
Variable Selection Using The caret Package

Max Kuhn
max.kuhn@pfizer.com

February 22, 2012

1 Models with Built–In Feature Selection

Many models that can be accessed using caret’s train function produce prediction equations that
do not necessarily use all the predictors. These models are thought to have built–in feature selec-
tion and include rpart, gbm, ada, glmboost, gamboost, blackboost, ctree, sparseLDA, sddaLDA,
sddaQDA glmnet, lasso, lars, spls, earth, fda, bagEarth, bagFDA , pam and others. Many of
the functions have an ancillary method called predictors that returns a vector indicating which
predictors were used in the final model.

In many cases, using these models with built–in feature selection will be more efficient than
algorithms where the search routine for the right predictors is external to the model (see Section
2). Built–in feature selection typically couples the predictor search algorithm with the parameter
estimation and are usually optimized with a single objective function (e.g. error rates or likelihood).

2 Feature Selection Using Search Algorithms

2.1 Searching the Feature Space

Many feature selection routines used a “wrapper” approach to find appropriate variables such that
an algorithm that searches the feature space repeatedly fits the model with different predictor
sets. The best predictor set is determined by some measure of performance (i.e. R2, classification
accuracy, etc). Examples of search functions are genetic algorithms, simulated annealing and for-
ward/backward/stepwise selection methods. In theory, each of these search routines could converge
to an optimal set of predictors.

An example of one search routine is backwards selection (a.k.a. recursive feature elimination).

Variable Selection Using The caret Package

2.1.1 Backwards Selection

First, the algorithm fits the model to all predictors. Each predictor is ranked using it’s importance
to the model. Let S be a sequence of ordered numbers which are candidate values for the number
of predictors to retain (S1 > S2, . . .). At each iteration of feature selection, the Si top raked
predictors are retained, the model is refit and performance is assessed. The value of Si with the
best performance is determined and the top Si predictors are used to fit the final model. Algorithm
1 has a more complete definition.

The algorithm has an optional step (line 1.9) where the predictor rankings are recomputed on
the model on the reduced feature set. Svetnik el al (2004) showed that, for random forest models,
there was a decrease in performance when the rankings were re–computed at every step. However,
in other cases when the initial rankings are not good (e.g. linear models with highly collinear
predictors), re–calculation can slightly improve performance.

Algorithm 1: Recursive feature elimination

1.1 Tune/train the model on the training set using all predictors

1.2 Calculate model performance

1.3 Calculate variable importance or rankings

1.4 for Each subset size Si, i = 1 . . . S do

1.5 Keep the Si most important variables

1.6 [Optional] Pre–process the data

1.7 Tune/train the model on the training set using Si predictors

1.8 Calculate model performance

1.9 [Optional] Recalculate the rankings for each predictor

1.10 end

1.11 Calculate the performance profile over the Si

1.12 Determine the appropriate number of predictors

1.13 Determine the final ranks of each predictor

1.14 Fit the final model based on the optimal Si

One potential issue over–fitting to the predictor set such that the wrapper procedure could focus
on nuances of the training data that are not found in future samples (i.e. over–fitting to predictors
and samples).

For example, suppose a very large number of uninformative predictors were collected and one
such predictor randomly correlated with the outcome. The RFE algorithm would give a good rank
to this variable and the prediction error (on the same data set) would be lowered. It would take a

2 of 24

Variable Selection Using The caret Package

different test/validation to find out that this predictor was uninformative. The was referred to as
“selection bias” by Ambroise and McLachlan (2002).

In the current RFE algorithm, the training data is being used for at least three purposes: pre-
dictor selection, model fitting and performance evaluation. Unless the number of samples is large,
especially in relation to the number of variables, one static training set may not be able to fulfill
these needs.

2.2 Resampling and External Validation

Since feature selection is part of the model building process, resampling methods (e.g. cross–
validation, the bootstrap) should factor in the variability caused by feature selection when cal-
culating performance. For example, the RFE procedure in Algorithm 1 can estimate the model
performance on line 1.7, which during the selection process. Ambroise and McLachlan (2002) and
Svetnik el al (2004) showed that improper use of resampling to measure performance will result in
models that perform poorly on new samples.

