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1 Introduction

JSON (JavaScript Object Notation) is a lightweight data-interchange format, and one of the most common

methods today for exchange of data structures in systems and applications. It is easy for humans to read

and write, and easy for machines to parse and generate. The syntax is completely defined in a single page

at http://www.json.org/: it specifies 5 primitive types (string, number, true, false, null) and two

universal data structures:

• A collection of name-value pairs. In R, this is realized as a named list.

• An ordered set of values. In R, this is realized as an unnamed list.

Because the syntax is limited to these universal types and structures, JSON data is easily converted into a

native object in almost any programming language. This is convenient for developers and has contributed

to the popularity of the format. Several R packages already implement toJSON and fromJSON functions

which convert between R objects and JSON structures. However, the exact mapping between the various

R classes and the two universal data structures that are supported by JSON is not self evident. Currently,

there are no formal guidelines, or even consensus between implementations on how exactly each class in R

should be represented in JSON. Furthermore, upon closer inspection, even the most basic data structures in

R actually do not perfectly map to their JSON counterparts, and leave some ambiguity for edge cases. These

problems have resulted in different behavior between implementations, and can lead to unexpected output

for special cases. To further complicate things, best practices of representing data in JSON have already been

established outside the R community. Respecting these conventions where possible is important to maximize

interoperability of data in R when using JSON.

When relying on JSON as the data interchange format, the mapping between R objects and JSON data must

be consistent and unambiguous. Clients relying on JSON to get data in and out of R must know exactly what

to expect in order to facilitate reliable communication, even if the data themselves are dynamic. Similarly,

R code using dynamic JSON data from an external source is only reliable when the conversion from JSON

to R is consistent. This document attempts to take away some of the ambiguity by explicitly describing

the mapping between R classes and JSON data, highlighting problems and propose conventions that can

generalize the mapping to cover all common classes and cases in R.
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1.1 Reference implementation: the jsonlite package

The jsonlite package provides a reference implementation of the conventions proposed in this document.

jsonlite is a fork of the RJSONIO package by Duncan Temple Lang, which again builds on libjson C++

library from Jonathan Wallace. The jsonlite package uses the parser from RJSONIO, but the R code has

been rewritten from scratch. Both packages implement toJSON and fromJSON functions, but their output is

quite different. Finally, the jsonlite package contains a large set of unit tests to validate that R objects

are correctly converted to JSON and vice versa. These unit tests cover all classes and edge cases mentioned

in this document, and could be used to validate if other implementations follow the same conventions.

library(testthat)

test_package("jsonlite")

Note that even though JSON allows for inserting arbitrary white space and indentation, the unit tests assume

that white space is trimmed.

1.2 Class-based versus type-based encoding

The jsonlite package actually implements two systems for translating between R objects and JSON. This

document focuses on the toJSON and fromJSON functions which use R’s class-based S3 method system. For

all of the common classes in R, the jsonlite package implements toJSON methods as described in this

document. Users in R can easily extend this system by implementing additional toJSON methods for other

classes. However this also means that classes that do not have the toJSON method defined are not supported.

Furthermore, the implementation of a specific toJSON method determines which data and metadata in the

objects of this class gets encoded in its JSON representation, and how. In this respect, toJSON is similar to

e.g. the print function, which also provides a certain representation of an object based on its class and

optionally some print parameters. This representation does not necessarily reflect all information stored in

the object, and there is no guaranteed one-to-one correspondence between R objects and JSON. I.e. calling

fromJSON(toJSON(object)) will return an object which only contains the data that was encoded by the

toJSON method for this particular class, and which might even have a different class than the original.

The alternative to the S3 method system is to use type-based encoding, which jsonlite implements in

the functions serializeJSON and unserializeJSON. All data structures in R get stored in memory using one

of the internal SEXP storage types, and serializeJSON defines an encoding schema which captures the type,

value, and attributes for each storage type. The result is JSON output which closely resembles the internal

structure of the underlying C data types, and which can be perfectly restored to the original R object using

unserializeJSON. This method is relatively straightforward to implement, however the disadvantage is that

the resulting JSON is very verbose, hard to interpret, and cumbersome to generate in the context of another

language or system. For most applications this is actually impractical because it requires the client/consumer

to understand and manipulate R types, which is difficult and reduces interoperability. Instead we can make

data in R more accessible to third parties by defining sensible JSON representations that are natural for the

class of an object, rather than its internal storage type. This document does not discuss the serializeJSON

system in any further detail, and solely treats the class based system implemented in toJSON and fromJSON.

However the reader that is interested in full serialization of R objects into JSON is encouraged to have a look

at the respective manual pages.
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1.3 Scope and Limitations

Before continuing, we want to stress some limitations of encoding R data structures in JSON. Most impor-

tantly, there are the limitations to types of objects that can be represented. In general, temporary in-memory

properties such as connections, file descriptors and (recursive) memory references are always difficult if not

impossible to store in a sensible way, regardless of the language or serialization method. This document

focuses on the common R classes that hold data, such as vectors, factors, lists, matrices and data frames.

We do not treat language level constructs such as expressions, functions, promises, which hold little meaning

outside the context of R. We also don’t treat special compound classes such as linear models or custom

classes defined in contributed packages. When designing systems or protocols that interact with R, it is

highly recommended to stick with the standard data structures for the interface input/output.

Then there are limitations introduced by the format. Because JSON is a human readable, text-based

format, it does not support binary data, and numbers are stored in their decimal notation. The latter leads

to loss of precision for real numbers, depending on how many digits the user decides to print. Several dialects

of JSON exists such as BSON or MSGPACK, which extend the format with various binary types. However, these

formats are much less popular, less interoperable, and often impractical, precisely because they require binary

parsing and abandon human readability. The simplicity of JSON is what makes it an accessible and widely

applicable data interchange format. In cases where it is really needed to include some binary data in JSON,

one can use something like base64 to encode it as a string.

