
A Short Introduction to the caret Package

Max Kuhn
max.kuhn@pfizer.com

June 20, 2013

The caret package (short for classification and regression training) contains functions to streamline
the model training process for complex regression and classification problems. The package utilizes
a number of R packages but tries not to load them all at package start-up1. The package “suggests”
field includes 76 packages. caret loads packages as needed and assumes that they are installed.
Install caret using

> install.packages("caret", dependencies = c("Depends", "Suggests"))

to ensure that all the needed packages are installed.

The main help pages for the package are at:

http://caret.r-forge.r-project.org/

Here, there are extended examples and a large amount of information that previously found in the
package vignettes.

caret has several functions that attempt to streamline the model building and evaluation process,
as well as feature selection and other techniques.

One of the primary tools in the package is the train function which can be used to

• evaluate, using resampling, the effect of model tuning parameters on performance

• choose the “optimal” model across these parameters

• estimate model performance from a training set

1By adding formal package dependencies, the package startup time can be greatly decreased

http://caret.r-forge.r-project.org/

The caret Package

More formally:

1 Define sets of model parameter values to evaluate
2 for each parameter set do
3 for each resampling iteration do
4 Hold–out specific samples
5 [Optional] Pre–process the data
6 Fit the model on the remainder
7 Predict the hold–out samples

8 end
9 Calculate the average performance across hold–out predictions

10 end
11 Determine the optimal parameter set
12 Fit the final model to all the training data using the optimal parameter set

There are options for customizing almost every step of this process (e.g. resampling technique,
choosing the optimal parameters etc). To demonstrate this function, the Sonar data from the
mlbench package will be used.

The Sonar data consist of 208 data points collected on 60 predictors. The goal is to predict the two
classes (M for metal cylinder or R for rock).

First, we split the data into two groups: a training set and a test set. To do this, the createDataPartition

function is used:

> library(caret)

> library(mlbench)

> data(Sonar)

> set.seed(107)

> inTrain <- createDataPartition(y = Sonar$Class,

+ ## the outcome data are needed

+ p = .75,

+ ## The percentage of data in the

+ ## training set

+ list = FALSE)

> ## The format of the results

>

> ## The output is a set of integers for the rows of Sonar

> ## that belong in the training set.

> str(inTrain)

int [1:157, 1] 98 99 100 101 102 104 107 108 111 112 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "Resample1"

Bt default, createDataPartition does a stratified random split of the data. To partition the data:

2 of 10

The caret Package

> training <- Sonar[inTrain,]

> testing <- Sonar[-inTrain,]

> nrow(training)

[1] 157

> nrow(testing)

[1] 51

To tune a model using Algorithm 1, the train function can be used. More details on this function
can be found at:

http://caret.r-forge.r-project.org/training.html

Here, a partial least squares discriminant analysis (PLSDA) model will be tuned over the number
of PLS components that should be retained. The most basic syntax to do this is:

> plsFit <- train(Class ~ .,

+ data = training,

+ method = "pls",

+ ## Center and scale the predictors for the training

+ ## set and all future samples.

+ preProc = c("center", "scale"))

However, we would probably like to customize it in a few ways:

• expand the set of PLS models that the function evaluates. By default, the function will tune
over three values of each tuning parameter.

• the type of resampling used. The simple bootstrap is used by default. We will have the
function use three repeats of 10–fold cross–validation.

• the methods for measuring performance. If unspecified, overall accuracy and the Kappa
statistic are computed. For regression models, root mean squared error and R2 are computed.
Here, the function will be altered to estimate the area under the ROC curve, the sensitivity
and specificity

To change the candidate values of the tuning parameter, either of the tuneLength or tuneGrid ar-
guments can be used. The train function can generate a candidate set of parameter values and
the tuneLength argument controls how many are evaluated. In the case of PLS, the function uses
a sequence of integers from 1 to tuneLength. If we want to evaluate all integers between 1 and 15,
setting tuneLength = 15 would achieve this. The tuneGrid argument is used when specific values are
desired. A data frame is used where each row is a tuning parameter setting and each column is a
tuning parameter. An example is used below to illustrate this.

