
Data Sets and Miscellaneous Functions in the caret Package

Max Kuhn
max.kuhn@pfizer.com

August 24, 2009

1 Introduction

The caret package (short for classification and regression training) contains functions to streamline
the model training process for complex regression and classification problems. The package utilizes
a number of R packages but tries not to load them all at package start-up1. The package “suggests”
field includes: ada, affy, caTools, class, e1071,, earth (≥ 2.2-3), elasticnet, ellipse, gbm,
glmnet, gpls, grid, ipred, kernlab, klaR, lars, MASS, mboost, mda, mgcv, mlbench, nnet, pamr,,
party, penalized, pls, proxy, randomForest, relaxo, rpart, RWeka (≥ 0.3-14), sda, SDDA,
sparseLDA (≥ 0.1-1),, spls, superpc, vbmp. caret loads packages as needed and assumes that
they are installed. Install caret using

install.packages("caret", dependencies = c("Depends", "Suggests"))

to ensure that all the needed packages are installed.

2 Example Data

There are a few data sets included in caret. The first three are computational chemistry problems
where the object is to relate the molecular structure of compounds (via molecular descriptors) to
some property of interest (Blake (2000), Clark and Pickett (2000). The fourth data set listed is a
typical spectroscopy data set from chemometrics. The last data set is a pattern recognition problem
with a large number of classes, some of which do not have many observations.

1By adding formal package dependencies, the package startup time can be greatly decreased

 http://dx.doi.org/10.1016/S1359-6446(99)01451-8

The caret Package – Data Sets and Miscellaneous Functions

2.1 Blood–Brain Barrier Data

Mente and Lombardo (2005) developed models to predict the log of the ratio of the concentration
of a compound in the brain and the concentration in blood. For each compound, they computed
three sets of molecular descriptors: MOE 2D, rule–of–five and Charge Polar Surface Area (CPSA).
In all, 134 descriptors were calculated. Included in this package are 208 non–proprietary literature
compounds. The vector logBBB contains the log concentration ratio and the data fame bbbDescr

contains the descriptor values.

2.2 COX-2 Activity Data

From Sutherland, O’Brien, and Weaver (2003): “A set of 467 cyclooxygenase-2 (COX-2) inhibitors
has been assembled from the published work of a single research group, with in vitro activities
against human recombinant enzyme expressed as IC50 values ranging from 1 nM to >100 uM (53
compounds have indeterminate IC50 values).” A set of 255 descriptors (MOE2D and QikProp) were
generated. To classify the data, we used a cutoff of 22.5 to determine activity.

Using data(cox2) exposes three R objects: cox2Descr is a data frame with the descriptor data,
cox2IC50 is a numeric vector of IC50 assay values and cox2Class is a factor vector with the activity
results.

2.3 Multidrug Resistance Reversal (MDRR) Agent Data

Svetnik et al (2005) describe these data: “Bakken and Jurs studied a set of compounds originally
discussed by Klopman et al., who were interested in multidrug resistance reversal (MDRR) agents.
The original response variable is a ratio measuring the ability of a compound to reverse a leukemia
cell’s resistance to adriamycin. However, the problem was treated as a classification problem, and
compounds with the ratio >4.2 were considered active, and those with the ratio <= 2.0 were
considered inactive. Compounds with the ratio between these two cutoffs were called moderate
and removed from the data for two class classification, leaving a set of 528 compounds (298 actives
and 230 inactives). (Various other arrangements of these data were examined by Bakken and Jurs,
but we will focus on this particular one.) We did not have access to the original descriptors, but
we generated a set of 342 descriptors of three different types that should be similar to the original
descriptors, using the DRAGON software.” The data and R code are in the Supplemental Data file
for the article.

Using data(mdrr) exposes two R objects: mdrrDescr is a data frame with the descriptor data
and mdrrClass is a factor vector with the activity results.

2 of 21

http://www.springerlink.com/content/72j377175n536768/?p=f546488cc8fa4ec7a3d4911eb20adb3c&pi=0
http://pubs.acs.org/cgi-bin/abstract.cgi/jmcmar/2004/47/i22/abs/jm0497141.html
http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/2005/45/i03/abs/ci0500379.html

The caret Package – Data Sets and Miscellaneous Functions

2.4 Tecator NIR Data

These data can be found in the datasets section of StatLib. The data consist of 100 near infrared
absorbance spectra used to predict the moisture, fat and protein values of chopped meat.