To get performance estimates that incorporate the variation due to feature selection, it is sug-
gested that the steps in Algorithm 1 be encapsulated inside an outer layer of resampling (e.g. 10–fold
cross–validation). Algorithm 2 shows a version of the algorithm that uses resampling.

While this will provide better estimates of performance, it is more computationally burdensome.
For users with access to machines with multiple processors, the first For loop in Algorithm 2 (line
2.1) can be easily parallelized. Another complication to using resampling is that multiple lists of
the “best” predictors are generated at each iteration. At first this may seem like a disadvantage, but
it does provide a more probabilistic assessment of predictor importance than a ranking based on a
single fixed data set. At the end of the algorithm, a consensus ranking can be used to determine
the best predictors to retain.

3 of 24

Variable Selection Using The caret Package

Algorithm 2: Recursive feature elimination incorporating resampling

2.1 for Each Resampling Iteration do

2.2 Partition data into training and test/hold–back set via resampling

2.3 Tune/train the model on the training set using all predictors

2.4 Predict the held–back samples

2.5 Calculate variable importance or rankings

2.6 for Each subset size Si, i = 1 . . . S do

2.7 Keep the Si most important variables

2.8 [Optional] Pre–process the data

2.9 Tune/train the model on the training set using Si predictors

2.10 Predict the held–back samples

2.11 [Optional] Recalculate the rankings for each predictor

2.12 end

2.13 end

2.14 Calculate the performance profile over the Si using the held–back samples

2.15 Determine the appropriate number of predictors

2.16 Estimate the final list of predictors to keep in the final model

2.17 Fit the final model based on the optimal Si using the original training set

4 of 24

Variable Selection Using The caret Package

3 Recursive Feature Elimination via caret

In caret, Algorithm 1 is implemented by the function rfeIter. The resampling-based Algorithm
2 is in the rfe function. Given the potential selection bias issues, this document focuses on rfe.
There are several arguments:

• x, a matrix or data frame of predictor variables

• y, a vector (numeric or factor) of outcomes

• sizes, a integer vector for the specific subset sizes that should be tested (which need not to
include ncol(x))

• rfeControl, a list of options that can be used to specify the model and the methods for
prediction, ranking etc.

For a specific model, a set of functions must be specified in rfeControl$functions. Section 3.2
below has descriptions of these sub–functions. There are a number of pre–defined sets of functions
for several models, including: linear regression (in the object lmFuncs), random forests (rfFuncs),
naive Bayes (nbFuncs), bagged trees (treebagFuncs) and functions that can be used with caret’s
train function (caretFuncs). The latter is useful if the model has tuning parameters that must
be determined at each iteration.

3.1 An Example

To test the algorithm, the “Friedman 1” benchmark (Friedman, 1991) was used. There are five
informative variables generated by the equation

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 +N(0, σ2)

In the simulation used here:

> n <- 100

> p <- 40

> sigma <- 1

> set.seed(1)

> sim <- mlbench.friedman1(n, sd = sigma)

> colnames(sim$x) <- c(paste("real", 1:5, sep = ""),

+ paste("bogus", 1:5, sep = ""))

> bogus <- matrix(rnorm(n * p), nrow = n)

> colnames(bogus) <- paste("bogus", 5+(1:ncol(bogus)), sep = "")

> x <- cbind(sim$x, bogus)

> y <- sim$y

>

5 of 24

Variable Selection Using The caret Package

Of the 50 predictors, there are 45 pure noise variables: 5 are uniform on [0, 1] and 40 are random
univariate standard normals. The predictors are centered and scaled:

> normalization <- preProcess(x)

> x <- predict(normalization, x)

> x <- as.data.frame(x)

> subsets <- c(1:5, 10, 15, 20, 25)

The simulation will fit models with subset sizes of 25, 20, 15, 10, 5, 4, 3, 2, 1.

