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1 Model Training and Parameter Tuning

caret has several functions that attempt to streamline the model building and evaluation process.

The train function can be used to

• evaluate, using resampling, the effect of model tuning parameters on performance

• choose the “optimal” model across these parameters

• estimate model performance from a training set

To optimize tuning parameters of models, train can be used to fit many predictive models over
a grid of parameters and return the “best” model (based on resampling statistics). See Table 1 for
the models currently available.

As an example, the multidrug resistance reversal (MDRR) agent data is used to determine a
predictive model for the“ability of a compound to reverse a leukemia cell’s resistance to adriamycin”
(Svetnik et al, 2003). For each sample (i.e. compound), predictors are calculated that reflect
characteristics of the molecular structure. These molecular descriptors are then used to predict
assay results that reflect resistance.

The data are accessed using data(mdrr). This creates a data frame of predictors called mdrrDe-

scr and a factor vector with the observed class called mdrrClass.

To start, we will:

• use unsupervised filters to remove predictors with unattractive characteristics (e.g. spare
distributions or high inter–predictor correlations)

• split the entire data set into a training and test set

http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/2005/45/i03/abs/ci0500379.html
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• center and scale the training and test set using the predictor means and standard deviations
from the training set

See the package vignette “caret Manual – Data and Functions” for more details about these
operations.

> print(ncol(mdrrDescr))

[1] 342

> nzv <- nearZeroVar(mdrrDescr)

> filteredDescr <- mdrrDescr[, -nzv]

> print(ncol(filteredDescr))

[1] 297

> descrCor <- cor(filteredDescr)

> highlyCorDescr <- findCorrelation(descrCor, cutoff = 0.75)

> filteredDescr <- filteredDescr[, -highlyCorDescr]

> print(ncol(filteredDescr))

[1] 50

> set.seed(1)

> inTrain <- sample(seq(along = mdrrClass), length(mdrrClass)/2)

> trainDescr <- filteredDescr[inTrain, ]

> testDescr <- filteredDescr[-inTrain, ]

> trainMDRR <- mdrrClass[inTrain]

> testMDRR <- mdrrClass[-inTrain]

> print(length(trainMDRR))

[1] 264

> print(length(testMDRR))

[1] 264

> preProcValues <- preProcess(trainDescr)

> trainDescr <- predict(preProcValues, trainDescr)

> testDescr <- predict(preProcValues, testDescr)
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To estimate model performance across the tuning parameters “leave group out cross–validation”
(LGOCV) can be used. This technique is repeated splitting of the data into training and test sets
(without replacement). If the resampling method is not specified, simple bootstrapping is used. To
train a support vector machine classification model (radial basis function kernel) on these multidrug
resistance reversal agent data, we can first setup a control object1 that specifies the type of resam-
pling used, the number of data splits (30), the proportion of data in the sub–training sets (75%)
and whether the iterations should be printed as they occur. In this case, we need to specify the
proportion of samples used in each resampled training set. We also set the seed.

> fitControl <- trainControl(method = "LGOCV", p = 0.75, number = 30,

+ returnResamp = "all", verboseIter = FALSE)

> set.seed(2)

The first two arguments to train are the predictor and outcome data objects, respectively. The
third argument, method, specifies the type of model. For this model, the tuning parameters are
the cost value (the C argument in kernlab’s ksvm function) and the radius of the RBF (the sigma

argument to the kernel function). The tuneLength argument sets the size of the grid used to search
the tuning parameter space and trControl is the control parameter for the train function.

> svmFit <- train(trainDescr, trainMDRR, method = "svmRadial",

+ tuneLength = 4, trControl = fitControl)

> svmFit

Call:
train.default(x = trainDescr, y = trainMDRR, method = "svmRadial",

trControl = fitControl, tuneLength = 4)

264 samples
50 predictors

summary of leave group out cross-validation (30 reps) sample sizes:
198, 198, 198, 198, 198, 198, ...