From StatLib:

“These data are recorded on a Tecator Infratec Food and Feed Analyzer working in the wavelength
range 850 – 1050 nm by the Near Infrared Transmission (NIT) principle. Each sample contains finely
chopped pure meat with different moisture, fat and protein contents.

If results from these data are used in a publication we want you to mention the instrument and
company name (Tecator) in the publication. In addition, please send a preprint of your article to:
Karin Thente, Tecator AB, Box 70, S-263 21 Hoganas, Sweden.”

One reference for these data is Borggaard and Thodberg (1992).

Using data(tecator) loads a 215 × 100 matrix of absorbance spectra and a 215 × 3 matrix of
outcomes.

2.5 Fatty Acid Composition Data

Brodnjak-Voncina et al. (2005) describe a set of data where seven fatty acid compositions were
used to classify commercial oils as either pumpkin (labeled A), sunflower (B), peanut (C), olive (D),
soybean (E), rapeseed (F) and corn (G). There were 96 data points contained in their Table 1 with
known results. The breakdown of the classes is given in below:

> data(oil)

> dim(fattyAcids)

[1] 96 7

> table(oilType)

oilType
A B C D E F G
37 26 3 7 11 10 2

As a note, the paper states on page 32 that there are 37 unknown samples while the table on
pages 33 and 34 shows that there are 34 unknowns.

3 of 21

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
http://dx.doi.org/10.1016/j.chemolab.2004.04.011

The caret Package – Data Sets and Miscellaneous Functions

3 Data Pre–Processing Functions

caret includes several functions to pre–process the predictor data. Assumes that all of the data are
numeric (i.e. factors have been converted to dummy variables via model.matrix or other means).

3.1 Zero– and Near Zero–Variance Predictors

In some situations, the data generating mechanism can create predictors that only have a single
unique value (i.e. a “zero–variance predictor”). For many models (excluding tree-based models),
this may cause the model to crash or the fit to be unstable.

Similarly, predictors might have only a handful of unique values that occur with very low fre-
quencies. For example, in the drug resistance data, the nR11 descriptor (number of 11-membered
rings) data have a few unique numeric values that are highly unbalanced:

> data.frame(table(mdrrDescr$nR11))

Var1 Freq

1 0 501

2 1 4

3 2 23

The concern here that these predictors may become zero–variance predictors when the data are
split into cross–validation/bootstrap sub–samples or that a few samples may have an undue influence
on the model. These “near–zero–variance” predictors may need to be identified and eliminated prior
to modeling.

To identify these types of predictors, the following two metrics can be calculated:

1. the frequency of the most prevalent value over the second most frequent value (called the
“frequency ratio”), which would be near one for well–behaved predictors and very large for
highly–unbalanced data

2. the “percent of unique values” is the number of unique values divided by the total number of
samples (times 100) that approaches zero as the granularity of the data increases

If the frequency ratio is less than a pre–specified threshold and the unique value percentage is less
than a threshold, we might consider a predictor to be near zero–variance.

We would not want to falsely identify data that have low granularity but are evenly distributed,
such as data from a discrete uniform distribution. Using both criteria should not falsely detect such
predictors.

4 of 21

The caret Package – Data Sets and Miscellaneous Functions

Looking at the MDRR data, the nearZeroVar function can be used to identify near zero–variance
variables (the saveMetrics argument can be used to show the details and usually defaults to FALSE):

> nzv <- nearZeroVar(mdrrDescr, saveMetrics = TRUE)

> nzv[nzv$nzv,][1:10,]

freqRatio percentUnique zeroVar nzv
nTB 23.00000 0.3787879 FALSE TRUE
nBR 131.00000 0.3787879 FALSE TRUE
nI 527.00000 0.3787879 FALSE TRUE
nR03 527.00000 0.3787879 FALSE TRUE
nR08 527.00000 0.3787879 FALSE TRUE
nR11 21.78261 0.5681818 FALSE TRUE
nR12 57.66667 0.3787879 FALSE TRUE
D.Dr03 527.00000 0.3787879 FALSE TRUE
D.Dr07 123.50000 5.8712121 FALSE TRUE
D.Dr08 527.00000 0.3787879 FALSE TRUE

By default, nearZeroVar(data) will return the positions of the variables that are flagged to be
problematic.