As previously mentioned, to fit linear models, the lmFuncs set of functions can be used. To do
this, a control object is created with the rfeControl function. We also specify that 10–fold cross–
validation should be used in line 2.1 of Algorithm 2. The number of folds can be changed via the
number argument to rfeControl (defaults to 10). The verbose option prevents copious amounts
of output from being produced and the returnResamp argument specifies that the 10 performance
estimates should be saved only for the optimal subset size.

> set.seed(10)

> ctrl <- rfeControl(functions = lmFuncs,

+ method = "cv",

+ verbose = FALSE,

+ returnResamp = "final")

> lmProfile <- rfe(x, y,

+ sizes = subsets,

+ rfeControl = ctrl)

> lmProfile

Recursive feature selection

Outer resampling method: Cross-Validation (10 fold)

Resampling performance over subset size:

Variables RMSE Rsquared RMSESD RsquaredSD Selected

1 3.576 0.5443 0.6591 0.2583

2 3.158 0.6063 0.7479 0.2266

3 2.756 0.6902 0.8575 0.2210 *

4 2.861 0.6716 0.8978 0.2270

5 2.974 0.6434 0.9337 0.2298

10 3.123 0.6183 0.9932 0.2463

15 3.338 0.5848 1.1901 0.2650

20 3.464 0.5707 1.1822 0.2603

6 of 24

Variable Selection Using The caret Package

25 3.716 0.5266 1.1359 0.2521

50 3.716 0.5266 1.1359 0.2521

The top 3 variables (out of 3):

real4, real5, real2

The output shows that the best subset size was estimated to be 3 predictors. This set includes
informative variables but did not include them all. The predictors function can be used to get a
text string of variable names that were picked in the final model. The lmProfile is a list of class
"rfe" that contains an object fit that is the final linear model with the remaining terms. The
model can be used to get predictions for future or test samples.

> predictors(lmProfile)

[1] "real4" "real5" "real2"

> lmProfile$fit

Call:

lm(formula = y ~ ., data = tmp)

Coefficients:

(Intercept) real4 real5 real2

14.613 2.625 1.967 1.648

> lmProfile$resample

Variables RMSE Rsquared Resample

3 3 2.940756 0.5542831 Fold01

13 3 2.704529 0.6583788 Fold02

23 3 4.599872 0.2181731 Fold03

33 3 2.601659 0.8478823 Fold04

43 3 1.979220 0.8571701 Fold05

53 3 2.978896 0.8301785 Fold06

63 3 3.371253 0.4721770 Fold07

73 3 2.828167 0.7755102 Fold08

83 3 2.097941 0.7372942 Fold09

93 3 1.456698 0.9508685 Fold10

7 of 24

Variable Selection Using The caret Package

There are also several plot methods to visualize the results. plot(lmProfile) produces the per-
formance profile across different subset sizes, as shown in Figure 1. Also the resampling results are
stored in the sub–object lmProfile$resample and can be used with several lattice functions. Uni-
variate lattice functions (densityplot, histogram) can be used to plot the resampling distribution
while bivariate functions (xyplot, stripplot) can be used to plot the distributions for different
subset sizes. In the latter case, the option returnResamp = "all" in rfeControl can be used to
save all the resampling results. See Figure 4 for two examples.

3.2 Helper Functions

To use feature elimination for an arbitrary model, a set of functions must be passed to rfe for each
of the steps in Algorithm 2.

This section defines those functions and uses the existing random forest functions as an illustrative
example. caret contains a list called rfFuncs, but this document will use a more simple version
that will be better for illustrating the ideas at play. The functions used here are collected in a list
called rfRFE.