LGOCV resampled training results across tuning parameters:

C sigma Accuracy Kappa Accuracy SD Kappa SD Selected
0.1 0.0222 0.581 0.0522 0.0212 0.0533
1 0.0222 0.837 0.665 0.0406 0.0846 *
10 0.0222 0.807 0.609 0.0562 0.114
100 0.0222 0.807 0.609 0.0533 0.109

1This is optional; to use the default specifications, the control object does not need to be specified
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Accuracy was used to select the optimal model using the largest value.

The final values used in the model were C = 1 and sigma = 0.0222.

There are two tuning parameters for this model: sigma is a parameter for the kernel function
that can be used to expand/contract the distance function and C is the cost parameter that can
be used as a regularization term that controls the complexity of the model. For this model, the
function sigest in the kernlab package is used to provide a good estimate of the sigma parameter,
so that only the cost parameter is tuned. This tuning scheme is the default, but can be modified
(details are below).

The column labeled “Accuracy” is the overall agreement rate averaged over cross–validation
iterations. The agreement standard deviation is also calculated from the cross-validation results.
The column “Kappa” is Cohen’s (unweighted) Kappa statistic averaged across the resampling results

For regression models (i.e. a numeric outcome), a similar table would be produced showing the
average root mean squared error and average R2 value statistic across tuning parameters, otherwise
known as Q2 (see the note below related to this calculation).

caret works with specific models (see Table 1). For these models, train can automatically create
a grid of tuning parameters. By default, if p is the number of tuning parameters, the grid size is
3p. For example, regularized discriminant analysis (RDA) models have two parameters (gamma and
lambda), both of which lie on [0, 1]. The default training grid would produce nine combinations in
this two–dimensional space.

Alternatively, the grid can be specified by the user. The argument tuneGrid can take a data
frame with columns for each tuning parameter (see Table 1 for specific details). The column names
should be the same as the fitting function’s arguments with a period preceding the name. For our
RDA example, the names would be .gamma and .lambda. train will tune the model over each
combination of values in the rows.

For a gradient boosting machine (GBM) model, the amount of “shrinkage” in a gradient boosting
model is fixed at 0.1 and the other meta–parameters can be manually specified:
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Some notes about the use of train:

• There is a formula interface (e.g. train(y ., data = someData) that can be used. One of
the issues with a large number of predictors is that the objects related to the formula which
are saved can get very large. In these cases, it is best to stick with the non–formula interface
described above.

• The function determines the type of problem (classification or regression) from the type of
the response given in the y argument.

• The . . . option can be used to pass parameters to the fitting function. For example, in random
forest models, you can specify the number of trees to be used in the call to train. In the
example above, the default trace for a gbm model was turned off using the verbose argument
to gbm.

• For regression models, the classical R2 statistic cannot be compared between models that
contain an intercept and models that do not. Also, some models do not have an intercept
only null model.

To approximate this statistic across different types of models, the square of the correlation
between the observed and predicted outcomes is used. This means that the R2 values produced
by train will not match the results of lm and other functions.

Also, the correlation estimate does not take into account the degrees of freedom in a model and
thus does not penalize models with more parameters. For some models (e.g random forests or
on–linear support vector machines) there is no clear sense of the degrees of freedom, so this
information cannot be used in R2 if we would like to compare different models.

• The nearest shrunken centroid model of Tibshirani et al (2003) is specified using method

= "pam". For this model, there must be at least two samples in each class. train will
ignore classes where there are less than two samples per class from every model fit during
bootstrapping or cross–validation (this model only).

• For recursive partitioning models, an initial model is fit to all of the training data to obtain
the possible values of the maximum depth of any node (maxdepth). The tuning grid is created
based on these values. If tuneLength is larger than the number of possible maxdepth values
determined by the initial model, the grid will be truncated to the maxdepth list.

The same is also true for nearest shrunken centroid models, where an initial model is fit to
find the range of possible threshold values, and MARS models (see the details below).

