
Spatio-temporal geostatistics using gstat

1. Das neue IfGI-Logo 1.6 Logovarianten

Logo für den Einsatz in internationalen bzw.

englischsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

ifgi

ifgi

Institute for Geoinformatics
University of Münster

ifgi

Institut für Geoinformatik
Universität Münster

Logo für den Einsatz in nationalen bzw.

deutschsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

Dieses Logo kann bei Anwendungen

eingesetzt werden, wo das Logo besonders

klein erscheint.

Einsatzbereiche: Sponsorenlogo,

Power-Point

Größe bis 40 mm Breite

Edzer Pebesma

October 21, 2011

1 Introduction

Since gstat package version 1.0-0, a dependency of gstat on the R package
spacetime was introduced, allowing the code in gstat to exploit spatio-temporal
data structures from that package. This vignette describes the possibilities and
limitations of the package for spatio-temporal geostatistics.

To understand some of the possibilities and limitations, some knowledge of
the history of the software is needed. The original gstat software (Pebesma
and Wesseling, 1998) was a standalone computer program written in around
25,000 lines of C code, and would do geostatistical modelling, prediction and
simulation. The gstat R package (Pebesma, 2004) consisted mostly of an R
interface to this C code, together with convenience functions to use R’s modelling
interface (formula’s, see ?lm) and graphic capabilities (trellis graphics in package
lattice to show cross variogram as matrix plots; interaction with variogram
clouds using base plots).

Starting 2003, a group of programmers developed a set of classes and meth-
ods for dealing with spatial data in R (points, lines, polygons, grids), which was
supported by the publications of the well-known ASDAR book (Bivand et al.
2008; see also http://www.asdar-book.org/) and helped convergence in the
user community, with in 2011 over 2000 subscribers on the r-sig-geo mailing
list. Package gstat was one of the first packages that adopted and benefited
from these classes.

To realize a particular idea, writing code in C typically takes about 10-20
times as long as writing it in R. C code can be more efficient, gives more control
over memory usage, but is also more error prone–mistakes in C code make an
R session crash, something that is hard to do when writing R code.

The original C code of gstat (Pebesma and Wesseling, 1998) provides all
kriging varieties (universal, ordinary, simple; univariable, or multivariable as
in cokriging) for two- or three-dimensional data. When the spatial domain
is constrained to two dimensions (and this might cover over 99% of the use
cases!), the third dimension might be used to represent time. As such, the
metric variogram model, which allows for geometric anisotropy definition in
three dimensions, can be used for spatio-temporal kriging. When defining the
three-dimensional variogram as the sum of 2 or more nested variogram (summed)

1

mailto:edzer.pebesma@uni-muenster.de
http://www.asdar-book.org/

models, one can choose anisotropy coefficients for a single model such that this
model is effectively zero in some directions, e.g. in space or in time; this allows
one to approximate the so-called space-time sum model. It should be noted that
at the C code there is no knowledge whether a third dimension represents space,
or time. As such, particular characteristics of time cannot be taken care of.

Since the second half of 2010, the development of an R package spacetime

started. It provides methods and classes for spatio-temporal data, and builds
on the spatial data classes in sp and time series classes in xts. This document
will explain how data in this form, and methods provided by this package, can
be used for spatio-temporal geostatistics.

We will work with a data set with air quality (PM10) measurements over ger-
many, taken from rural background stations available in the data sets provided
by the European Environmental Agency.

> library(spacetime)

> rm(list = ls())

> data(air)

> ls()

[1] "DE_NUTS1" "rural"

2 Variography

2.1 Temporal autocorrelation and cross correlation

We will look into a subset of the data, ranging from 2005 to 2010, and remove
stations that have only missing values in this period:

> rr = rural[, "2005::2010"]

> unsel = which(apply(as(rr, "xts"), 2, function(x) all(is.na(x))))

> r5to10 = rr[-unsel,]

> summary(r5to10)

Object of class STFDF

with Dimensions (s, t, attr): (53, 1826, 1)

[[Spatial:]]

Object of class SpatialPoints

Coordinates:

min max

coords.x1 6.28107 14.78617

coords.x2 47.80847 54.92497

Is projected: FALSE

proj4string :