3.2.1 The summary Function

The summary function takes the observed and predicted values and computes one or more perfor-
mance metrics (see line 2.14). The input is a data frame with columns obs and pred. The output
should be a named vector of numeric variables. Note that the metric argument of the rfe function
should reference one of the names of the output of summary. The example function is:

> rfRFE$summary

function (data, lev = NULL, model = NULL)

{

if (is.character(data$obs))

data$obs <- factor(data$obs, levels = lev)

postResample(data[, "pred"], data[, "obs"])

}

<environment: namespace:caret>

Two functions in caret that can be used as the summary funciton are defaultSummary and
twoClassSummary (for classification probelms with two classes).

8 of 24

Variable Selection Using The caret Package

Variables

R
es

am
pl

ed
 R

M
S

E

2.8

3.0

3.2

3.4

3.6

0 10 20 30 40 50

●

●

●

●

●

●

●

●

● ●

●

Variables

R
es

am
pl

ed
 R

^2

0.55

0.60

0.65

0 10 20 30 40 50

●

●

●

●

●

●

●

●

● ●

●

Figure 1: Performance profiles for recursive feature elimination using linear models. These images
were generated by plot(lmProfile) and plot(lmProfile, metric = "Rsquared").

9 of 24

Variable Selection Using The caret Package

3.2.2 The fit Function

This function builds the model based on the current data set (lines2.3, 2.9 and 2.17). The arguments
for the function must be:

• x: the current training set of predictor data with the appropriate subset of variables

• y: the current outcome data (either a numeric or factor vector)

• first: a single logical value for whether the current predictor set has all possible variables
(e.g. line 2.3)

• last: similar to first, but TRUE when the last model is fit with the final subset size and
predictors. (line 2.17)

• . . .: optional arguments to pass to the fit function in the call to rfe

The function should return a model object that can be used to generate predictions. For random
forest, the fit function is simple:

> rfRFE$fit

function(x, y, first, last, ...)

{

library(randomForest)

randomForest(x, y, importance = first, ...)

}

For feature selection without re–ranking at each iteration, the random forest variable importances
only need to be computed on the first iterations when all of the predictors are in the model. This
can be accomplished using importance = first.

3.2.3 The pred Function

This function returns a vector of predictions (numeric or factors) from the current model (lines 2.4
and 2.10). The input arguments must be

• object: the model generated by the fit function

• x: the current set of predictor set for the held–back samples

For random forests, the function is a simple wrapper for the predict function:

10 of 24

Variable Selection Using The caret Package

> rfRFE$pred

function(object, x)

{

predict(object, x)

}

For classification, it is probably a good idea to ensure that the resulting factor variables of predictions
has the same levels as the input data.

3.2.4 The rank Function

This function is used to return the predictors in the order of the most important to the least
important (lines 2.5 and 2.11). Inputs are:

• object: the model generated by the fit function

• x: the current set of predictor set for the training samples

• y: the current training outcomes

The function should return a data frame with a column called var that has the current variable
names. The first row should be the most important predictor etc. Other columns can be included
in the output and will be returned in the final rfe object.

For random forests, the function below uses caret’s varImp function to extract the random
forest importances and orders them. For classification, randomForest will produce a column of
importances for each class. In this case, the default ranking function orders the predictors by the
averages importance across the classes.

> rfRFE$rank

function(object, x, y)

{

vimp <- varImp(object)

if(is.factor(y))

{

if(all(levels(y) %in% colnames(vimp)))

{

avImp <- apply(vimp[, levels(y), drop = TRUE],

11 of 24

Variable Selection Using The caret Package

1,

mean)

vimp$Overall <- avImp

}

}

vimp <- vimp[

order(

vimp$Overall,

decreasing = TRUE)

,,

drop = FALSE]

vimp$var <- rownames(vimp)

vimp

}

3.2.5 The selectSize Function

This function determines the optimal number of predictors based on the resampling output (line
2.15). Inputs for the function are:

• x: a matrix with columns for the performance metrics and the number of variables, called
Variables

• metric: a character string of the performance measure to optimize (e.g. RMSE, Accuracy)

• maximize: a single logical for whether the metric should be maximized

This function should return an integer corresponding to the optimal subset size.