The syntax for the model would then be:

3 of 10

http://caret.r-forge.r-project.org/training.html

The caret Package

> plsFit <- train(Class ~ .,

+ data = training,

+ method = "pls",

+ tuneLength = 15,

+ preProc = c("center", "scale"))

To modify the resampling method, a trainControl function is used. The option method controls
the type of resampling and defaults to "boot". Another method, "repeatedcv", is used to specify
repeated K–fold cross–validation (and the argument repeats controls the number of repetitions). K
is controlled by the number argument and defaults to 10. The new syntax is then:

> ctrl <- trainControl(method = "repeatedcv",

+ repeats = 3)

> plsFit <- train(Class ~ .,

+ data = training,

+ method = "pls",

+ tuneLength = 15,

+ trControl = ctrl,

+ preProc = c("center", "scale"))

Finally, to choose different measures of performance, additional arguments are given to trainControl.
The summaryFunction argument is used to pas in a function that takes the observed and predicted
values and estimate some measure of performance. Two such functions are already included in the
package: defaultSummary and twoClassSummary. The latter will compute measures specific to two–class
problems, such as the area under the ROC curve, the sensitivity and specificity. Since the ROC
curve is based on the predicted class probabilities (which are not computed automatically), another
option is required. The classProbs = TRUE option is used to include these calculations.

Lastly, the function will pick the tuning parameters associated with the best results. Since we are
using custom performance measures, the criterion that should be optimized must also be specified.
In the call to train, we can use metric = "ROC" to do this.

The final model fit would then be:

> ctrl <- trainControl(method = "repeatedcv",

+ repeats = 3,

+ classProbs = TRUE,

+ summaryFunction = twoClassSummary)

> plsFit <- train(Class ~ .,

+ data = training,

+ method = "pls",

+ tuneLength = 15,

+ trControl = ctrl,

+ metric = "ROC",

+ preProc = c("center", "scale"))

> plsFit

157 samples

60 predictors

4 of 10

The caret Package

2 classes: M, R

Pre-processing: centered, scaled

Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 142, 141, 141, 141, 142, 142, ...

Resampling results across tuning parameters:

ncomp ROC Sens Spec ROC SD Sens SD Spec SD

1 0.811 0.712 0.717 0.118 0.157 0.185

2 0.871 0.778 0.813 0.107 0.163 0.154

3 0.866 0.77 0.834 0.107 0.155 0.118

4 0.866 0.774 0.771 0.103 0.17 0.145

5 0.85 0.753 0.785 0.105 0.169 0.175

6 0.835 0.757 0.804 0.109 0.152 0.167

7 0.809 0.73 0.779 0.127 0.151 0.169

8 0.808 0.726 0.774 0.14 0.174 0.177

9 0.812 0.729 0.752 0.143 0.141 0.175

10 0.818 0.73 0.765 0.138 0.147 0.178

11 0.83 0.742 0.77 0.116 0.144 0.183

12 0.82 0.746 0.774 0.134 0.153 0.18

13 0.822 0.734 0.774 0.133 0.157 0.176

14 0.817 0.738 0.783 0.14 0.163 0.17

15 0.809 0.734 0.774 0.144 0.163 0.176

ROC was used to select the optimal model using the largest value.

The final value used for the model was ncomp = 2.

In this output the grid of results are the average resampled estimates of performance. The note at
the bottom tells the user that 2 PLS components were found to be optimal. Based on this value,
a final PLS model is fit to the whole data set using this specification and this is the model that is
used to predict future samples.

The package has several functions for visualizing the results. One method for doing this is the
plot function for train objects. The command plot(plsFit) produced the results seen in Figure
1 and shows the relationship between the resampled performance values and the number of PLS
components.

To predict new samples, predict.train can be used. For classification models, the default behavior
is to calculated the predicted class. Using the option type = "prob" can be used to compute class
probabilities from the model. For example:

> plsClasses <- predict(plsFit, newdata = testing)

> str(plsClasses)

Factor w/ 2 levels "M","R": 2 1 1 2 1 2 2 2 2 2 ...

> plsProbs <- predict(plsFit, newdata = testing, type = "prob")

> head(plsProbs)

5 of 10

The caret Package

#Components

R
O

C
 (

R
ep

ea
te

d
C

ro
ss

−
V

al
id

at
io

n)

0.82

0.84

0.86

5 10 15

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

Figure 1: plot(plsFit) shows the relationship between the number of PLS components and the
resampled estimate of the area under the ROC curve.