[+init=epsg:4326 +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

+towgs84=0,0,0]

Number of points: 53

[[Temporal:]]

Index ..1

Min. :2005-01-01 Min. :2558

1st Qu.:2006-04-02 1st Qu.:3014

Median :2007-07-02 Median :3470

2

Mean :2007-07-02 Mean :3470

3rd Qu.:2008-09-30 3rd Qu.:3927

Max. :2009-12-31 Max. :4383

[[Data attributes:]]

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.560 9.275 13.850 16.260 20.330 269.100 21979.000

Next, we will (rather arbitrarily) select four stations, which have the following
labels:

> rn = row.names(r5to10@sp)[4:7]

> rn

[1] "DEBE056" "DEBE032" "DEHE046" "DENW081"

In the following, autocorrelation functions are computed and plotted. The
resulting plot is shown in figure 1.

> par(mfrow = c(2, 2))

> for (i in rn) acf(na.omit(r5to10[i,]), main = i)

> par(mfrow = c(1, 1))

Auto- and cross correlations can be computed when a multivariate time series
object is passed to acf:

> acf(na.omit(as(r5to10[rn,], "xts")))

The resulting plot is shown in figure 2. From these graphs one should be able
to observe the following

� autocorrelations for lag 0 are always 1

� cross correlations for lag 0 are not always 1

� cross correlations can be asymmetric, meaning that when ρAB(h) is the
correlation between Z(sA, t) and Z(sB , t+ h),

ρAB(h) = ρBA(−h) 6= ρAB(−h)

with sA and sB the two stations between which a cross correlation is
computed, and h the (directional!) lag between the series.

The plot further more shows that for these four stations the asymmetry is not
very strong, but that cross correlations are fairly strong and of a similar form
of autocorrelations.

This kind of plot does not work very well in layouts of e.g. 10 x 10 sub-plots;
acf automatically chooses 4 x 4 as the maximimum a single plot. To try this
out, do a 7 x 7 plot

> acf(na.omit(as(r5to10[4:10,], "xts")))

and note that here we see in the last figure (DESH & DESN04) a pair of plots
with nearly no cross correlation. This might have to do with the spatial distance
between these two stations:

3

> par(mfrow = c(2, 2))

> rn = row.names(r5to10@sp)[4:7]

> for (i in rn) acf(na.omit(r5to10[i,]), main = i)

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

DEBE056

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag
A

C
F

DEBE032

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

DEHE046

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

DENW081

Figure 1: Autocorrelations for PM10; time lag unit in days.

> print(spDists(r5to10[4:10,]@sp), digits = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.0 28.8 344 468 292 235 135

[2,] 28.8 0.0 317 440 269 231 131

[3,] 343.6 317.3 0 150 309 282 285

[4,] 467.9 439.7 150 0 336 432 430

[5,] 291.7 268.5 309 336 0 438 362

[6,] 235.5 231.0 282 432 438 0 101

[7,] 134.6 130.9 285 430 362 101 0

(What is the spatial distance between stations DESH and DESN04?)

2.2 Spatial correlation, variograms

In the next steps, we will sample 100 time instances randomly,

> rs = sample(dim(r5to10)[2], 100)

4

0 5 10 20

0.
0

0.
4

0.
8

Lag

A
C

F

DEBE056

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEBE05 & DEBE03

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEBE05 & DEHE

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEBE05 & DENW

−25 −15 −5 0

0.
0

0.
4

0.
8

Lag

A
C

F

DEBE03 & DEBE05

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEBE032

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEBE03 & DEHE

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEBE03 & DENW

−25 −15 −5 0

0.
0

0.
4

0.
8

Lag

A
C

F

DEHE & DEBE05

−25 −15 −5 0

0.
0

0.
4

0.
8

Lag

DEHE & DEBE03

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEHE046

0 5 10 20

0.
0

0.
4

0.
8

Lag

DEHE & DENW

−25 −15 −5 0

0.
0

0.
4

0.
8

Lag

A
C

F

DENW & DEBE05

−25 −15 −5 0

0.
0

0.
4

0.
8

Lag

DENW & DEBE03

−25 −15 −5 0

0.
0

0.
4

0.
8

Lag

DENW & DEHE

0 5 10 20

0.
0

0.
4

0.
8

Lag

DENW081

Figure 2: autocorrelations (diagional) and cross correlations (off-diagional) for
the four stations selected; time lag unit in days.