caret comes with two examples functions for this purpose: pickSizeBest and pickSizeTol-

erance. The former simply selects the subset size that has the best value. The latter takes into
account the whole profile and tries to pick a subset size that is small without sacrificing too much
performance. For example, suppose we have computed the RMSE over a series of variables sizes:

> example <- data.frame(RMSE = c(

+ 3.215, 2.819, 2.414, 2.144,

+ 2.014, 1.997, 2.025, 1.987,

+ 1.971, 2.055, 1.935, 1.999,

+ 2.047, 2.002, 1.895, 2.018),

12 of 24

Variable Selection Using The caret Package

+ Variables = 1:16)

> example

RMSE Variables

1 3.215 1

2 2.819 2

3 2.414 3

4 2.144 4

5 2.014 5

6 1.997 6

7 2.025 7

8 1.987 8

9 1.971 9

10 2.055 10

11 1.935 11

12 1.999 12

13 2.047 13

14 2.002 14

15 1.895 15

16 2.018 16

These are depicted in Figure 2. The solid circle identifies the subset size with the absolute smallest
RMSE. However, there are many smaller subsets that produce approximately the same performance
but with fewer predictors. In this case, we might be able to accept a slightly larger error for less
predictors.

The pickSizeTolerance determines the absolute best value then the percent difference of the
other points to this value. In the case of RMSE, this would be

RMSEtol = 100 × RMSE −RMSEopt

RMSEopt

where RMSEopt is the absolute best error rate. These “tolerance” values are plotted in the bottom
panel of Figure 2. The solid triangle is the smallest subset size that is within 10% of the optimal
value.

This approach can produce good results for many of the tree based models, such as random forest,
where there is a plateau of good performance for larger subset sizes. For trees, this is usually because
unimportant variables are infrequently used in splits and do not significantly affect performance.

3.2.6 The selectVar Function

After the optimal subset size is determined, this function will be used to calculate the best rankings
for each variable across all the resampling iterations (line 2.16). Inputs for the function are:

13 of 24

Variable Selection Using The caret Package

●

●

●

●

● ● ● ●
●

●
●

● ● ●

5 10 15

2.
0

2.
5

3.
0

Variables

R
M

S
E

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

●

●

0
20

40
60

To
le

ra
nc

e

Figure 2: An example of where a smaller subset sizes is not necessarily the best choice. The solid
circle in the top panel indicates the subset size with the absolute smallest RMSE. If the percent
differences from the smallest RMSE are calculated (lower panel), the user may want to accept a
pre–specified drop in performance as long as the drop is within some limit of the optimal.

14 of 24

Variable Selection Using The caret Package

• y: a list of variables importance for each resampling iteration and each subset size (generated
by the user–defined rank function). In the example, each each of the cross–validation groups
the output of the rank function is saved for each of the 10 subset sizes (including the original
subset). If the rankings are not recomputed at each iteration, the values will be the same
within each cross–validation iteration.

• size: the integer returned by the selectSize function

This function should return a character string of predictor names (of length size) in the order of
most important to least important

For random forests, only the first importance calculation (line 2.5) is used since these are the
rankings on the full set of predictors. These importances are averaged and the top predictors are
returned.

> rfRFE$selectVar

function (y, size)

{

finalImp <- ddply(y[, c("Overall", "var")], .(var), function(x) mean(x$Overall,

na.rm = TRUE))

names(finalImp)[2] <- "Overall"

finalImp <- finalImp[order(finalImp$Overall, decreasing = TRUE),

]

as.character(finalImp$var[1:size])

}

<environment: namespace:caret>

Note that if the predictor rankings are recomputed at each iteration (line 2.11) the user will need
to write their own selection function to use the other ranks.

3.2.7 The Example

For random forest, we fit the same series of model sizes as the linear model. The option to save
all the resampling results across subset sizes was changed for this model and are used to show the
lattice plot function capabilities in Figure 4.