• For multivariate adaptive regression splines (MARS), the earth package is used with a model
type of mars or earth is requested. The tuning parameters used by train are degree and
nprune. The parameter nk is not automatically specified and, if not specified, the default in
the earth function is used.
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For example, suppose a training set with 40 predictors is used with degree = 1 and nprune

= 20. An initial model with nk = 41 is fit and is pruned down to 20 terms. This number
includes the intercept and may include “singleton” terms instead of pairs.

Alternate model training schemes can be used by passing nk and/or pmethod to the earth

function.

Also, there may be cases where the message such as “specified ’nprune’ 29 is greater than
the number of available model terms 24, forcing ’nprune’ to 24” show up after the model fit.
This can occur since the earth function may not actually use the number of terms in the
initial model as specified by nk. This may be because the earth function removes terms with
linear dependencies and the forward pass counts as if terms were added in pairs (although
singleton terms may be used). By default, the train function fits and initial MARS model is
used to determine the number of possible terms in the training set to create the tuning grid.
Resampled data sets may produce slightly different models that do not have as many possible
values of nprune.

• For the glmboost and gamboost functions from the mboost package, an additional tuning
parameter, prune, is used by train. If prune = "yes", the number of trees is reduced based
on the AIC statistic. If "no", the number of trees is kept at the value specified by the mstop

parameter. See the mboost package vignette for more details about AIC pruning.

• For some models (pls, plsda, earth, rpart, gbm, gamboost, glmboost, blackboost, ctree,
pam, superpc, enet and lasso), the train function will fit a model that can be used to derive
predictions for some sub-models. For example, for MARS (via the earth function), for a fixed
degree, a model with a maximum number of terms will be fit and the predictions of all of the
requested models with the same degree and smaller number of terms will be computed using
update.earth instead of fitting a new model. When the verboseIter option is used, a line
is printed for the “top–level” model (instead of each model in the tuning grid).

• There are print and plot methods. See Figures 1 and 2 for examples. This is also a function,
resampleHist, that will plot a histogram or density plot of the resampled performance esti-
mates for the optimal model. Figure 2 shows and example of this type of plot for the support
vector machine example.

• Using the first set of tuning parameters that are optimal (in the sense of accuracy or mean
squared error), train automatically fits a model with these parameters to the entire training
data set. That model object is accessible in the finalModel object within train. For example,
gbmFit$finalModel is the same object that would have been produced using a direct call to
the gbm function.

There is additional functionality in train that is described in the next section.
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Table 1: Models used in train

Model method Value Package Tuning Parameters

“Dual–Use Models”
Generalized linear model glm stats None
Recursive Partitioning rpart rpart maxdepth

ctree party mincriterion

ctree2 party maxdepth

Boosted Trees gbm gbm interaction.depth,
n.trees, shrinkage

blackboost gbm maxdepth, mstop
ada ada maxdepth, iter, nu

Other Boosted Models glmboost mboost mstop

gamboost mboost mstop

Random Forests rf randomForest mtry

cforest party mtry

Bagged Trees treebag ipred None
Node Harvest nodeHarvest nodeHarvest maxinter, mode
Multivariate Adaptive earth, mars earth degree, nprune

Regression Splines
Bagged MARS bagEarth caret, earth degree, nprune
Elastic Net (glm) glmnet glmnet alpha, lambda
Neural Networks nnet nnet decay, size

pcaNNet pcaNNet decay, size
Partial Least Squares pls pls, caret ncomp

Sparse Partial Least Squares spls spls, caret K, eta, kappa
Support Vector Machines svmLinear kernlab none

svmRadial kernlab sigma, C
svmPoly kernlab scale, degree, C

Gaussian Processes gaussprLinear kernlab none
gaussprRadial kernlab sigma

gaussprPoly kernlab scale, degree
k Nearest Neighbors knn caret k

Regression Only Models
Linear Least Squares lm stats None
Principal Component Regression pcr pls ncomp