Finally, as mentioned earlier, fromJSON is not a perfect inverse function of toJSON, as would be the case

for serialializeJSON and unserializeJSON. The class based S3 method system allows for concise and

practical encoding of the various common data structures. In our design of toJSON and fromJSON, we have

tried to approach a reversible mapping between R objects and JSON for the standard data classes, but there

are always limitations and edge cases. For example, the JSON representation of an empty vector, empty

list or empty data frame are all the same: "[ ]". Also some special vector types such as factors, dates or

timestamps get coerced to strings, as they would in for example CSV. This is a quite typical and expected

behavior among text based formats, but it does require some additional interpretation on the side of the

consumer.

1.4 Goals: Consistent and Practical

It can be helpful to see the problem from both sides. The R user needs to interface external JSON data from

within R. This includes reading data from a public source/API, or posting a specific JSON structure to an

online service. From perspective of the R user, JSON data should be realized in R using classes which are

most natural in R for a particular structure. A proper mapping is one which allows the R user to read any

incoming data or generate a specific JSON structures using the familiar methods and classes in R. Ideally, the

R user would like to forget about the interchange format at all, and think about the external data interface

in terms of its corresponding R structures rather than a JSON schema. The other perspective is that of an

third party client or language, which needs to interface data in R using JSON. This actor wants to access and

manipulate R objects via their JSON representation. A good mapping is one that allows a 3rd party client to

get data in and out of R, without necessarily understanding the specifics of the underlying R classes. Ideally,

the external client could forget about the R objects and classes at all, and think about input and output of

data in terms of the JSON schema, or the corresponding realization in the language of the client.

Both sides come together in the context of an RPC service such as OpenCPU. OpenCPU exposes a
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HTTP API to let 3rd party clients call R functions over HTTP. The function arguments are posed using

JSON and OpenCPU automatically converts these into R objects to construct the R function call. The return

value of the function is then converted to JSON and sent back to the client. To the client, the service works

as a JSON API, but it is implemented as standard R function uses standard data structures for its arguments

and return value. For this to work, the conversion between JSON data and R objects must be consistent and

unambiguous. In the design of our mapping we have pursued the following requirements:

• Recognize and comply with existing conventions of encoding common data structures in JSON, in

particular (relational) data sets.

• Consistently use a particular schema for a class of objects, including edge cases.

• Avoid R-specific peculiarities to minimize opportunities for misinterpretation.

• Mapping should optimally be reversible, but at least coercible for the standard classes.

• Robustness principle: be strict on output but tolerant on input.

2 Converting between JSON and R Classes

This section lists examples of how the common R classes are represented in JSON. As explained before, the

toJSON method relies on the S3 method system, which means that objects get encoded according to their

class. If an object has multiple class values, R uses the first occurring class which has a toJSON method.

If none of the classes of an object has a toJSON method, an error is raised.

2.1 Atomic Vectors

The most basic data type in R is the atomic vector. The atomic vector holds an ordered set of homogeneous

values of type "logical" (booleans), character (strings), "raw" (bytes), integer, numeric (doubles),

"complex" (complex numbers with a real and imaginary part). Because R is fully vectorized, there is no

user level notion of a primitive: a scalar value is considered a vector of length 1. Atomic vectors are encoded

using a JSON array:

x <- c(1, 2, pi)

cat(toJSON(x))

[ 1, 2, 3.14 ]

The JSON array is the only appropriate structure to encode a vector, however note that vectors in R are

homogeneous, whereas the JSON array is actually heterogeneous, but JSON does not make this distinction.

2.1.1 Missing Values

A typical domain specific problem when working with statistical data is presented by missing data: a concept

foreign to many other languages. Besides regular values, all vector types except for raw can hold NA as a

value. Vectors of type double and complex define three additional types of non finite values: NaN, Inf and

4



-Inf. JSON does not natively support any of these types; therefore such values values need to be encoded in

some other way. There are two obvious approaches. The first one is to use the JSON null type. For example:

x <- c(TRUE, FALSE, NA)

cat(toJSON(x))

[ true, false, null ]

The other option is to encode missing values as strings by wrapping them in double quotes:

x <- c(1, 2, NA, NaN, Inf, 10)

cat(toJSON(x))

[ 1, 2, "NA", "NaN", "Inf", 10 ]

Both methods result in valid JSON, but both have a limitation: the problem with the null type is that

there is no way to distinguish between different types of missing data, which could be a problem for numeric

vectors. The values Inf, -Inf, NA and NaN have different meanings, and these should not get lost in the

encoding. However, the problem with encoding missing values as strings is that this method can not be

used for character vectors, because the consumer won’t be able to distinguish the actual string "NA" and the

missing value NA. This would create a likely source of bugs, where clients mistakenly interpret "NA" as an

actual value, which is a common problem with text-based formats such as CSV. For this reason, jsonlite

uses the following defaults:

• Missing values in non-numeric vectors (logical, character) are encoded as null.

• Missing values in numeric vectors (double, integer, complex) are encoded as strings.

We expect that these conventions are most likely to result in the correct interpretation of missing values.

Some examples:

cat(toJSON(c(TRUE, NA, NA, FALSE)))

[ true, null, null, false ]

cat(toJSON(c("FOO", "BAR", NA, "NA")))

[ "FOO", "BAR", null, "NA" ]

cat(toJSON(c(3.14, NA, NaN, 21, Inf, -Inf)))

[ 3.14, "NA", "NaN", 21, "Inf", "-Inf" ]

cat(toJSON(c(3.14, NA, NaN, 21, Inf, -Inf), na = "null"))

[ 3.14, null, null, 21, null, null ]
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2.1.2 Special vector types: dates, times, factor, complex

Besides missing values, JSON also lacks native support for some of the basic vector types in R that frequently

appear in data sets. These include vectors of class Date, POSIXt (timestamps), factors and complex vectors.