we select these instances as a SpatialPointsDataFrame and add a time index
to them. After this we bind them together in a single SpatialPointsDataFrame
which has a time index ti:

> lst = lapply(rs, function(i) {

+ x = r5to10[, i]

+ x$ti = i

+ x

+ })

> pts = do.call(rbind, lst)

Then, we can compute the pooled variogram

> library(gstat)

> v = variogram(PM10 ~ ti, pts[!is.na(pts$PM10),], dX = 0)

and plot it (figure 3):

> plot(v, fit.variogram(v, vgm(1, "Exp", 200, 1)))

> vmod = fit.variogram(v, vgm(1, "Exp", 200, 1))

> plot(v, vmod)

The fitted model is this:

5

distance

se
m

iv
ar

ia
nc

e

10

20

30

40

50 100 150 200 250 300

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

Figure 3: sample spatial variogram, averaged over 100 time randomly chosen
time steps

> vmod

model psill range

1 Nug 4.791792 0.0000

2 Exp 46.110279 157.1177

One should note that the fit is rather poor, and not forget that we only have
53 stations selected. The time resolution is rich (1862 days) but the number of
stations is small:

> dim(r5to10)

[1] 53 1826 1

We can fit a spatio-temporal variogram the usual way, by passing an object
of class STFDF:

> vv = variogram(PM10 ~ 1, r5to10, width = 20, cutoff = 200)

Alternatively, if this takes too long, a temporal subset can be taken, e.g. using
the first 200 days:

> vv = variogram(PM10 ~ 1, r5to10[, 1:200], width = 20, cutoff = 200)

6

taking random days from the full period will lead to the a wrong assumption that
every time index increment reflect a constant lag increase. As an alternative,
we will here load the precomputed S/T variogram:

> data(vv)

Plotting this object can be done in two ways, both shown in figure 4:

> plot(vv, ylab = "time lag (days)")

> plot(vv, map = FALSE, ylab = "time lag (days)")

distance (km)

tim
e

la
g

(d
ay

s)

0

5

10

15

50 100 150

10

20

30

40

50

60

distance (km)

ga
m

m
a

10

20

30

40

50

60

50 100 150

●

●

●
●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

● ●

● ●

●

●

●

●
●

●

● ●

● ●
●

●

●

● ●
●

● ●

● ●
●

●

●

● ●
●

● ●

● ●

●

●

●

● ●
●

● ●

● ●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

● ●
●

● ●

●
●

●

●

●

● ●
●

● ●

●
●

●

●

●

● ●
●

● ●

● ●

●

●

●

● ●
●

● ●

●
●

●

●

●

● ●
●

● ●

lag1
lag2
lag3
lag4
lag5
lag6
lag7
lag8
lag9
lag10
lag11
lag12
lag13
lag14
lag15
lag16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4: Spatio-temporal sample variogram map (top) and sample variograms
for each time lag (bottom); both figures depict the information of object vv

2.3 Fitting a spatio-temporal variogram model

> ExpVgmMetric = function(x, s, t, nugget = 0) {

+ h = sqrt(s^2 + (x[3] * as.numeric(t))^2)

+ ifelse(h == 0, 0, nugget + x[1] * (1 - exp(-h/x[2])))

+ }

> ExpFitFn = function(x, gfn, v, trace = FALSE, ...) {

+ mod = gfn(x, v$spacelag, v$timelag, ...)