Robust Linear Regression rlm MASS None
Rule–Based Models M5Rules RWeka pruned

(continued on next page)
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Table 1: Models used in train

Model method Value Package Tuning Parameters

Least Angle Regression lars lars fraction

lars2 lars step

Elastic Net enet elasticnet lambda, fraction
The Lasso lasso elasticnet fraction

Projection Pursuit ppr stats nterms

Regression
Penalized Linear Models penalized penalized lambda1, lambda2

Regression Splines
Relevance Vector Machines rvmLinear kernlab none

rvmRadial kernlab sigma

rvmPoly kernlab scale, degree
Supervised Principal superpc superpc n.components, threshold

Components

Classification Only Models
Linear Discriminant Analysis lda MASS None

Linda rrcov None
Quadratic Discriminant qda MASS None

Analysis QdaCov rrcov None
Stabilized Linear slda ipred diagonal

Discriminant Analysis
Shrinkage Linear sda sda diagonal

Discriminant Analysis
Sparse Linear sparseLDA sparseLDA NumVars, lambda

Discriminant Analysis
Stepwise Discriminant stepLDA, klaR None

Analysis stepQDA klaR

Stepwise Diagonal sddaLDA, SDDA None
Discriminant Analysis sddaQDA

Regularized Discriminant rda klaR lambda, gamma
Analysis

Mixture Discriminant mda mda subclasses

Analysis
Sparse Mixture smda sparseLDA NumVars, R, lambda

Discriminant Analysis
Penalized Discriminant pda mda lambda

Analysis pda2 mda df

(continued on next page)
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Table 1: Models used in train

Model method Value Package Tuning Parameters

Flexible Discriminant fda mda, earth degree, nprune
Analysis (MARS basis)

Bagged FDA bagFDA caret, earth degree, nprune
Logistic/Multinomial multinom nnet decay

Regression
LogitBoost logitBoost caTools nIter

Logistic Model Trees LMT RWeka iter

Rule–Based Models J48 RWeka C

OneR RWeka None
PART RWeka threshold, pruned
JRip RWeka NumOpt

Bayesian Multinomial vbmpRadial vbmp estimateTheta

Probit Model
Least Squares Support Vector lssvmRadial kernlab sigma

Nearest Shrunken Centroids pam pamr threshold

Naive Bayes nb klaR usekernel

Generalized Partial gpls gpls K.prov

Least Squares
Learned Vector Quantization lvq class k
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Figure 1: Examples of output from plot.tain. top left a plot produced using plot(svmFit)

showing the relationship between SVM cost parameter and the resampled classification accuracy.
Although this model has two tuning parameters, a constant value for the parameter sigma was used.
top right the same plot but the xTrans argument was used to log–transform the cost parameter.
bottom left a plot produced using plot(gbmFit) showing the relationship between the number of
boosting iterations, the interaction depth and the resampled classification accuracy bottom right
the same plot, but the Kappa statistic is plotted using plot(gbmFit metric = "Kappa")
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LGOCV resampled training accuracy
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Figure 2: More examples. top: A plot produced using plot(gbmFit metric = "Kappa", plot-

Type = "level") showing the relationship (using a levelplot) between the number of boosting
iterations, the interaction depth and the resampled estimate of the Kappa statistic. bottom: A plot
of the resampling estimates of performance from the optimal support vector machine model pro-
duced using resampleHist(svmFit, type = "density", layout = c(2, 1), adjust = 1.5).
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2 Customizing the Tuning Process

There are a few ways to customize the process of selecting tuning/complexity parameters. First, as
previously shown with the boosted tree code, you can choose specific values of the tuning parameter
(instead of the defaults).

Secondly, the user can change the metric used to determine the best settings. By default, RMSE
and R2 are computed for regression while accuracy and Kappa are computed for classification. Also
by default, the parameter values are chosen using RMSE and accuracy, respectively for regression
and classification. The metric argument of the train function allows the user to control which the
optimality criterion is used. For example, in problems where there are a low percentage of samples
in one class, using metric = "Kappa" can improve quality of the final model.

