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The package geoRgl mprovides functions for inference in generalised linear spatial models using the
software R. This document illustrates some of the capabilities of the package.

We assume that the user has a substantial knowledge about geostatistics, is familar with the geoR
package (see the introductory session for geoR), and has a basic knowledge about Markov chain Monte
Carlo methods. We also encourage the reader to study the literature about generalised linear spatial
models. A list of books, articles and a short FAQ can be found here).

The objective of this page isto introduce the reader to the geoRgl mcommands and show how they can
be used. The commands used here are basic examples of the package handling, where we typically use
default arguments for the function calls. We encourage the user aso to inspect other function arguments.

For further details on the functionsincluded in geoRgl m we refer to the geoRgl mdocumentation.

1. STARTING A SESSION AND LOADING DATA

After starting an R session, we first load geoR and geoRgl mwith the commands:

I'ibrary(geoR)
library(geoRgl m

If theinstallation directories for the packages are not the default locations for R packages, type:

library(geoR, lib.loc = "PATH TO geoR")
library(geoRglm lib.loc = "PATH TO geoRgl ni')

where" PATH_TO geoR' and " PATH TO geoRgl ni' are the pathsto the directories where geoR and
geoRgl mare installed, respectively. If the packages are correctly loaded the following messages
will be displayed:



geoR - a package for geostatistical analysis in R
geoR version 1.3-10 (2003-03-10) is now | oaded

geoRgl m - a package for generalised |linear spatial nodels
geoRgl m version 0.6-2 (2003-03-24) is now | oaded

Typically, data are stored as an object (alist) of class" geodat a" (see the geoR introductory
session for more details on this). For the data sets considered here, the object will sometimes
include avector uni t s. mconsisting of observation times (for the Poisson distribution) or numbers
Ninbi (N, p) (for the binomial distribution).

We use the data sets p50 and r ongel ap included in the geoRgl mdistribution for the examples
presented in this document. These data sets can be loaded by typing:

dat a( p50)
dat a( rongel ap)

Helpfiles are available for geoRgl m For getting help on the function poi s. kri ge, just type:

hel p(poi s. kri ge)

CONDITIONAL SIMULATION and SPATIAL
PREDICTION

Here we describe conditional simulation using MCMC and spatial prediction in the Poisson-log
normal model, when covariance parameters are fixed. Full Bayesian methods are also
implemented and will be presented in Section 3.

The nugget effect parameter (microscale variation) in the underlying Gaussian field can be set to a
fixed value. The same applies for the smoothness and anisotropy parameters. Options for taking
covariates (trends) into account are also included.

Conditional simulation and prediction with fixed covariance parameters in the Poisson-log normal
model can be performed with options for either fixed bet a (OK) or flat prior on bet a (SK). The
function uses a Langevin-Hastings MCMC agorithm for simulating from the conditional
distribution.

An example where all parameters are fixed is shown below (for illustration purposes, some
parameter values are just taken).

First we need to tune the algorithm by scaling the proposal variance so that acceptance rateis
approximately 60 percent (optimal acceptance rate for Langevin-Hastings algorithm). Thisis done
by trial and error.

nodel 2 <- krige.glmcontrol (cov.pars = c(1,1), beta = 1)



test2.tune <- pois.krige(p50, krige = nodel 2, ncnct.input = list(S.scale =
0.2, thin = 1))

After afew tryoutswe decideto use S. scal e = 0. 5. We also need to study how well the chainis
mixing.

test2.tune <- pois.krige(p50, krige = nodel 2, ncnc.input = list(S. scale =
0.5, thin = 1))
pl ot (l og(test2.tune$intensity[45,]), type ="I")

require(ts)
acf(log(test2.tune$intensity[45,]), type = "correlation", plot = TRUE)
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Here the functions in the coda package would be useful for ng the convergence and inspect
the mixing of the MCMC agorithm. For a small demonstration of afew CODA functions used on
the output above, see here.

To reduce the autocorrel ation of the samples we decide to subsample every 10 iterations (default);
when working with real data sets we may need to make a more enxtensive subsampling, say,
storing only every 1000 iterations.

Now we make (minimal mean square error) prediction of the intensity at the two locations (0.5,
0.5) and (1, 0.4).

test2 <- pois.krige(p50, locations = cbhind(c(0.5,0.5),¢c(1,0.4)), krige =
nodel 2, ntne.input = necnc.control (S.scale = 0.5), output =
out put.glmcontrol (simpredict = TRUE))

The output isalist including the predicted values (t est 2$pr edi ct ), the prediction variances

(t est 2$kri ge. var ) and the estimated Monte Carlo standard errors on the predicted values

(t est 2$nene. error). Please consider printing out the predicted values and the associated Monte
Carlo standard errors:

t est 2$predi ct
test2%nctnT. error

Note that the Monte Carlo standard errors (the errors due to the MCM C-simulation) are small



compared to predicted values, which is very satisfactory. (Monte Carlo standard errors on the
prediction variances is not implemented yet).

By specifying si m predi ct = TRUE, Ssmulations are drawn from the predictive intensity at the
two prediction locations (test2$simulations). These simulations are plotted below.

par(nfrow = c(1,2))
hi st (test2$sinul ations[1,], main

hi st (test2$simulations[2,], main ="(1, 0.4)")
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The way to specify that bet a should follow a uniform prior would be:

nmodel 2. u <- krige.glmcontrol (cov.pars = c(1,1), beta = 1, type.krige =
"ok")

test2.unif.beta <- pois.krige(p50, krige = nodel 2.u, ntnt.input =
list(S.scale = 0.5))

BAYESIAN ANALYSIS

Bayesian analysis for the Poisson-log normal model and the binomial-logit model isimplemented
by the functions poi s. kri ge. bayes and bi nom kri ge. bayes, respectively. Model parameters
can be treated as fixed or random.