By default, the jsonlite package coerces these types to strings (using as.character):

cat(toJSON(Sys.time() + 1:3))

[ "2013-12-09 00:25:21", "2013-12-09 00:25:22", "2013-12-09 00:25:23" ]

cat(toJSON(as.Date(Sys.time()) + 1:3))

[ "2013-12-10", "2013-12-11", "2013-12-12" ]

cat(toJSON(factor(c("foo", "bar", "foo"))))

[ "foo", "bar", "foo" ]

cat(toJSON(complex(real = runif(3), imaginary = rnorm(3))))

[ "1-1.1i", "0.87-0.25i", "0.63-0.7i" ]

When parsing such JSON strings, these values will appear as character vectors. In order to obtain the

original types, the user needs to manually coerce them back to the desired type using the corresponding as

function, e.g. as.POSIXct, as.Date, as.factor or as.complex. In this respect, JSON is subject to the same

limitations as text based formats such as CSV.

2.1.3 Special cases: vectors of length 0 or 1

Two edge cases deserve special attention: vectors of length 0 and vectors of length 1. In jsonlite these are

encoded respectively as an empty array, and an array of length 1:

# vectors of length 0 and 1

cat(toJSON(vector()))

[]

cat(toJSON(pi))

[ 3.14 ]

# vectors of length 0 and 1 in a named list

cat(toJSON(list(foo = vector())))

{ "foo" : [] }

cat(toJSON(list(foo = pi)))

{ "foo" : [ 3.14 ] }
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# vectors of length 0 and 1 in an unnamed list

cat(toJSON(list(vector())))

[ [] ]

cat(toJSON(list(pi)))

[ [ 3.14 ] ]

This might seem obvious but these cases result in very different behavior between different JSON packages.

This is probably caused by the fact that R does not have a scalar type, and some package authors decided to

treat vectors of length 1 as if they were a scalar. For example, in the current implementations, both RJSONIO

and rjson encode a vector of length one as a JSON primitive when it appears within a list:

# Other packages make different choices:

cat(rjson::toJSON(list(n = c(1))))

## {"n":1}

cat(rjson::toJSON(list(n = c(1, 2))))

## {"n":[1,2]}

When encoding a single data set this might seem harmless, but in the context of dynamic data this incon-

sistency is almost guaranteed to cause bugs. For example, imagine an R web service which lets the user fit

a linear model and sends back the fitted parameter estimates. In this application, the R server returns the

vector with coefficients encoded as a JSON array. The client code then parses the JSON, and then iterates

over the array of coefficients to display them in a GUI. All goes well, until the user decides to fit a model

with only one predictor. If the JSON encoder returns a primitive value where the client is assuming an array,

the application will likely break. Any consumer or client would need to be aware of the special case where

the vector becomes a primitive, and explicitly take this exception into account when processing the result.

When the client fails to do so and proceeds as usual, it will probably call an iterator or loop method on a

primitive value, resulting in the obvious errors. For this reason jsonlite uses consistent encoding schemes

which do not depend on variable object properties such as its length. Hence, a vector is always encoded as

an array, even when it is of length 0 or 1.

2.2 Matrices

Arguably one of the strongest sides of R is its ability to interface libraries for basic linear algebra sub-

routines (BLAS) such as LAPACK, OpenBLAS, etc. These libraries provide well tuned, high performance

implementations of important linear algebra operations to calculate anything from inner products and eigen

values to singular value decompositions. These are in turn the building blocks of many higher level statisti-

cal methods such as linear regression or principal component analysis. Linear algebra methods operate on

matrices, making the matrix one of the most central data classes in R. Conceptually, a matrix consists of a

2 dimensional structure of homogeneous values. It is indexed using 2 numbers (or vectors), representing the

row and column number of the matrix respectively.
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x <- matrix(1:12, nrow = 3, ncol = 4)

print(x)

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

print(x[2, 4])

[1] 11

A matrix is stored in memory as a single atomic vector with an attribute called "dim" defining the dimensions

of the matrix. The product of the dimensions is equal to the length of the vector.

attributes(volcano)

$dim

[1] 87 61

length(volcano)

[1] 5307

Even though the matrix is stored as a single vector, it the way it is printed, indexed and treated other-

wise makes it conceptually a 2 dimensional structure. jsonlite treats a matrix as a set of equal-length

homogeneous vectors, and therefore encodes it using an array of sub arrays:

x <- matrix(1:12, nrow = 3, ncol = 4)

cat(toJSON(x))

[ [ 1, 4, 7, 10 ], [ 2, 5, 8, 11 ], [ 3, 6, 9, 12 ] ]

We hope that this representation will be the most intuitive to interpret, even within languages that do not

have a native notion of a matrix. When the JSON string is properly indented (recall that white space and

line breaks are optional in JSON), it looks very similar to the way R prints matrices:

[ [ 1, 4, 7, 10 ],

[ 2, 5, 8, 11 ],

[ 3, 6, 9, 12 ] ]

Because the matrix is implemented in R as an atomic vector, it automatically inherits the conventions

mentioned earlier with respect to edge cases and missing values:

x <- matrix(c(1, 2, 4, NA), nrow = 2)

cat(toJSON(x))
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[ [ 1, 4 ], [ 2, "NA" ] ]

cat(toJSON(x, na = "null"))

[ [ 1, 4 ], [ 2, null ] ]

cat(toJSON(matrix(pi)))

[ [ 3.14 ] ]

2.2.1 Matrix row and column names

Besides the "dim" attribute, the matrix class has an additional, optional attribute: "dimnames". This

attribute holds names for the rows and columns in the matrix. However, we decided not to include this

information in the default JSON encoding for matrices for several reasons. First of all, because this attribute

is optional, often either row or column names or both are NULL. This makes it difficult to define a practical

encoding that covers all cases with and without row and/or column names. Secondly, the names in matrices

are mostly there for annotation only; they are not actually used in calculations. For example, the linear

algebra subroutines mentioned before completely ignore them, and do not include any names in their output.

