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The package geoRglm provides functions for inference in generalised linear spatial models using the
software R. This document illustrates some of the capabilities of the package. 

We assume that the reader is familiar with the geoR package (see the introductory session for geoR). 

The objective is to introduce the reader to the geoRglm commands and show how they can be used. The
commands used here are basic examples of the package handling, where we typically use default
arguments for the function calls. We encourage the user also to inspect other function arguments. 

For further details on the functions included in geoRglm, we refer to the geoRglm documentation. 

1. STARTING A SESSION AND LOADING DATA

After starting an R session, we first load geoR and geoRglm with the commands: 

library(geoR)

library(geoRglm) 

If the installation directories for the packages are not the default locations for R packages, type: 

library(geoR, lib.loc = "PATH_TO_geoR")

library(geoRglm, lib.loc = "PATH_TO_geoRglm") 

where "PATH_TO_geoR" and "PATH_TO_geoRglm" are the paths to the directories where geoR and
geoRglm are installed, respectively. If the packages are correctly loaded the following messages
will be displayed: 

----------------------------------------------------
geoR - a package for geostatistical analysis in R
geoR version 1.2-1 is now loaded
----------------------------------------------------



-----------------------------------------------------------
geoRglm - a package for generalised linear spatial models 
geoRglm version 0.3-7 is now loaded
-----------------------------------------------------------

Typically, data are stored as an object (a list) of class "geodata" (see the geoR introductory
session for more details on this). For the data sets considered here, the object will sometimes
include a vector units.m consisting of observation times (for the Poisson distribution) or numbers
N in bi(N,p) (for the binomial distribution). 

We use the data sets y50 and rongelap included in the geoRglm distribution for the examples
presented in this document. These data sets can be loaded by typing: 

data(y50) 
data(rongelap) 

Helpfiles are available for geoRglm. For getting help on the function pois.log.krige, just type: 

help(pois.log.krige) 

2. CONDITIONAL SIMULATION and SPATIAL
PREDICTION

Here we describe conditional simulation using MCMC and spatial prediction in the Poisson-log
normal model, when covariance parameters are fixed. Full Bayesian methods are also
implemented and will be presented in Section 3. 

The nugget effect parameter (microscale variation) in the underlying Gaussian field can be set to a
fixed value. The same applies for the smoothness and anisotropy parameters. Options for taking
covariates (trends) into account are also included.

Conditional simulation and prediction with fixed covariance parameters in the Poisson-log normal
model can be performed with options for either fixed beta (OK) or flat prior on beta (SK). The
function uses a Langevin-Hastings MCMC algorithm for simulating from the conditional
distribution. 

An example where all parameters are fixed is shown below (for illustration purposes, some
parameter values are just taken). 

First we need to tune the algorithm by scaling the proposal variance so that acceptance rate is
approximately 60 percent (optimal acceptance rate for Langevin-Hastings algorithm). This is done
by trial and error. 

model2 <- krige.glm.control(cov.pars = c(1,1), beta = 1) 
test2.tune <- pois.log.krige(y50, krige = model2, mcmc.input =

list(S.scale = 0.09, thin = 1))

After a few tryouts we decide to use S.scale = 0.07. We also need to study how well the chain



is mixing. 

test2.tune <- pois.log.krige(y50, krige = model2, mcmc.input =
list(S.scale = 0.07, thin = 1))

plot(log(test2.tune$intensity[45,]), type = "l")
require(ts) 
acf(log(test2.tune$intensity[45,]), type = "correlation", plot = TRUE)

Here the functions in the coda package would be useful for assessing the convergence and inspect
the mixing of the MCMC algorithm (consider installing this R-package !). For a small
demonstration of a few CODA functions used on the output above, see here. 

To reduce the autocorrelation of the samples we decide to subsample every 50 iteration. 

Now we make (minimal mean square error) prediction of the intensity at the two locations (0.5,
0.5) and (1, 0.4). 

test2 <- pois.log.krige(y50, locations = cbind(c(0.5,0.5),c(1,0.4)), krige
= model2, mcmc.input = mcmc.control(S.scale = 0.07, thin = 50), output =
output.glm.control(sim.predict = TRUE))

The output is a list including the predicted values (test2$predict), the prediction variances
(test2$krige.var) and the estimated Monte Carlo standard errors on the predicted values
(test2$mcmc.error). Please consider printing out the predicted values and the associated Monte
Carlo standard errors: 

test2$predict
test2$mcmc.error

Note that the Monte Carlo standard errors (the errors due to the MCMC-simulation) are small
compared to predicted values, which is very satisfactory. (Monte Carlo standard errors on the
prediction variances is not implemented yet). 

By specifying sim.predict = TRUE, simulations are drawn from the predictive intensity at the
two prediction locations (test2$simulations). These simulations are plotted below. 



par(mfrow = c(1,2))
hist(test2$simulations[1,], main = "(0.5, 0.5) ")
hist(test2$simulations[2,], main ="(1, 0.4)")

The way to specify that beta should follow a uniform prior would be: 

model2.u <- krige.glm.control(cov.pars = c(1,1), beta = 1, type.krige =
"ok")) 

test2.unif.beta <- pois.log.krige(y50, krige = model2.u, mcmc.input =
list(S.scale = 0.07, thin = 20))

3. BAYESIAN ANALYSIS 

Bayesian analysis for the Poisson-log normal model and the binomial-logit model is implemented
by the functions pois.krige.bayes and binom.krige.bayes, respectively. Model parameters
can be treated as fixed or random. 