> ctrl$functions <- rfRFE

> ctrl$returnResamp <- "all"

> set.seed(10)

> rfProfile <- rfe(x, y,

15 of 24

Variable Selection Using The caret Package

+ sizes = subsets,

+ rfeControl = ctrl)

> print(rfProfile)

Recursive feature selection

Outer resampling method: Cross-Validation (10 fold)

Resampling performance over subset size:

Variables RMSE Rsquared RMSESD RsquaredSD Selected

1 3.834 0.4470 0.5372 0.2321

2 3.182 0.6198 0.5847 0.2221

3 2.556 0.8045 0.6558 0.1211 *

4 2.798 0.7742 0.6457 0.1349

5 3.023 0.6936 0.7176 0.1879

10 3.159 0.6767 0.6836 0.2199

15 3.314 0.6743 0.6089 0.2134

20 3.287 0.7074 0.5817 0.2022

25 3.491 0.6887 0.5570 0.2418

50 3.519 0.6823 0.5724 0.2385

The top 3 variables (out of 3):

real4, real5, real2

16 of 24

Variable Selection Using The caret Package

Variables

R
es

am
pl

ed
 R

M
S

E

2.5

3.0

3.5

0 10 20 30 40 50

●

●

●

●

●

●

● ●

● ●

●

Variables

R
es

am
pl

ed
 R

^2

0.5

0.6

0.7

0.8

0 10 20 30 40 50

●

●

●

●

●
● ●

●
● ●

●

Figure 3: Performance profiles for random forest.

17 of 24

Variable Selection Using The caret Package

Variables

R
M

S
E

 C
V

 E
st

im
at

es

2

3

4

0 10 20 30 40 50

●

●

●
● ●

●

● ●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●
●

●
●

● ●●

●

● ●

●

● ●
●

●

●
●

●
●

●

●

●
●

●

●
●

● ●

●

●
●

●

● ● ●
●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

● ●

●
●

●

● ●

●

●
●

●
●

●
●

RMSE CV Estimates

D
en

si
ty 0.0

0.1
0.2
0.3
0.4
0.5
0.6

●● ●●●● ●●●●

1

0 1 2 3 4 5 6

● ● ●●● ●●●●●

2

0 1 2 3 4 5 6

●● ●●● ●●●● ●

3

0.0
0.1
0.2
0.3
0.4
0.5
0.6

●● ●● ● ●●●● ●

4

Figure 4: Resampling RMSE estimates for random forests across different subset sizes. These plots
were generated using xyplot(rfProfile) and densityplot(rfProfile, subset = Variables <

5)

18 of 24

Variable Selection Using The caret Package

4 Feature Selection Using Univariate Filters

Another approach to feature selection is to pre–screen the predictors using simple univariate statis-
tical methods then only use those that pass some criterion in the subsequent model steps. Similar
to recursive selection, cross-validation of the subsequent models will be biased as the remaining pre-
dictors have already been evaluate on the data set. Proper performance estimates via resampling
should include the feature selection step.

As an example, it has been suggested for classification models, that predictors can be filtered by
conducting some sort of k–sample test (where k is the number of classes) to see if the mean of the
predictor is different between the classes. Wilcoxon tests, t-tests and ANOVA models are sometimes
used. Predictors that have statistically significant differences between the classes are then used for
modeling.

The caret function sbf (for selection by filter) can be used to cross–validate such feature selection
schemes. Similar to rfe, functions can be passed into sbf for the computational components:
univariate filtering, model fitting, prediction and performance summaries (details are given below).

The function is applied to the entire training set and also to different resampled versions of the
data set. From this, generalizable estimates of performance can be computed that properly take
into account the feature selection step. Also, the results of the predictor filters can be tracked over
resamples to understand the uncertainty in the filtering.

4.1 Basic Syntax

Similar to the rfe function, the syntax for sbf is:

sbf(predictors, outcome, sbfControl = sbfControl(), ...)

or

sbf(formula, data, sbfControl = sbfControl(), ...)