So there is often little purpose of setting names in the first place, other annotation.

When the row names or column names of a matrix actually contain vital information, chances are they

actually are not names but variable values. It might be needed to transform the data into a more appropriate

structure. Wickham (2013) calls this tidying the data and outlines best practices on storing statistical data

in its most appropriate form. He lists the issue where ”column headers are values, not variable names” the

most common source of ”messy” data. It happens when the structure is optimized for presentation (e.g.

printing), rather than computation. In the following example, taken from Wickham (2013), the column

headers do not list names, but actually contain values of the main variable (treatment). As a result, these

are not represented in the JSON encoding:

x <- matrix(c(NA, 1, 2, 5, NA, 3), nrow = 3)

row.names(x) <- c("Joe", "Jane", "Mary")

colnames(x) <- c("Treatment A", "Treatment B")

print(x)

Treatment A Treatment B

Joe NA 5

Jane 1 NA

Mary 2 3

cat(toJSON(x))

[ [ "NA", 5 ], [ 1, "NA" ], [ 2, 3 ] ]

Wikcham recommends that the data be melted into its tidy form. Once the data is tidy, the JSON encoding

will naturally contain the treatment values:
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library(reshape2)

y <- melt(x, varnames = c("Subject", "Treatment"))

print(y)

Subject Treatment value

1 Joe Treatment A NA

2 Jane Treatment A 1

3 Mary Treatment A 2

4 Joe Treatment B 5

5 Jane Treatment B NA

6 Mary Treatment B 3

cat(toJSON(y, pretty = TRUE))

[

{

"Subject" : "Joe",

"Treatment" : "Treatment A"

},

{

"Subject" : "Jane",

"Treatment" : "Treatment A",

"value" : 1

},

{

"Subject" : "Mary",

"Treatment" : "Treatment A",

"value" : 2

},

{

"Subject" : "Joe",

"Treatment" : "Treatment B",

"value" : 5

},

{

"Subject" : "Jane",

"Treatment" : "Treatment B"

},

{

"Subject" : "Mary",

"Treatment" : "Treatment B",

"value" : 3

}

]
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In some other cases, the column headers actually do contain variable names, and melting is inappropriate.

For data sets with records consisting of a set of named columns (fields), R has more natural and flexible class:

the data-frame. The toJSON method for data frames is described in a later section, and is more suitable

when we want to refer to rows or fields by a particular name. Any matrix can easily be converted to a

data-frame using the as.data.frame function:

cat(toJSON(as.data.frame(x), pretty = TRUE))

[

{

"$row" : "Joe",

"Treatment B" : 5

},

{

"$row" : "Jane",

"Treatment A" : 1

},

{

"$row" : "Mary",

"Treatment A" : 2,

"Treatment B" : 3

}

]

For some cases this results in the desired encoding, but in this example melting seems more appropriate.

2.3 Lists

The list is the most general purpose data structure in R. It holds an ordered set of elements, including

other lists, each of arbitrary type and size. Two types of lists are distinguished: named lists and unnamed

lists. A list is considered a named list if it has an attribute called "names". In practice, a named list is

any list for which we can access an element by its name, whereas elements of an unnamed lists can only be

accessed using their index number:

mylist1 <- list(foo = 123, bar = 456)

print(mylist1$bar)

[1] 456

mylist2 <- list(123, 456)

print(mylist2[[2]])

[1] 456
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2.3.1 Unnamed lists

Just like vectors, an unnamed list is encoded using a JSON array:

cat(toJSON(list(c(1, 2), "test", TRUE, list(c(1, 2)))))

[ [ 1, 2 ],[ "test" ],[ true ],[ [ 1, 2 ] ] ]

Note that even though both vectors and lists are encoded using JSON arrays, they can be distinguished by

looking at their contents: an R vector results in a JSON array which contains only primitives, whereas a list

results in a JSON array which contains only objects and arrays. This allows the JSON parser to reconstruct

the original type from encoded vectors and arrays:

x <- list(c(1, 2, NA), "test", FALSE, list(foo = "bar"))

identical(fromJSON(toJSON(x)), x)

[1] TRUE

The only exception is the empty list and empty vector, which are both encoded as [ ] and therefore

indistinguishable, but this is rarely a problem in practice.

2.3.2 Named lists

A named list in R gets encoded as a JSON object :

cat(toJSON(list(foo = c(1, 2), bar = "test")))

{ "foo" : [ 1, 2 ], "bar" : [ "test" ] }

Because a list can contain other lists, this works recursively:

cat(toJSON(list(foo=list(bar=list(baz=pi)))))

{ "foo" : { "bar" : { "baz" : [ 3.14 ] } } }

Named lists map almost perfectly to JSON objects with one exception: list elements can have empty names:

x <- list(foo = 123, "test", TRUE)

attr(x, "names")

[1] "foo" "" ""

x$foo

[1] 123

x[[2]]

[1] "test"

12



In a JSON object, each element in an object must have a valid name. To ensure this property, jsonlite

uses the same solution as the print method, which is to fall back on indices for elements that do not have

a proper name:

x <- list(foo = 123, "test", TRUE)

print(x)

$foo

[1] 123

[[2]]

[1] "test"

[[3]]

[1] TRUE

cat(toJSON(x))

{ "foo" : [ 123 ], "2" : [ "test" ], "3" : [ true ] }

This behavior ensures that all generated JSON is valid, however named lists with empty names should be

avoided where possible. When actually designing R objects that should be interoperable, it is recommended

that each list element has a proper name.

