because each record contains at

most one subrecord. Therefore we can use either a nested data frame, or flatten the data frame. However,

things get more difficult when JSON records contain a field with a nested array. Such a structure appears in

relational data in case of a one-to-many relation. A standard textbook illustration is the relation between

authors and titles. For example, a field can contain an array of values:

x <- data.frame(author = c("Homer", "Virgil", "Jeroen"))

x$poems <- list(c("Iliad", "Odyssey"), c("Eclogues", "Georgics", "Aeneid"), vector());

names(x)

[1] "author" "poems"

toJSON(x, pretty = TRUE)

[
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{

"author": "Homer",

"poems": [

"Iliad",

"Odyssey"

]

},

{

"author": "Virgil",

"poems": [

"Eclogues",

"Georgics",

"Aeneid"

]

},

{

"author": "Jeroen",

"poems": [

]

}

]

As can be seen from the example, the way to store this in a data frame is using a list of character vectors.

This works, and although unconventional, we can still create and read such structures in R relatively easily.

However, in practice the one-to-many relation is often more complex. It results in fields containing a set of

records. In R, the only way to model this is as a column containing a list of data frames, one separate data

frame for each row:

x <- data.frame(author = c("Homer", "Virgil", "Jeroen"))

x$poems <- list(

data.frame(title=c("Iliad", "Odyssey"), year=c(-1194, -800)),

data.frame(title=c("Eclogues", "Georgics", "Aeneid"), year=c(-44, -29, -19)),

data.frame()

)

toJSON(x, pretty=TRUE)

[

{

"author": "Homer",

"poems": [

20



{

"title": "Iliad",

"year": -1194

},

{

"title": "Odyssey",

"year": -800

}

]

},

{

"author": "Virgil",

"poems": [

{

"title": "Eclogues",

"year": -44

},

{

"title": "Georgics",

"year": -29

},

{

"title": "Aeneid",

"year": -19

}

]

},

{

"author": "Jeroen",

"poems": [

]

}

]

Because R doesn’t have native support for relational data, there is no natural class to store such structures.

The best we can do is a column containing a list of sub-dataframes. This does the job, and allows the R user

to access or generate nested JSON structures. However, a data frame like this cannot be flattened, and the

class does not guarantee that each of the individual nested data frames contain the same fields, as would be

the case in an actual relational data base.
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3 Structural consistency and type safety in dynamic data

Systems that automatically exchange information over some interface, protocol or API require well defined

and unambiguous meaning and arrangement of data. In order to process and interpret input and output,

contents must obey a steady structure. Such structures are usually described either informally in documenta-

tion or more formally in a schema language. The previous section emphasized the importance of consistency

in the mapping between JSON data and R classes. This section takes a higher level view and explains the

importance of structure consistency for dynamic data. This topic can be a bit subtle because it refers to

consistency among different instantiations of a JSON structure, rather than a single case. We try to clarify

by breaking down the concept into two important parts, and illustrate with analogies and examples from R.

3.1 Classes, types and data

Most object-oriented languages are designed with the idea that all objects of a certain class implement the

same fields and methods. In strong-typed languages such as S4 or Java, names and types of the fields are

formally declared in a class definition. In other languages such as S3 or JavaScript, the fields are not

enforced by the language but rather at the discretion of the programmer. One way or another they assume

that members of a certain class agree on field names and types, so that the same methods can be applied

to any object of a particular class. This basic principle holds for dynamic data exactly the same way as

for objects. Software that process dynamic data can only work reliably if the various elements of the data

have consistent names and structure. Consensus must exist between the different parties on data that is

exchanged as part an interface or protocol. This requires the structure to follow some sort of template that

specifies which attributes can appear in the data, what they mean and how they are composed. Thereby

each possible scenario can be accounted for in the software so that data can be interpreted and processed

appropriately with no exceptions during run-time.

Some data interchange formats such as XML or Protocol Buffers take a formal approach to this matter,

and have well established schema languages and interface description languages. Using such a meta language

it is possible to define the exact structure, properties and actions of data interchange in a formal arrange-

ment. However, in JSON, such formal definitions are relatively uncommon. Some initiatives for JSON schema

languages exist (Galiegue and Zyp, 2013), but they are not very well established and rarely seen in practice.

One reason for this might be that defining and implementing formal schemas is complicated and a lot of

work which defeats the purpose of using an lightweight format such as JSON in the first place. But another

reason is that it is often simply not necessary to be overly formal. The JSON format is simple and intuitive,

and under some general conventions, a well chosen example can suffice to characterize the structure. This

section describes two important rules that are required to ensure that data exchange using JSON is type safe.

3.2 Rule 1: Fixed keys

When using JSON without a schema, there are no restrictions on the keys (field names) that can appear in a

particular object. However, a source of data that returns a different set of keys every time it is called makes
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it very difficult to write software to process these data. Hence, the first rule is to limit JSON interfaces to

a finite set of keys that are known a priory by all parties. It can be helpful to think about this in analogy

with for example a relational database. Here, the database model separates the data from metadata. At

run time, records can be inserted or deleted, and a certain query might return different content each time it

is executed. But for a given query, each execution will return exactly the same field names; hence as long

as the table definitions are unchanged, the structure of the output consistent. Client software needs this

structure to validate input, optimize implementation, and process each part of the data appropriately. In

JSON, data and metadata are not formally separated as in a database, but similar principles that hold for

fields in a database, apply to keys in dynamic JSON data.