In this case, the details are specificed using the sbfControl function. Here, the argument functions
dictates what the different components should do. This argument should have elements called
filter, fit, pred and summary.

4.1.1 The score Function

This function takes as inputs the predictors and the outcome in objects called x and y, respectively.
The output should be a named vector of scores where the names correspond to the column names
of x.

There are two built–in functions called anovaScores and gamScores. anovaScores treats the
outcome as the independent variable and the predictor as the outcome. In this way, the null

19 of 24

Variable Selection Using The caret Package

hypothesis is that the mean predictor values are equal across the different classes. For regression,
gamScores fits a smoothing spline in the predictor to the outcome using a generalized additive
model and tests to see if there is any functional relationship between the two. In each function the
p–value is used as the score.

4.1.2 The filter Function

This function takes as inputs the scores coming out of the score function (in an argument called
score). The function also has the training set data as inputs (arguments are called x and y). The
output should be a named logical vector where the names correspond to the column names of x.
Columns with values of TRUE will be used in the subsequent model.

4.1.3 The fit Function

The component is very similar to the function described in Section 3.2.2. For sbf, there are no
first or last arguments. The function should have arguments x, y and The data within
x have been filtered using the filter function described above. The output of the fit function
should be a fitted model.

With some data sets, no predictors will survive the filter. In these cases, a model with predictors
cannot be computed, but the lack of viable predictors should not be ignored in the final results.
To account for this issue, caret contains a model function called nullModel that fits a simple
model that is independent of any of the predictors. For problems where the outcome is numeric, the
function predicts every sample using the simple mean of the training set outcomes. For classification,
the model predicts all samples using the most prevalent class in the training data.

This function can be used in the fit component function to“error-trap”cases where no predictors
are selected. For example, there are several built–in functions for some models. The object rfSBF

is a set of functions that may be useful for fitting random forest models with filtering. The fit

function here uses nullModel to check for cases with no predictors:

> rfSBF$fit

function (x, y, ...)

{

if (ncol(x) > 0) {

library(randomForest)

randomForest(x, y, ...)

}

else nullModel(y = y)

}

<environment: namespace:caret>

20 of 24

Variable Selection Using The caret Package

4.1.4 The summary and pred Functions

The summary function is used to calculate model performance on held–out samples. The pred

function is used to predict new samples using the current predictor set. The arguments and outputs
for these two functions are identical to the previously discussed summary and pred functions in
Sections 3.2.1 and 3.2.3, respectively.

4.2 The Example

Returning to the example from (Friedman, 1991), we can fit another random forest model with the
predictors pre–filtered using the generalized additive model approach described in Section 4.1.2.

> set.seed(10)

> rfWithFilter <- sbf(x, y,

+ sbfControl = sbfControl(

+ functions = rfSBF,

+ method = "cv",

+ verbose = FALSE))

> print(rfWithFilter)

Selection By Filter

Outer resampling method: Cross-Validation (10 fold)

Resampling performance:

RMSE Rsquared RMSESD RsquaredSD

4.038 0.344 0.6829 0.1834

Using the training set, 7 variables were selected:

real1, real2, real3, bogus16, bogus18...

During resampling, the top 5 selected variables (out of a possible 14):

bogus37 (100%), real1 (100%), real3 (100%), real2 (90%), bogus16 (70%)

On average, 6.5 variables were selected (min = 5, max = 9)

In this case, the training set indicated that 7 should be used in the random forest model, but the
resampling results indicate that there is some variation in this number. Some of the informative
predictors are used, but a few others are erroneous retained.

Similar to rfe, there are methods for predictors, densityplot, histogram and varImp.

21 of 24

Variable Selection Using The caret Package

5 Visualizing Resampling Results

As shown in the main caret vignette, the resamples class can be used to compare the resampling
results of objects resulting from either train(), rfe() or sbf().