If none of these parameters are satisfactory, the user can also compute custom performance
metrics. The trainControl function has a argument called summaryFunction that specifies a
function for computing performance. The function should have these arguments:

• data is a reference for a data frame or matrix with columns called obs and pred for the ob-
served and predicted outcome values (either numeric data for regression or character values for
classification). Currently, class probabilities are not passed to the function. The values in data
are the held–out predictions (and their associated reference values) for a single combination
of tuning parameters.

• lev is a character string that has the outcome factor levels taken from the training data. For
regression, a value of NULL is passed into the function.

• model is a character string for the model being used (i.e. the value passed to the method value
of train).

The output to the function should be a vector of numeric summary metrics with non–null names.

As an example, classification accuracy in two–class problems can be decomposed into sensitivity
and specificity. We can use these values to tune the parameters using the following function:

> newSummary <- function(data, lev, model) {

+ out <- c(sensitivity(data[, "pred"], data[, "obs"], lev[1]),

+ specificity(data[, "pred"], data[, "obs"], lev[2]))

+ names(out) <- c("Sens", "Spec")

+ out

+ }

To rebuild the support vector machine model using this criterion, we can see the relationship
between the tuning parameters and sensitivity/specificity via the following code:
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> fitControl$summaryFunction <- newSummary

> set.seed(2)

> svmNew <- train(trainDescr, trainMDRR, method = "svmRadial",

+ metric = "Spec", tuneLength = 4, trControl = fitControl)

> svmNew

Call:

train.default(x = trainDescr, y = trainMDRR, method = "svmRadial",

metric = "Spec", trControl = fitControl, tuneLength = 4)

264 samples

50 predictors

summary of leave group out cross-validation (30 reps) sample sizes:

198, 198, 198, 198, 198, 198, ...

LGOCV resampled training results across tuning parameters:

C sigma Sens Spec Sens SD Spec SD Selected

0.1 0.0222 1 0.0471 0 0.0483

1 0.0222 0.904 0.753 0.053 0.0825

10 0.0222 0.812 0.8 0.0686 0.0884

100 0.0222 0.812 0.8 0.0613 0.0837 *

Spec was used to select the optimal model using the largest value.

The final values used in the model were C = 100 and sigma = 0.0222.

Based on this model and the original SVM model, 60% accuracy can be achieved by being very
biased towards sensitivity.

The third method for customizing the tuning process is to modify the algorithm that is used
to select the “best” parameter values, given the performance numbers. By default, the train

function chooses the model with the largest performance value (or smallest, for mean squared
error in regression models). Other schemes for selecting model can be used. Breiman et al (1984)
suggested the “one standard error rule” for simple tree–based models. In this case, the model with
the best performance value is identified and, using resampling, we can estimate the standard error
of performance. The final model used was the simplest model within one standard error of the
(empirically) best model. With simple trees this makes sense, since these models will start to
overfit as they become more and more specific to the training data.

train allows the user to specify alternate rules for selecting the final model. The argument
selectionFunction can be used to supply a function to algorithmically determine the final model.
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There are three existing functions in the package: best is chooses the largest/smallest value, oneSE
attempts to capture the spirit of Breiman et al (1984) and tolerance selects the least complex
model within some percent tolerance of the best value. See ?best for more details.

User–defined functions can be used, as long as they have the following arguments:

• x is a data frame containing the tune parameters and their associated performance metrics.
Each row corresponds to a different tuning parameter combination

• metric a character string indicating which performance metric should be optimized (this is
passed in directly from the metric argument of train.

• maximize is a single logical value indicating whether larger values of the performance metric
are better (this is also directly passed from the call to train).

The function should output a single integer indicating which row in x is chosen.