2.4 Data frame

The data frame is perhaps the most central data structure in R from the user point of view. This class holds

tabular data in which each column is named and (usually) homogeneous. Conceptually it is very similar to

a table in relational data bases such as MySQL, where fields are referred to as column names, and records are

called row names. Like a matrix, a data frame can be subsetted with two indices, to extract certain rows

and columns of the data:

is(iris)

[1] "data.frame" "list" "oldClass" "vector"

names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

[5] "Species"

print(iris[1:3, c(1, 5)])

Sepal.Length Species

1 5.1 setosa

2 4.9 setosa

3 4.7 setosa
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print(iris[1:3, c("Sepal.Width", "Species")])

Sepal.Width Species

1 3.5 setosa

2 3.0 setosa

3 3.2 setosa

For the previously discussed classes such as vectors and matrices, behavior of jsonlite is quite similar to

the other available packages that implement toJSON and toJSON functions, with only minor differences for

missing values and edge cases. But when it comes to data frames, jsonlite takes a completely different

approach. The behavior of jsonlite is designed to be compatible with conventional ways of encoding table-

like structures outside the R community. The implementation is more complex, but results in a powerful

and more natural way of interfacing data frames through JSON and vice versa.

2.4.1 Column based versus row based tables

Generally speaking, tabular data structures can be implemented in two different ways: in a column based,

or row based fashion. A column based structure consists of a named collection of equal-length, homogeneous

arrays representing the table columns. In a row-based structure on the other hand, the table is implemented

as a set of heterogeneous associative arrays representing table rows with field values for each particular record.

Even though most languages provide flexible and abstracted interfaces that hide such implementation details

from the user, they can have huge implications for performance. A column based structure is efficient for

inserting or extracting certain columns of the data, but it is inefficient for manipulating individual rows. For

example to insert a single row somewhere in the middle, each of the columns has to be sliced and stitched

back together. For row-based implementations, it is the exact other way around: we can easily manipulate

a particular record, but to insert/extract a whole column we would need to iterate over all records in the

table and read/modify the appropriate field in each of them.

The data frame in R is implemented in a column based fashion: it constitutes of a named list of

equal-length vectors. Thereby the columns in the data frame naturally inherit the properties from atomic

vectors discussed before, such as homogeneity, missing values, etc. Another argument for column-based

implementation is that statistical methods generally operate on columns. For example, the lm function fits

a linear regression by extracting the columns from a data frame as specified by the formula argument. R

simply binds the specified columns together into a matrix X and calls out to a highly optimized FORTRAN

subroutine to calculate the OLS estimates β̂ = (XTX)XT y using the QR factorization of X. Many other

statistical modeling functions follow similar steps, and are computationally efficient because of the column-

based data storage in R. However, unfortunately R is an exception in its preference for column-based storage:

most languages, systems, databases, APIs, etc, are optimized for record based operations. For this reason, the

conventional way to store and communicate tabular data in JSON seems to almost exclusively row based. This

discrepancy presents various complications when converting between data frames and JSON. The remaining

of this section discusses details and challenges of consistently mapping record based JSON data as frequently

encountered in the wild, into column-based data frames which are convenient for statistical computing.
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2.4.2 Row based data frame encoding jsonlite

The encoding of data frames is one of the major differences between jsonlite and implementations from other

currently available packages. Instead of using the column-based encoding also used for lists, jsonlite encodes

data frames by default as an array of records:

cat(toJSON(iris[1:2, ], pretty = TRUE))

[

{

"Sepal.Length" : 5.1,

"Sepal.Width" : 3.5,

"Petal.Length" : 1.4,

"Petal.Width" : 0.2,

"Species" : "setosa"

},

{

"Sepal.Length" : 4.9,

"Sepal.Width" : 3,

"Petal.Length" : 1.4,

"Petal.Width" : 0.2,

"Species" : "setosa"

}

]

This output looks a bit like a list of named lists. However, there is one major difference: the individual

records contain primitives values, which will never appear in lists:

cat(toJSON(list(list(Species = "Foo", Width = 21))))

[ { "Species" : [ "Foo" ], "Width" : [ 21 ] } ]

This leads to the following convention: when encoding R objects, JSON primitives only appear in vectors

and data-frame rows. Primitive values within a JSON array indicate a vector, and JSON primitives appearing

inside a JSON object indicate a data-frame row. A JSON encoded list, (named or unnamed) will never

contain JSON primitives. This is a subtle but important convention that helps to distinguish between R

classes from their JSON representation, without explicitly encoding any metadata.

2.4.3 Missing values in data frames

The section on atomic vectors discussed two methods of encoding missing data appearing in a vector: either

using strings or using the JSON null type. When a missing value appears in a data frame, there is a third

option: simply not include this field in JSON record:
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x <- data.frame(foo = c(FALSE, TRUE, NA, NA), bar = c("Aladdin", NA, NA, "Mario"))

print(x)

foo bar

1 FALSE Aladdin

2 TRUE <NA>

3 NA <NA>

4 NA Mario

cat(toJSON(x, pretty = TRUE))

[

{

"foo" : false,

"bar" : "Aladdin"

},

{

"foo" : true

},

{},

{

"bar" : "Mario"

}

]

The default behavior of jsonlite is to omit missing data from records in a data frame. This seems to be

the most conventional way of doing things, and we expect this encoding will most likely lead to the correct

interpretation of missingness, even in languages which have no explicit notion of NA.

2.4.4 Relational data: nested records

Nested datasets are somewhat unusual in R, but frequently encountered in JSON. Such structures do not

really fit the vector based paradigm which makes them harder to manipulate in R. However, nested structures

are too common in JSON to ignore, and with a little work most cases still map to a data frame quite nicely.