M R

4 0.3762529 0.6237471

5 0.5229047 0.4770953

8 0.5839468 0.4160532

16 0.3660142 0.6339858

20 0.7351013 0.2648987

25 0.2135788 0.7864212

caret contains a function to compute the confusion matrix and associated statistics for the model
fit:

> confusionMatrix(data = plsClasses, testing$Class)

Confusion Matrix and Statistics

Reference

Prediction M R

M 20 7

R 7 17

Accuracy : 0.7255

95% CI : (0.5826, 0.8411)

No Information Rate : 0.5294

P-Value [Acc > NIR] : 0.003347

6 of 10

The caret Package

Kappa : 0.4491

Mcnemars Test P-Value : 1.000000

Sensitivity : 0.7407

Specificity : 0.7083

Pos Pred Value : 0.7407

Neg Pred Value : 0.7083

Prevalence : 0.5294

Detection Rate : 0.3922

Detection Prevalence : 0.5294

Positive Class : M

To fit an another model to the data, train can be invoked with minimal changes. Lists of models
available can be found at:

http://caret.r-forge.r-project.org/modelList.html

http://caret.r-forge.r-project.org/bytag.html

For example, to fit a regularized discriminant model to these data, the following syntax can be used:

> ## To illustrate, a custom grid is used

> rdaGrid = data.frame(.gamma = (0:4)/4, .lambda = 3/4)

> set.seed(123)

> rdaFit <- train(Class ~ .,

+ data = training,

+ method = "rda",

+ tuneGrid = rdaGrid,

+ trControl = ctrl,

+ metric = "ROC")

> rdaFit

157 samples

60 predictors

2 classes: M, R

No pre-processing

Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 142, 141, 141, 141, 142, 142, ...

Resampling results across tuning parameters:

gamma ROC Sens Spec ROC SD Sens SD Spec SD

0 0.845 0.788 0.762 0.106 0.18 0.18

0.25 0.886 0.806 0.804 0.0935 0.151 0.159

7 of 10

http://caret.r-forge.r-project.org/modelList.html
http://caret.r-forge.r-project.org/bytag.html

The caret Package

0.5 0.885 0.81 0.767 0.0922 0.142 0.163

0.75 0.869 0.775 0.753 0.105 0.164 0.176

1 0.766 0.662 0.68 0.165 0.176 0.254

Tuning parameter lambda was held constant at a value of 0.75

ROC was used to select the optimal model using the largest value.

The final values used for the model were gamma = 0.25 and lambda = 0.75.

> rdaClasses <- predict(rdaFit, newdata = testing)

> confusionMatrix(rdaClasses, testing$Class)

Confusion Matrix and Statistics

Reference

Prediction M R

M 22 5

R 5 19

Accuracy : 0.8039

95% CI : (0.6688, 0.9018)

No Information Rate : 0.5294

P-Value [Acc > NIR] : 4.341e-05

Kappa : 0.6065

Mcnemars Test P-Value : 1

Sensitivity : 0.8148

Specificity : 0.7917

Pos Pred Value : 0.8148

Neg Pred Value : 0.7917

Prevalence : 0.5294

Detection Rate : 0.4314

Detection Prevalence : 0.5294

Positive Class : M

How do these models compare in terms of their resampling results? The resamples function can be
used to collect, summarize and contrast the resampling results. Since the random number seeds
were initialized to the same value prior to calling train, the same folds were used for each model.
To assemble them:

> resamps <- resamples(list(pls = plsFit, rda = rdaFit))

> summary(resamps)

Call:

summary.resamples(object = resamps)

Models: pls, rda

Number of resamples: 30

8 of 10

The caret Package

ROC

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs

pls 0.5397 0.8333 0.8672 0.8713 0.9509 1 0

rda 0.6984 0.8398 0.9028 0.8860 0.9787 1 0

Sens

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs

pls 0.3333 0.7500 0.7778 0.7782 0.8750 1 0

rda 0.4444 0.6875 0.8750 0.8060 0.8889 1 0

Spec

Min. 1st Qu. Median Mean 3rd Qu. Max. NAs

pls 0.5000 0.7143 0.8571 0.8131 0.9688 1 0

rda 0.1429 0.7232 0.8571 0.8036 0.8571 1 0

There are several functions to visualize these results. For example, a Bland–Altman type plot can
be created using xyplot(resamps, what = "BlandAltman") (see Figure 2). The results look similar.
Since, for each resample, there are paired results a paired t–test can be used to assess whether there
is a difference in the average resampled area under the ROC curve. The diff.resamples function
can be used to compute this:

> diffs <- diff(resamps)

> summary(diffs)

Call:

summary.diff.resamples(object = diffs)

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference

Lower diagonal: p-value for H0: difference = 0

ROC

pls rda

pls -0.01469

rda 0.2975

Sens

pls rda

pls -0.02778

rda 0.125

Spec

pls rda

pls 0.009524

rda 0.7348

Based on this analysis, the difference between the models is -0.015 ROC units (the RDA model is
slightly higher) and the two–sided p–value for this difference is 0.29749.

9 of 10

The caret Package

ROC

Average

pl
s

−
 r

da

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.7 0.8 0.9 1.0

Figure 2: A Bland–Altman plot of the resampled ROC values produced using
xyplot(resamps, what = "BlandAltman").

10 of 10