As an example, if we chose the previous SVM model on the basis of specificity, we would choose
a cost value of 100, the most complex model. Lower cost values would produce approximately the
same performance with less complex models (with the exception of cost = 0.1). The tolerance
function could be used to find a less complex model based on (x − xbest)/xbest × 100, which is the
percent difference. For example, to select cost values based on 2% and 6% losses of performance:

> whichTwoPct <- tolerance(svmNew$results, "Spec", 2, TRUE)

> cat("best model within 2 pct of best:\n")

best model within 2 pct of best:

> svmNew$results[whichTwoPct, ]

C sigma Sens Spec SensSD SpecSD

3 10 0.02222875 0.8117117 0.8 0.06862484 0.08844885

> whichSixPct <- tolerance(svmNew$results, "Spec", 6, TRUE)

> cat("\n\nbest model within 6 pct of best:\n")

best model within 6 pct of best:

> svmNew$results[whichSixPct, ]

C sigma Sens Spec SensSD SpecSD

2 1 0.02222875 0.9036036 0.7528736 0.05296353 0.082542
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The main issue with these functions is related to ordering the models from simplest to complex.
In some cases, this is easy (e.g. simple trees, partial least squares), but in most cases, the ordering
of models is subjective. For example, is a boosted tree model using 100 iterations and a tree depth
of 2 more complex than one with 50 iterations and a depth of 8? The package makes some choices
regarding the orderings. In the case of boosted trees, the package assumes that increasing the
number of iterations adds complexity at a faster rate than increasing the tree depth, so models are
ordered on the number of iterations then ordered with depth. See ?best for more examples for
specific models.

Finally, the function trainControl, generates parameters that further control how models are
resampled with possible values:

• method: The resampling method: boot, cv, LOOCV, LGOCV and oob. The last value, out–of–
bag estimates, can only be used by random forest, bagged trees, bagged earth, bagged flexible
discriminant analysis, or conditional tree forest models. GBM models are not included (the gbm
package maintainer has indicated that it would not be a good idea to choose tuning parameter
values based on the model OOB error estimates with boosted trees). Also, for leave–one–out
cross–validation, no uncertainty estimates are given for the resampled performance measures.

• number: Either the number of folds or number of resampling iterations

• verboseIter: A logical for printing a training log.

• returnData: A logical for saving the data

• p: For leave-group out cross-validation: the training percentage

• index: a list with elements for each resampling iteration. Each list element is the sample rows
used for training at that iteration. When these values are not specified, caret will generate
them.

• summaryFunction: previously mentioned

• selectionFunction: previously mentioned

• returnResamp: a character string containing one of the following values: "all", "final" or
"none". This specifies how much of the resampled performance measures to save.

3 Extracting Predictions and Class Probabilities

As previously mentioned, objects produced by the train function contain the “optimized” model in
the finalModel sub–object. Predictions can be made from these objects as usual. In some cases,
such as pls or gbm objects, additional parameters from the optimized fit may need to be specified.
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In these cases, the train objects uses the results of the parameter optimization to predict new
samples.

For example, we can load the Boston Housing data:

> library(mlbench)

> data(BostonHousing)

> bhDesignMatrix <- model.matrix(medv ~ . - 1, BostonHousing)

split the data into random training/test groups:

> set.seed(4)

> inTrain <- createDataPartition(BostonHousing$medv, p = 0.8, list = FALSE,

+ times = 1)

> trainBH <- bhDesignMatrix[inTrain, ]

> testBH <- bhDesignMatrix[-inTrain, ]

> preProc <- preProcess(trainBH)

> trainBH <- predict(preProc, trainBH)

> testBH <- predict(preProc, testBH)

> trainMedv <- BostonHousing$medv[inTrain]

> testMedv <- BostonHousing$medv[-inTrain]

fit partial least squares and multivariate adaptive regression spline models:

> set.seed(5)

> plsFit <- train(trainBH, trainMedv, "pls", tuneLength = 10, trControl = trainControl(verboseIter = FALSE))