The most common scenario is a dataset in which a certain field within each record contains a subrecord

with additional fields. jsonlite interprets these subrecords as a nested data frame. Whereas the data frame

class usually consists of vectors, technically a column can also be list or another data frame with matching

dimension (this stretches the meaning of the word ”column” a bit):

options(stringsAsFactors=FALSE)

x <- data.frame(driver = c("Bowser", "Peach"), occupation = c("Koopa", "Princess"))

x$vehicle <- data.frame(model = c("Piranha Prowler", "Royal Racer"))

x$vehicle$stats <- data.frame(speed = c(55, 34), weight = c(67, 24), drift = c(35, 32))

str(x)
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'data.frame': 2 obs. of 3 variables:

$ driver : chr "Bowser" "Peach"

$ occupation: chr "Koopa" "Princess"

$ vehicle :'data.frame': 2 obs. of 2 variables:

..$ model: chr "Piranha Prowler" "Royal Racer"

..$ stats:'data.frame': 2 obs. of 3 variables:

.. ..$ speed : num 55 34

.. ..$ weight: num 67 24

.. ..$ drift : num 35 32

cat(toJSON(x, pretty=TRUE))

[

{

"driver" : "Bowser",

"occupation" : "Koopa",

"vehicle" : {

"model" : "Piranha Prowler",

"stats" : {

"speed" : 55,

"weight" : 67,

"drift" : 35

}

}

},

{

"driver" : "Peach",

"occupation" : "Princess",

"vehicle" : {

"model" : "Royal Racer",

"stats" : {

"speed" : 34,

"weight" : 24,

"drift" : 32

}

}

}

]

myjson <- toJSON(x)

y <- fromJSON(myjson)

identical(x,y)

[1] TRUE
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When encountering JSON data containing nested records in the wild, chances are that these data were

generated from relational database. The JSON field containing a subrecord represents a foreign key pointing

to a record in an external table. For the purpose of encoding these into a single JSON structure, the tables

were joined into a nested structure. The directly nested subrecord represents a one-to-one or many-to-one

relation between the parent and child table, and is most naturally stored in R using a nested data frame.

In the example above, the vehicle field points to a table of vehicles, which in turn contains a stats field

pointing to a table of stats. When there is no more than one subrecord for each record, we easily flatten the

structure into a single non-nested data frame.

z <- cbind(x[c("driver", "occupation")], x$vehicle["model"], x$vehicle$stats)

str(z)

'data.frame': 2 obs. of 6 variables:

$ driver : chr "Bowser" "Peach"

$ occupation: chr "Koopa" "Princess"

$ model : chr "Piranha Prowler" "Royal Racer"

$ speed : num 55 34

$ weight : num 67 24

$ drift : num 35 32

2.4.5 Relational data: nested tables

The one-to-one relation discussed above is relatively easy to store in R, because each record contains at

most one subrecord. Therefore we can use either a nested data frame, or flatten the data frame. However,

things get more difficult when JSON records contain a field with a nested array. Such a structure appears in

relational data in case of a one-to-many relation. A standard textbook illustration is the relation between

authors and titles. For example, a field can contain an array of values:

x <- data.frame(author = c("Homer", "Virgil", "Jeroen"))

x$poems <- list(c("Iliad", "Odyssey"), c("Eclogues", "Georgics", "Aeneid"), vector());

names(x)

[1] "author" "poems"

cat(toJSON(x, pretty = TRUE))

[

{

"author" : "Homer",

"poems" : [

"Iliad",

"Odyssey"

]

},

{
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"author" : "Virgil",

"poems" : [

"Eclogues",

"Georgics",

"Aeneid"

]

},

{

"author" : "Jeroen",

"poems" : []

}

]

As can be seen from the example, the way to store this in a data frame is using a list of character vectors.

This works, and although unconventional, we can still create and read such structures in R relatively easily.

However, in practice the one-to-many relation is often more complex. It results in fields containing a set of

records. In R, the only way to model this is as a column containing a list of data frames, one separate data

frame for each row:

x <- data.frame(author = c("Homer", "Virgil", "Jeroen"))

x$poems <- list(

data.frame(title=c("Iliad", "Odyssey"), year=c(-1194, -800)),

data.frame(title=c("Eclogues", "Georgics", "Aeneid"), year=c(-44, -29, -19)),

data.frame()

)

cat(toJSON(x, pretty=TRUE))

[

{

"author" : "Homer",

"poems" : [

{

"title" : "Iliad",

"year" : -1194

},

{

"title" : "Odyssey",

"year" : -800

}

]

},

{

"author" : "Virgil",

"poems" : [
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{

"title" : "Eclogues",

"year" : -44

},

{

"title" : "Georgics",

"year" : -29

},

{

"title" : "Aeneid",

"year" : -19

}

]

},

{

"author" : "Jeroen",

"poems" : []

}

]

Because R doesn’t have native support for relational data, there is no natural class to store such structures.

The best we can do is a column containing a list of sub-dataframes. This does the job, and allows the R

user to access or generate nested JSON structures. However, a data frame like this cannot be flattened, and

the class does not guarantee that each of the individual sub-dataframe contain the same fields, as would be

the case in an actual relational data base.

3 Structural Consistency of Dynamic Data

Systems that automatically exchange information over some interface, protocol or API require well defined

and unambiguous meaning and arrangement of data. In order to process and interpret input and output,

contents must obey a steady structure. Such structures are usually described either informally in documenta-

tion or more formally in a schema language. The previous section emphasized the importance of consistency

in the mapping between JSON data and R classes. This section takes a higher level view and explains the

importance of structure consistency for dynamic data. This topic can be a bit subtle because it refers to

consistency among different instantiations of a JSON structure, rather than a single case. We try to clarify

by breaking down the concept into two important parts, and illustrate with analogies and examples from R.