A beautiful example of this in practice was given by Mike Dewar at the New York Open Statistical Program-

ming Meetup on Jan. 12, 2012 (Dewar, 2012). In his talk he emphasizes to use JSON keys only for names,

and not for data. He refers to this principle as the “golden rule”, and explains how he learned his lesson the

hard way. In one of his early applications, timeseries data was encoded by using the epoch timestamp as the

JSON key. Therefore the keys are different each time the query is executed:

[

{ "1325344443" : 124 },

{ "1325344456" : 131 },

{ "1325344478" : 137 }

]

Even though being valid JSON, dynamic keys as in the example above are likely to introduce trouble. Most

software will have great difficulty processing these values if we can not specify the keys in the code. Moreover

when documenting the API, either informally or formally using a schema language, we need to describe for

each property in the data what the value means and is composed of. Thereby a client or consumer can

implement code that interprets and process each element in the data in an appropriate manner. Both the

documentation and interpretation of JSON data rely on fixed keys with well defined meaning. Also note

that the structure is difficult to extend in the future. If we want to add an additional property to each

observation, the entire structure needs to change. In his talk, Dewar explains that life gets much easier when

we switch to the following encoding:

[

{ "time": "1325344443" : "price": 124 },

{ "time": "1325344456" : "price": 131 },

{ "time": "1325344478" : "price": 137 }

]

This structure will play much nicer with existing software that assumes fixed keys. Moreover, the structure

can easily be described in documentation, or captured in a schema. Even when we have no intention of

writing documentation or a schema for a dynamic JSON source, it is still wise to design the structure in such

away that it could be described by a schema. When the keys are fixed, a well chosen example can provide

all the information required for the consumer to implement client code. Also note that the new structure is

extensible: additional properties can be added to each observation without breaking backward compatibility.
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In the context of R, consistency of keys is closely related to Wikcham’s concept of tidy data discussed earlier.

Wickham states that the most common reason for messy data are column headers containing values instead

of variable names. Column headers in tabular datasets become keys when converted to JSON. Therefore,

when headers are actually values, JSON keys contain in fact data and can become unpredictable. The cure to

inconsistent keys is almost always to tidy the data according to recommendations given by Wickham (2014).

3.3 Rule 2: Consistent types

In a strong typed language, fields declare their class before any values are assigned. Thereby the type of a

given field is identical in all objects of a particular class, and arrays only contain objects of a single type.

The S3 system in R is weakly typed and puts no formal restrictions on the class of a certain properties, or

the types of objects that can be combined into a collection. For example, the list below contains a character

vector, a numeric vector and a list:

#Heterogeneous lists are bad!

x <- list("FOO", 1:3, list("bar"=pi))

toJSON(x)

[["FOO"],[1,2,3],{"bar":[3.1416]}]

However even though it is possible to generate such JSON, it is bad practice. Fields or collections with

ambiguous object types are difficult to describe, interpret and process in the context of inter-system com-

munication. When using JSON to exchange dynamic data, it is important that each property and array is

type consistent. In dynamically typed languages, the programmer needs to make sure that properties are of

the correct type before encoding into JSON. For R, this means that the unnamed lists type is best avoided

when designing interoperable structures because this type is not homogeneous.

Note that consistency is somewhat subjective as it refers to the meaning of the elements; they do not

necessarily have precisely the same structure. What is important is to keep in mind that the consumer of

the data can interpret and process each element identically, e.g. iterate over the elements in the collection

and apply the same method to each of them. To illustrate this, lets take the example of the data frame:

#conceptually homogenous array

x <- data.frame(name=c("Jay", "Mary", NA, NA), gender=c("M", NA, NA, "F"))

toJSON(x, pretty=TRUE)

[

{

"name": "Jay",

"gender": "M"

},

{

"name": "Mary"

},
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{

},

{

"gender": "F"

}

]

The JSON array above has 4 elements, each of which a JSON object. However, due to the NA values, some

records have more fields than others. But as long as they are conceptually the same type (e.g. a person), the

consumer can iterate over the elements to process each person in the set according to a predefined action.

For example each element could be used to construct a Person object. A collection of different object classes

should be separated and organized using a named list:

x <- list(

humans = data.frame(name = c("Jay", "Mary"), married = c(TRUE, FALSE)),

horses = data.frame(name = c("Star", "Dakota"), price = c(5000, 30000))

)

toJSON(x, pretty=TRUE)

{

"humans": [

{

"name": "Jay",

"married": true

},

{

"name": "Mary",

"married": false

}

],

"horses": [

{

"name": "Star",

"price": 5000

},

{

"name": "Dakota",

"price": 30000

}

]
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}

This might seem obvious, but dynamic languages such as R can make it dangerously tempting to generate

data containing mixed-type collections. Such inconsistent typing makes it very difficult to consume the data

and creates a likely source of nasty bugs. Using consistent field names/types and homogeneous JSON arrays

is a strong convention among public JSON API’s, for good reasons. We recommend R users to respect these

conventions when generating JSON data in R.
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