+ resid = v$gamma - mod

+ if (trace)

+ print(c(x, MSE = mean(resid^2)))

7

+ mean(resid^2)

+ }

> pars.M = optim(c(sill = 50, range = 100, anis = 50), ExpFitFn,

+ gfn = ExpVgmMetric, v = vv, nugget = 10)

> pars.M$par

sill range anis

41.33730 83.17767 74.32199

The final model can be added, as fitted model to the sample variogram, and
plotted by (figure 5):

> vv$model = ExpVgmMetric(pars.Mpar, vvspacelag, vv$timelag,

+ nugget = 10)

> plot(vv)

distance (km)

tim
e

la
g

0

5

10

15

50 100 150

model

50 100 150

sample

10

20

30

40

50

60

Figure 5: sample variogram map (right) and fitted metric model (left).

Now, let us try to fit and plot a separable model (figure 6):

> ExpVgmSeparable = function(x, s, t, nugget = 0) {

+ h = s/x[2] + as.numeric(t)/x[3]

+ ifelse(h == 0, 0, nugget + x[1] * (1 - exp(-h)))

+ }

> pars.S = optim(c(sill = 40, srange = 90, trange = 2), ExpFitFn,

+ gfn = ExpVgmSeparable, v = vv, nugget = 10)

8

> vv$model = ExpVgmSeparable(pars.Spar, vvspacelag, vv$timelag,

+ nugget = 10)

> pars.S$par

sill srange trange

41.482486 90.238746 1.631836

> plot(vv)

distance (km)

tim
e

la
g

0

5

10

15

50 100 150

model

50 100 150

sample

10

20

30

40

50

60

Figure 6: sample variogram map (right) and fitted seperable model (left).

A wireframe (3D) plot of the sample variogram can be obtained e.g. by

> library(lattice)

> wireframe(gamma ~ spacelag * timelag, vv, drape = TRUE, col.regions = bpy.colors)

which is shown in figure 7.

3 Spatio-temporal prediction

The vignette in package spacetime gives an example of using the gstat function
krigeST for spatio-temporal kriging of the Irish wind data. The variogram
there needs to be specified as two separate variogram models, the product of
which needs to be the target spatio-temporal variogram. The krigeST function

9

spacelag
timelag

gamma − model

−8

−6

−4

−2

0

2

4

6

Figure 7: Wireplot of sample space-time variogram

uses global kriging, but only needs to invert the purely spatial and purely time
covariance matrices.

For more generic spatio-temporal kriging where space is two-dimensional,
one could use krige, defining the observations and prediction locations as three-
dimensional data sets, see for an example

> demo(gstat3D)

It needs to be pointed out that in that case, the time (typically the third di-
mension) needs to be numeric, and three-dimensional anisotropy needs to be
defined properly (see ?vgm).

In case the data set is too large for global kriging, one could try to use
local kriging, and select data within some distance, or by specifying nmax (the
nearest n observations). In both cases, it is advisable to transform time such
that one can use an isotropic variogram model in the three dimensions, as only
in that case the nearest n observations correspond to the n most correlated
observations.

An additional consideration is that in space-time, observations may not be
regularly spaced. In some cases, the nearest n obervations may come from a
single measurement location, which may lead to sharp jumps/boundaries in the
interpolated values. This might be solved by using larger neighbourhoods, or
by setting the omax in krige or gstat calls to the neighbourhood size to select
per octant (this should be combined with specifying maxdist).

10

References

� Bivand, R., E. Pebesma and V. Gomez-Rubio, 2008. Applied Spatial Data
Analysis with R. Springer.

� Cressie, N.A.C., 1993. Statistics for Spatial Data. Wiley.

� Cressie, N. and C. Wikle, 2011. Statistics for Spatio-temporal Data. Wi-
ley.

� Pebesma, E.J., Wesseling, C.G., 1998. Gstat, a program for geostatistical
modelling, prediction and simulation. Computers & Geosciences, 24 (1),
pp. 17–31.

� Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package.
Computers & Geosciences 30: 683-691

� Ver Hoef, J.M., Cressie, N.A.C, 1993. Multivariable Spatial Prediction.
Mathematical Geology, 25 (2), pp. 219–240.

11

http://www.sciencedirect.com/science/journal/00983004

	Introduction
	Variography
	Temporal autocorrelation and cross correlation
	Spatial correlation, variograms
	Fitting a spatio-temporal variogram model

	Spatio-temporal prediction