3.1 Classes, Types and Data

Most object-oriented languages are designed with the idea that all objects of a certain class implement the

same fields and methods. In strong-typed languages such as S4 or Java, names and types of the fields are

formally declared in a class definition. In other languages such as S3 or JavaScript, the fields are not enforced

by the language, and the responsibility of the programmer. But one way or another they all assume that
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all members of a certain class use identical field names and types, so that the same methods can be applied

to any object of a particular class. This basic principle holds for dynamic data in the same way as for

class objects. Software that process dynamic data can only work reliably if the various elements of the data

have consistent names and structure. Consensus must exist between the different parties on data that is

exchanged as part an interface or protocol. This requires the structure to follow some sort of schema that

specifies which attributes can appear in the data, what they mean and how they are composed. Thereby each

possible scenario can be accounted for in the software so that data gets interpreted/processed appropriately

and no exceptions arise during run-time.

Some other data interchange formats, such as XML or Protocol Buffers take a formal approach to this

matter, and have well established schema languages and interface description languages. Using such a meta

language it is possible to define the exact structure, properties and actions of data interchange in a formal

arrangement. However, in JSON, such formal definitions are relatively uncommon. Some initiatives for JSON

schema languages exist, but they aren’t very well established and rarely seen in practice. One reason for

this might be that defining and implementing formal schemas is complicated and a lot of work which defeats

the purpose of using an lightweight format such as JSON in the first place. But another reason is that it is

often simply not necessary to be overly formal. The JSON format is simple and intuitive, and under some

general conventions, a well chosen example can suffice to characterize the structure. This section describes

two important rules that are required to ensure that data exchange using JSON is consistent.

3.2 Rule 1: Consistent Keys

When using JSON without a schema, there are no restrictions on the keys (field names) that can appear in

a particular object. However, an API that returns a different set of keys for every time it is called makes

it very difficult to write software to process these data. Hence, the first rule is to limit JSON interfaces to

a finite set of keys that are known a priory by all parties. It can be helpful to think about this in analogy

with for example a relational database. Here, the database model separates the data from metadata. At

run time, records can be inserted or deleted, and a certain query might return different data each time it

is executed. But for a given query, each execution will return exactly the same field names; hence as long

as the table definitions are unchanged, the structure of the output consistent. Client software needs this

structure to validate input, optimize implementation, and process each part of the data appropriately. In

JSON, data and metadata are not formally separated as in a database, but similar principles that hold for

fields in a database, apply to keys in dynamic JSON data.

A beautiful example of this going wrong in practice was given by Mike Dewar (Data Scientist at bit.ly)

in at the New York Open Statistical Programming Meetup on Jan. 12, 2012. In his talk he emphasizes to

use JSON keys only for names, and not for data. He refers to this principle as the ”golden rule”, and explains

how he learned his lesson the hard way. In one of his early applications, timeseries data was encoded by

using the epoch timestamp as the JSON key. Therefore the keys are different each time the query is executed:

[

{"1325344443" : 4},

{"1325344456" : 5},

{"1325344478" : 6},

]
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Even though being valid JSON, dynamic keys as in the example above are likely to introduce trouble down

the line. For example, when documenting the API, either informally or formally using a schema language,

we want to describe for each property that might appear in the data what it’s value means and is composed

of. The client or consumer of the data needs to implement code that interprets and process each element in

the data in an appropriate manner. Both the documentation and interpretation of JSON data rely on fixed

keys with well defined meaning. Also note that the structure cannot be extended in the future. If we want

to add an additional property to each observation, the entire structure needs to change. In his talk, Dewar

explains that life gets much easier when we switch to the following encoding:

[

{"time": "1325344443" : "price": 4},

{"time": "1325344456" : "price": 5},

{"time": "1325344478" : "price": 6}

]

This structure will play much nicer with existing software that assumes fixed keys. Moreover, the structure

can easily be described in documentation, or captured in a schema. Even when we have no intention of

writing documentation or a schema for a dynamic JSON source, it is still wise to design the structure in such

away that it could be described by a schema. When the keys are fixed, a well chosen example can provide

all the information required for the consumer to implement client code. Also note that the new structure is

extensible: additional properties can be added to each observation without breaking backward compatibility.

In the context of R, consistency of keys is closely related to Wikcham’s concept of tidy data discussed

earlier. Wickham states that the most common reason for messy data are column headers containing values

instead of variable names. Column headers in tabular datasets become keys when converted to JSON. There-

fore, when headers are actually values, the JSON keys contain in fact data, and can become unpredictable.

The cure to inconsistent keys is almost always to tidy the data according to recommendations given by

Wickham.

3.3 Rule 2: Consistent Types

In a strong typed language, fields declare their class before any values are assigned. Thereby the type of a

given field is identical in all objects of a particular class, and arrays only contain objects of a single type.

The S3 system in R is weakly typed and puts no formal restrictions on the class of a certain properties, or

the types of objects that can be combined into a collection. For example, the list below contains a character

vector, a numeric vector and a list:

# Heterogeneous lists are bad!

x <- list("FOO", 1:3, list(bar = pi))

cat(toJSON(x))

[ [ "FOO" ],[ 1, 2, 3 ],{ "bar" : [ 3.14 ] } ]

Also we can assign any type to a any field:
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x <- list()

# first its numberic

x$test <- 5:2

cat(toJSON(x))

{ "test" : [ 5, 4, 3, 2 ] }

# and then its a list

x$test <- list(bar = TRUE)

cat(toJSON(x))

{ "test" : { "bar" : [ true ] } }

But just because this is possible, doesn’t mean you should use it. On the contrary: it puts the responsibility

of using consistent types in the hands of the developer. Fields or collections with ambiguous object types

are very difficult to describe, interpret and process in the context of inter-system communication. When

using JSON to exchange dynamic data, it is important that each property and array is type consistent. This

means that the developer needs to make sure that properties are of the correct type before encoding to JSON.