> set.seed(5)

> marsFit <- train(trainBH, trainMedv, "earth", tuneLength = 10,

+ trControl = trainControl(verboseIter = FALSE))

To obtain predictions for the PLS model, predict.mvr can be used. In this case, the number of
components must be manually specified or all of the sub-models are predicted:

> plsPred1 <- predict(plsFit$finalModel, newdata = as.matrix(testBH))

> dim(plsPred1)

[1] 99 1 9

Alternatively, predict.train can be used to get a vector of predictions for the optimal model
only:

> plsPred2 <- predict(plsFit, newdata = testBH)

> length(plsPred2)
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[1] 99

For multiple models, the objects can be grouped using a list and predicted simultaneously:

> bhModels <- list(pls = plsFit, mars = marsFit)

> bhPred1 <- predict(bhModels, newdata = testBH)

> str(bhPred1)

List of 2
$ pls : num [1:99] 30.2 21.9 16.1 16 15.8 ...
$ mars: num [1:99] 34.4 20.2 18.2 14.4 15.7 ...

In some cases,observed outcomes and their associated predictions may be needed for a set of models.
In this case, extractPrediction can be used. This function takes a list of models and test and/or
unknown samples as inputs and returns a data frame of predictions:

> allPred <- extractPrediction(bhModels, testX = testBH, testY = testMedv)

> testPred <- subset(allPred, dataType == "Test")

> head(testPred)

obs pred model dataType object
408 34.7 30.15640 pls Test pls
409 21.7 21.87263 pls Test pls
410 20.2 16.06634 pls Test pls
411 15.2 16.01122 pls Test pls
412 15.6 15.80842 pls Test pls
413 14.5 17.94325 pls Test pls

> by(testPred, list(model = testPred$model), function(x) postResample(x$pred,

+ x$obs))

model: earth
RMSE Rsquared

4.678437 0.793299
------------------------------------------------------------
model: pls

RMSE Rsquared
5.5016752 0.7286127

The output of extractPrediction is a data frame with columns:

• obs, the observed data
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• pred, the predicted values from each model

• model, a character string (“rpart”, “pls” etc.)

• dataType, a character string for the type of data:

– “Training” data are the predictions on the training data from the optimal model,

– “Test” denote the predictions on the test set (if one is specified),

– “Unknown” data are the predictions on the unknown samples (if specified). Only the
predictions are produced for these data. Also, if the quick prediction of the unknowns is
the primary goal, the argument unkOnly can be used to only process the unknowns.

Some classification models can produce probabilities for each class. The functions predict.train
and predict.list can be used with the type = "probs" argument to produce data frames of class
probabilities (with one column per class). Also, the function extractProbs can be used to get
these probabilities from one or more models. The results are very similar to what is produced by
extractPrediction but with columns for each class. The column pred is still the predicted class
from the model.

4 Evaluating Models

A function, postResample, can be used obtain the same performance measures as generated by
train.

caret also contains several functions that can be used to describe the performance of classification
models. The functions sensitivity, specificity, posPredValue and negPredValue can be used
to characterize performance where there are two classes. By default, the first level of the outcome
factor is used to define the“positive” result (i.e. the event of interest), although this can be changed.

The function confusionMatrix can also be used to summarize the results of a classification
model:

> mbrrPredictions <- extractPrediction(list(svmFit), testX = testDescr,

+ testY = testMDRR)

> mbrrPredictions <- mbrrPredictions[mbrrPredictions$dataType ==

+ "Test", ]

> sensitivity(mbrrPredictions$pred, mbrrPredictions$obs)

[1] 0.8066667

> confusionMatrix(mbrrPredictions$pred, mbrrPredictions$obs)
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Confusion Matrix and Statistics

Reference
Prediction Active Inactive
Active 121 25
Inactive 29 89

Accuracy : 0.7955
95% CI : (0.7417, 0.8424)