First, the resample results are collected together:

> bootValues <- resamples(

+ list(lmRFE = lmProfile,

+ rfRFE = rfProfile,

+ rfFilter = rfWithFilter))

After this, there are several Lattice plot methods: xyplot, dotplot, densityplot, bwplot, splom
and parallel. Figure 5 show a parallel coordinate of the bootstrapped R2 values.

The diff function can be applied to these objects to produce confidence intervals and hypothesis
testing on the differences:

> differences <- diff(bootValues)

> summary(differences)

Call:

summary.diff.resamples(object = differences)

p-value adjustment: bonferroni

Upper diagonal: estimates of the difference

Lower diagonal: p-value for H0: difference = 0

RMSE

lmRFE rfRFE rfFilter

lmRFE 0.1997 -1.2819

rfRFE 1.00000 -1.4816

rfFilter 0.01049 1.398e-05

Rsquared

lmRFE rfRFE rfFilter

lmRFE -0.1143 0.3462

rfRFE 0.129504 0.4604

rfFilter 0.004794 7.813e-06

There are several plot methods for the differences: dotplot, densityplot, bwplot and levelplot.

22 of 24

Variable Selection Using The caret Package

R2

Scatter Plot Matrix

lmRFE
0.6

0.8

1.0
0.6 0.8 1.0

0.0

0.2

0.4

0.0 0.2 0.4

●

●

●

●●●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●
● ●

rfRFE
0.6

0.8

1.0
0.6 0.8 1.0

0.0

0.2

0.4

0.0 0.2 0.4

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

rfFilter
0.6

0.8

1.0
0.6 0.8 1.0

0.0

0.2

0.4

0.0 0.2 0.4

Figure 5: Scatterplot matrix of the bootstrapped R2 values from the random forests model with
univariate filters and the RFE models using linear least squares and random forests. These plots
were generated using parallel(splom, metric = "Rsquared")

23 of 24

Variable Selection Using The caret Package

6 Session Information

• R version 2.14.0 (2011-10-31), x86_64-apple-darwin9.8.0

• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, grDevices, graphics, grid, methods, splines, stats, utils

• Other packages: Hmisc 3.9-1, MASS 7.3-16, caret 5.14-023, class 7.3-3, cluster 1.14.1,
codetools 0.2-8, e1071 1.6, earth 3.2-1, ellipse 0.3-5, foreach 1.3.2, gam 1.06.2, gbm 1.6-3.1,
ipred 0.8-11, iterators 1.0.5, kernlab 0.9-14, klaR 0.6-6, lattice 0.20-0, leaps 2.9,
mlbench 2.1-0, nnet 7.3-1, plotmo 1.3-1, plotrix 3.3-3, pls 2.3-0, plyr 1.7.1, proxy 0.4-7,
randomForest 4.6-6, reshape 0.8.4, rpart 3.1-51, survival 2.36-10

• Loaded via a namespace (and not attached): compiler 2.14.0, tools 2.14.0

7 References

Ambroise, C. and McLachlan, J. H. (2002) “Selection bias in gene extraction on the basis of
microarray gene-expression data,”Proceedings of the National Academy of Science, 99, 6562–
6566

Friedman, J. H. (1991) “Multivariate adaptive regression splines (with discussion),” Annals of
Statistics, 19, 1–141

Svetnik, V., Liaw, A. , Tong, C amd Wang, T. (2004) “Application of Breiman’s random forest
to modeling structure-activity relationships of pharmaceutical molecules,” Multiple Classier
Systems, Fifth International Workshop, 3077, 334–343

24 of 24

	Models with Built–In Feature Selection
	Feature Selection Using Search Algorithms
	Searching the Feature Space
	Backwards Selection

	Resampling and External Validation

	Recursive Feature Elimination via caret
	An Example
	Helper Functions
	The summary Function
	The fit Function
	The pred Function
	The rank Function
	The selectSize Function
	The selectVar Function
	The Example

	Feature Selection Using Univariate Filters
	Basic Syntax
	The score Function
	The filter Function
	The fit Function
	The summary and pred Functions

	The Example

	Visualizing Resampling Results
	Session Information
	References