Moreover, the unnamed list object in R should usually be avoided all together when designing interoperable

structures. However, note that consistency is somewhat subjective as it refers to the meaning of the elements;

they don’t necessarily need to have precisely the same structure. What is important is to keep in mind that

the consumer of the data can treat each element identically, e.g. iterate over the elements in the collection

and apply the same method to each of them. To illustrate this, lets take the example of the data frame:

# conceptually homogenous array

x <- data.frame(name = c("Jay", "Mary", NA, NA), gender = c("M", NA, NA, "F"))

cat(toJSON(x, pretty = TRUE))

[

{

"name" : "Jay",

"gender" : "M"

},

{

"name" : "Mary"

},

{},

{

"gender" : "F"

}

]

The JSON array above has 4 elements, each of which a JSON object. However, due to the NA values, not

all elements have an identical structure: some records have more fields than others. But as long as they
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are conceptually the same type (e.g. a person), the consumer can iterate over the elements to process each

”person” in the set according to a predefined action. For example each element could be used to construct

a Person object. When combining objects of different classes, a named list can be used to distinguish

between the different types:

x <- list(

humans = data.frame(name = c("Jay", "Mary"), married = c(TRUE, FALSE)),

horses = data.frame(name = c("Star", "Dakota"), price = c(5000, 30000))

)

cat(toJSON(x, pretty=TRUE))

{

"humans" : [

{

"name" : "Jay",

"married" : true

},

{

"name" : "Mary",

"married" : false

}

],

"horses" : [

{

"name" : "Star",

"price" : 5000

},

{

"name" : "Dakota",

"price" : 30000

}

]

}

When looking at the public APIs, limiting JSON arrays to homogeneous sets is a very strong convention and

we have not been able to find a single exception.

4 Public JSON APIs

Some examples of popular public APIs that use JSON to server data. These are great to get a sense of

the common structures that we encounter with real world JSON data. All examples use HTTP GET, some

require registration/authentication.
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4.1 Github

Github is an active online code repository and has APIs to get live data on almost anything that is happening.

Some examples related to activity from a well known R package and author:

hadley_orgs <- fromJSON("https://api.github.com/users/hadley/orgs")

hadley_repos <- fromJSON("https://api.github.com/users/hadley/repos")

gg_issues <- fromJSON("https://api.github.com/repos/hadley/ggplot2/issues")

gg_commits <- fromJSON("https://api.github.com/repos/hadley/ggplot2/commits")

4.2 Citi Bike NYC

A single public API that shows location, status and current availability for all stations in the New York City

bike sharing imitative.

citibike <- fromJSON("http://citibikenyc.com/stations/json")

4.3 Sunlight Foundation

The Sunlight Foundation is a non-profit that helps to make government transparent and accountable through

data, tools, policy and journalism. The API can be accessed for free, but requires registration to obtain an

API key (which is very easy). Examples:

#register key at http://sunlightfoundation.com/api/accounts/register/

key <- "&apikey=6e021ea1c1264a658e259708076f04a1"

#some queries

drones <- fromJSON(paste0("http://openstates.org/api/v1/bills/?q=drone", key))

word <- fromJSON(paste0("http://capitolwords.org/api/1/dates.json?phrase=obamacare", key))

legislators <- fromJSON(paste0("http://congress.api.sunlightfoundation.com/",

"legislators/locate?latitude=42.96&longitude=-108.09", key))

4.4 New York Times

The New York Times has several free APIs that are part of its ”developer network”. They interface to

different parts of the organization, such as news articles, book reviews, real estate, etc. Registration is

required to obtain a API keys.

# Register keys at http://developer.nytimes.com/docs/reference/keys

# search for articles

article_key = "&api-key=12b3ff5decbd664d4d9edbd4ad450e54:8:68414090"

url = "http://api.nytimes.com/svc/search/v2/articlesearch.json?q=obamacare+socialism"
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articles <- fromJSON(paste0(url, article_key))

# search for best sellers

bestseller_key = "&api-key=c900c6eae827adb52a373a976c4dcd33:16:68414090"

url = "http://api.nytimes.com/svc/books/v2/lists/overview.json?published_date=2013-01-01"

bestsellers <- fromJSON(paste0(url, bestseller_key))

# movie reviews

movie_key = "&api-key=a2bf433b68cc54d04a5b5d9fd44a66d6:8:68414090"

url = "http://api.nytimes.com/svc/movies/v2/reviews/dvd-picks.json?order=by-date"

reviews <- fromJSON(paste0(url, movie_key))

4.5 Twitter

The Twitter API provides access to almost anything happening on Twitter. Unfortunately recent changes

in the policies have made the API much more complex and require a multi phase authentication procedure.

Below some example code in R:

#Create your own appication key at https://dev.twitter.com/apps

consumer_key = "1XxSHU2XTchttIJapwwCQ";

consumer_secret = "TWFqJK66La96OgF12aWJn3kxq2fE6iNDTKrdzVeukg";

#basic auth

library(httr)

secret <- RCurl::base64(paste(consumer_key, consumer_secret, sep=":"));

req <- POST("https://api.twitter.com/oauth2/token",

config(httpheader = c(

"Authorization" = paste("Basic", secret),

"Content-Type" = "application/x-www-form-urlencoded;charset=UTF-8"

)),

body = "grant_type=client_credentials",

multipart = FALSE

);

res <- fromJSON(rawToChar(req$content))

token <- paste("Bearer", res$access_token);

#Actual API call

url = "https://api.twitter.com/1.1/statuses/user_timeline.json?count=10&screen_name=UCLA"

call1 <- GET(url, config(httpheader = c("Authorization" = token)))

obj1 <- fromJSON(rawToChar(call1$content))
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