No Information Rate : 0.5682
P-Value [Acc > NIR] : 6.255e-15

Kappa : 0.5849

Sensitivity : 0.8067
Specificity : 0.7807

Pos Pred Value : 0.8288
Neg Pred Value : 0.7542

Prevalence : 0.5682
Detection Rate : 0.4583

Detection Prevalence : 0.553

'Positive' Class : Active

The “no–information rate” is the largest proportion of the observed classes (there were more
actives than inactives in this test set). A hypothesis test is also computed to evaluate whether
the overall accuarcy rate is greater than the rate of the largest class. Also, the prevalence of the
“postivie event” is computed from the data (unless passed in as an argument), the detection rate
(the rate of true events also predicted to be events) and the detection prevalence (the prevalence of
predicted events).

Suppose a 2 × 2 table with notation

Reference
Predicted Event No Event

Event A B
No Event C D
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The formulas used here are:

Sensitivity =
A

A + C

Specificity =
D

B + D

Prevalence =
A + C

A + B + C + D

PPV =
sensitivity × prevalence

((sensitivity × prevalence) + ((1 − specificity) × (1 − prevalence))

NPV =
specificity × (1 − prevalence)

((1 − sensitivity) × prevalence) + ((specificity) × (1 − prevalence))

Detection Rate =
A

A + B + C + D

Detection Prevalence =
A + B

A + B + C + D

When there are three or more classes, confusionMatrix will show the confusion matrix and a
set of “one–versus–all” results. For example, in a three class problem, the sensitivity of the first
class is calculated against all the samples in the second and third classes (and so on).

ROC Curves

The function roc2 can be used to calculate the sensitivity and specificity used in an ROC plot.
For example, using the previous support vector machine fit to the MBRR data, the predicted class
probabilities on the test set can used to create an ROC curve. The area under the ROC curve, via
the trapezoidal rule, is calculated using the aucRoc function.

> mbrrProbs <- extractProb(list(svmFit), testX = testDescr, testY = testMDRR)

> mbrrProbs <- mbrrProbs[mbrrProbs$dataType == "Test", ]

> mbrrROC <- roc(mbrrProbs$Active, mbrrProbs$obs)

> aucRoc(mbrrROC)

[1] 0.8724269

See Figure 4 for an example.

2I’m looking into using the ROCR package for ROC curves, so don’t get too attached to these functions
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Plotting Predictions and Probabilities

Two functions, plotObsVsPred and plotClassProbs, are interfaces to lattice to plot model results.
For regression, plotObsVsPred plots the observed versus predicted values by model type and data
(e.g. test). See Figures 5 and 4 for examples. For classification data, plotObsVsPred plots the
accuracy rates for models/data in a dotplot.

To plot class probabilities, plotClassProbs will display the results by model, data and true class
(for example, Figure 3).

5 Session Information

• R version 2.10.0 RC (2009-10-18 r50160), x86_64-apple-darwin9.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, tools, utils

• Other packages: caret 4.30, class 7.3-1, e1071 1.5-20, earth 2.3-5, ellipse 0.3-5, gbm 1.6-3,
Hmisc 3.7-0, ipred 0.8-8, kernlab 0.9-9, klaR 0.6-0, lattice 0.17-26, leaps 2.9, MASS 7.3-3,
mlbench 1.1-6, nnet 7.3-1, pls 2.1-0, plyr 0.1.9, proxy 0.4-4, randomForest 4.5-33,
reshape 0.8.3, rpart 3.1-45, survival 2.35-7

• Loaded via a namespace (and not attached): cluster 1.12.1
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Figure 3: The predicted class probabilities from a support vector machine fit for the MBRR test
set. This plot was created using plotClassProbs(mbrrProbs).
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Figure 4: An ROC curve from the predicted class probabilities from a support vector machine fit
for the MBRR test set.
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Figure 5: The results of using plotObsVsPred to show plots of the observed median home price
against the predictions from two models. The plot shows the training and test sets in the same
Lattice plot
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