As an example consider first amodel without nugget and including uncertainty in the bet a and
si gmasq parameters (mean and variance of the random effects S, respectively). A Bayesian
analysisis made by typing commands like:

prior5 <- prior.glmcontrol (phi.prior = "fixed", phi = 0.1)

ncneb. tune <- nene. control (S.scale = 0.01, thin = 1)

test5.tune <- pois. krige.bayes(p50, prior = prior5, ntnt.input =
ncnch. tune)

Now chose S. scal e (Acc-rate=0.60 is preferable). After having adjusted the parameters for the



MCMC agorithm and checking the output we run an analysis.

ncnth5 <- necnec.control (S.scale = 0.075, thin = 100)

test5 <- pois. krige. bayes(p50, locations =
t(cbind(c(2.5,3),c(-6050,-3270))), prior = prior5, ntnc.input = ncnch,
output = list(threshold = 10, quantile = c¢(0.05,0.99)))

The output is alist which contains the five arguments post eri or, predi cti ve, nodel , pri or and
ncnce. i nput .

Thepost eri or containsinformation on the posterior distribution of the parameters, and the
conditional ssimulations of the signal g~{- 1} (S) at the data locations.

Thepredi cti ve contains information on the predictions, where pr edi ct i ve$nedi an isthe
predicted signal and pr edi ct i ve$uncert ai nty iSthe associated uncertainty.

Thet hreshol d = 10 argument gives probabilities of the predictive distribution of the signal
being less than 10 (test5$predictive$probability).

Thequantiles = c(0.05,0.99) givesthe 0.05and 0.99 quantiles of the predictive distribution
of the signal (test5$predictive$quantiles).

Below we show the simulations from the posterior distribution of the signal at afew data
locations.

par (nfrow = c(1, 3))

hi st (t est 5$posteri or $si nul ati ons[ 10,], main = "(9, 0)")
hi st (t est 5$posteri or$sinul ati ons[23,], main = "(2,2)")
hi st (t est 5$posteri or$si nul ati ons[36,], main ="(5,3)")
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Now we consider an example with arandom correlation scale parameter phi and a positive nugget
for the random effects S. The program is using a discretised prior fpr phi, where the discretisation
is given by the argument phi . di scr et e). The argument (t ausqg. rel = 0. 05 givestherelative
nugget for S, i.e. the relative microscale variation).

ncnc6.tune <- ntnc.control (S.scale = 0.075, n.iter = 2000, thin 100,
phi.scale = 0.01)

prior6 <- prior.glmcontrol (phi.prior = "uniforni, phi.discrete
seq(0.02, 1, 0.02), tausqg.rel = 0.05)

test6.tune <- pois.krige.bayes(p50, prior = prior6, ntnt.input =

ncnc6. t une)



Acc-rate=0.60 , acc-rate-phi = 0.25-0.30 are preferable. After having adjusted the parameters for
the MCMC algorithm and checking the output we run an analysis.

WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING

ncnt6 <- ncnc. control (S.scale = 0.075, n.iter = 400000, thin = 200,
burn.in = 5000, phi.scale = 0.12, phi.start = 0.5)

test6 <- pois.krige.bayes(p50, |locations =
t(cbind(c(2.5,3.5),c(-60,-37))), prior = prior6, ntnct.input = ncncb)

Below we show the posterior distribution of the two covariance parameters and the beta parameter.

par(nfrow = c(1,3))

hi st (t est 68post eri or $bet a$sanpl e, nmain ="beta")

hi st (t est 6$post eri or $si gmasq$sanpl e, main = "sigmasq")
hi st (t est 6$post eri or $phi $sanple, nmain = "phi ")
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To calculate the Monte Carlo standard errors on the posterior means of the parameters, we use the
function asynpvar .

sqrt (asynpvar (t est 6$post eri or $bet a$sanpl )/ 2000)

sqrt (asynpvar (t est 6$post eri or $si gmasg$sanpl e) / 2000)
sqgrt (asynpvar (t est 6$post eri or $phi $sanpl e) / 2000)

sqrt (asynpvar (| og(test 6$posteri or$si nul ati ons))/2000)

Exercise

Construct similar commands using bi nom kr i ge. bayes on the data set b50 yourself (you load the
data set by typing dat a( b50) ).

SIMULATION of a GENERALISED LINEAR SPATIAL
MODEL

The geoRfunction gr f generates a simulation from a Gaussian random field. This function can be



used to generate a simulation from a generalised linear spatial model as follows.

sim<- grf(grid = expand.grid(x = seq(1, 10, | = 10), y = seq(1l, 10, | =
10)), cov.pars = c¢(0.1, 0.2))

attr(sim"class") <- "geodata"

sinBunits. m<- c(rep(1l, 50), rep(5, 50))

si nbdata <- rpois(100, |anmbda = sintunits. nrexp(si nbdata))

pl ot (si ncoords[, 1], sin®coords[,2], type = "n")

t ext (si nbcoords[, 1], sincoords[, 2], format(sin$data))
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Observe that the upper part of the figure corresponds to observation times equal to 5. Therefore the
simulated counts are larger.
Exercise

Generate a simulation from a spatial binomial random field.

5. ADDITIONAL INFORMATION

1. Empirical covariogram for the Poisson-log normal model. See here.
2. A short demonstration shown at my Ph.D. vivaisfound here.

3. The commands from the example in Diggle, Ribeiro Jr and Christensen (2003)
[bookchapter], and Christensen and Ribeiro Jr (2002) [R-news] are found here.
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