As an example consider first a model without nugget and including uncertainty in the beta and
sigma.sq parameters. A Bayesian analysis is made by typing commands like: 

prior5 <- prior.glm.control(phi.prior = "fixed", phi = 0.1)
mcmc5.tune <- mcmc.control(S.scale = 0.01, thin = 1)
test5.tune <- pois.krige.bayes(y50, prior = prior5, mcmc.input =

mcmc5.tune)

Now chose S.scale (Acc-rate=0.60 is preferable). After having adjusted the parameters for the
MCMC algorithm and checking the output we run an analysis. 

mcmc5 <- mcmc.control(S.scale = 0.075, thin = 100)
test5 <- pois.krige.bayes(y50, locations =

t(cbind(c(2.5,3),c(-6050,-3270))), prior = prior5, mcmc.input = mcmc5,
output = list(threshold = 10, quantile = c(0.05,0.99)))

The output is a list which contains the five arguments posterior, predictive, model, prior and



mcmc.input. 
The posterior contains information on the posterior distribution of the parameters, and the
conditional simulations of the signal g^{-1}(S) at the data locations. 
The predictive contains information on the predictions, where predictive$median is the
predicted signal and predictive$uncertainty is the associated uncertainty.
The threshold = 10 argument gives probabilities of the predictive distribution of the signal
being less than 10 (test5$predictive$probability).
The quantiles = c(0.05,0.99) gives the 0.05 and 0.99 quantiles of the predictive distribution
of the signal (test5$predictive$quantiles). 

Below we show the simulations from the posterior distribution of the signal at a few data
locations. 

par(mfrow = c(1,3))
hist(test5$posterior$simulations[10,], main = "(9, 0)")
hist(test5$posterior$simulations[23,], main = "(2,2)")
hist(test5$posterior$simulations[36,], main ="(5,3)")

Now we consider an example with a random phi (the program is using a
discretised prior, where the discretisation is given by the argument
phi.discrete) and a positive nugget (tausq.rel = 0.05 gives the relative
nugget, the relative microscale variation). 

mcmc6.tune <- mcmc.control(S.scale = 0.075, n.iter = 2000, thin = 100,
phi.scale = 0.01) 

prior6 <- prior.glm.control(phi.prior = "uniform", phi.discrete =
seq(0.02, 1, 0.02), tausq.rel = 0.05) 

test6.tune <- pois.krige.bayes(y50, prior = prior6, mcmc.input =
mcmc6.tune) 

Acc-rate=0.60 , acc-rate-phi = 0.25-0.30 are preferable. After having adjusted
the parameters for the MCMC algorithm and checking the output we run an
analysis. 

WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING

mcmc6 <- mcmc.control(S.scale = 0.075, n.iter = 400000, thin = 200,
burn.in = 5000, phi.scale = 0.12, phi.start = 0.5) 

test6 <- pois.krige.bayes(y50, locations =
t(cbind(c(2.5,3.5),c(-60,-37))), prior = prior6, mcmc.input = mcmc6) 



Below we show the posterior distribution of the two covariance parameters and
the beta parameter. 

par(mfrow = c(1,3))
hist(test6$posterior$beta$sample, main ="beta")
hist(test6$posterior$sigmasq$sample, main = "sigmasq")
hist(test6$posterior$phi$sample, main = "phi") 

To calculate the Monte Carlo standard errors on the posterior means of the
parameters, we use the function asympvar. 

sqrt(asympvar(test6$posterior$beta$sample)/2000) 
sqrt(asympvar(test6$posterior$sigmasq$sample)/2000) 
sqrt(asympvar(test6$posterior$phi$sample)/2000) 
sqrt(asympvar(log(test6$posterior$simulations))/2000) 

Exercise

Construct similar commands using binom.krige.bayes on the data set b50 yourself
(you load the data set by typing data(b50)). 

4. SIMULATION of a GENERALISED LINEAR SPATIAL
MODEL
The geoR function grf generates a simulation from a Gaussian random field. This
function can be used to generate a simulation from a generalised linear spatial
model as follows. 

sim <- grf(grid = expand.grid(x = seq(1, 10, l = 10), y = seq(1, 10, l =
10)), cov.pars = c(0.1, 0.2)) 

attr(sim,"class") <- "geodata" 
sim$units.m <- c(rep(1, 50), rep(5, 50)) 
sim$data <- rpois(100, lambda = sim$units.m*exp(sim$data)) 
plot(sim$coords[,1], sim$coords[,2], type = "n") 
text(sim$coords[,1], sim$coords[,2], format(sim$data)) 



 

Observe that the upper part of the figure corresponds to observation times
equal to 5. Therefore the simulated counts are larger. 

Exercise

Generate a simulation from a spatial binomial random field. 

5. EXPLORATORY TOOLS 

1. Empirical covariogram for the Poisson-log normal model 

An empirical covariogram can be calculated using the function covariog. 

covar <- covariog(rongelap, uvec = c((1:20)*40)) 

Theoretical and empirical variograms can be plotted and visually compared.
For example, the figure below shows the estimated covariogram, a
theoretical covariogram model (which in fact was estimated) and an
envelope (2.5 and 97.5 percent quantiles) based on simulating the
covariogram for the model having parameters given in parms.R. 

parmR <- list(cov.model = "powered.exponential", kappa = 0.843,
cov.pars = c(0.31,6702/61.9), beta = 1.836) 

class(parmR) <- "covariomodel" 
konvol <- covariog.model.env(rongelap, obj.covariog = covar,

model.pars = parmR) 
plot(covar, envelope.obj = konvol)
lines(parmR, max.dist = 800, lty = 1) 



 

6. MISC. 
A short demonstration shown at my Ph.D. viva is found here. 

Site maintained by: Ole F. Christensen. (o.christensen@lancaster.ac.uk) 