3.2 Identifying Correlated Predictors

While there are some models that thrive on correlated predictors (such as pls), other models may
benefit from reducing the level of correlation between the predictors.

Given a correlation matrix, the findCorrelation function uses the following algorithm to flag
predictors for removal:

repeat
Find the pair of predictors with the largest absolute correlation;
For both predictors, compute the average correlation between each predictor and all of
the other variables;
Flag the variable with the largest mean absolute correlation for removal;
Remove this column from the correlation matrix;

until no correlations are above a threshold ;

For the previous MDRR data, there are 65 descriptors that are almost perfectly correlated
(|correlation| > 0.999), such as the total information index of atomic composition (IAC) and the
total information content index (neighborhood symmetry of 0-order) (TIC0) (correlation = 1). The
code chunk below shows the effect of removing descriptors with absolute correlations above 0.75.

> descrCor <- cor(filteredDescr)

> summary(descrCor[upper.tri(descrCor)])

5 of 21

The caret Package – Data Sets and Miscellaneous Functions

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.99610 -0.05373 0.25010 0.26080 0.65530 1.00000

> highlyCorDescr <- findCorrelation(descrCor, cutoff = 0.75)

> filteredDescr <- filteredDescr[, -highlyCorDescr]

> descrCor2 <- cor(filteredDescr)

> summary(descrCor2[upper.tri(descrCor2)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.70730 -0.05378 0.04418 0.06692 0.18860 0.74460

3.3 Linear Dependencies

The function findLinearCombos uses the QR decomposition of a matrix to enumerate sets of linear
combinations (if they exist). For example, consider the following matrix that is could have been
produced by a less–than–full–rank parameterizations of a two–way experimental layout:

> ltfrDesign <- matrix(0, nrow = 6, ncol = 6)

> ltfrDesign[, 1] <- c(1, 1, 1, 1, 1, 1)

> ltfrDesign[, 2] <- c(1, 1, 1, 0, 0, 0)

> ltfrDesign[, 3] <- c(0, 0, 0, 1, 1, 1)

> ltfrDesign[, 4] <- c(1, 0, 0, 1, 0, 0)

> ltfrDesign[, 5] <- c(0, 1, 0, 0, 1, 0)

> ltfrDesign[, 6] <- c(0, 0, 1, 0, 0, 1)

> ltfrDesign

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 1 0 1 0 0
[2,] 1 1 0 0 1 0
[3,] 1 1 0 0 0 1
[4,] 1 0 1 1 0 0
[5,] 1 0 1 0 1 0
[6,] 1 0 1 0 0 1

Note that columns two and three add up to the first column. Similarly, columns four, five and six
add up the first column. findLinearCombos will return a list that enumerates these dependencies.
For each linear combination, it will incrementally remove columns from the matrix and test to see
if the dependencies have been resolved. findLinearCombos will also return a vector of column
positions can be removed to eliminate the linear dependencies:

6 of 21

The caret Package – Data Sets and Miscellaneous Functions

> comboInfo <- findLinearCombos(ltfrDesign)

> comboInfo

$linearCombos
$linearCombos[[1]]
[1] 3 1 2

$linearCombos[[2]]
[1] 6 1 4 5

$remove
[1] 3 6

> ltfrDesign[, -comboInfo$remove]

[,1] [,2] [,3] [,4]
[1,] 1 1 1 0
[2,] 1 1 0 1
[3,] 1 1 0 0
[4,] 1 0 1 0
[5,] 1 0 0 1
[6,] 1 0 0 0

> findLinearCombos(ltfrDesign[, -comboInfo$remove])

$linearCombos
list()

$remove
NULL

These types of dependencies can arise when large numbers of binary chemical fingerprints are
used to describe the structure of a molecule.

3.4 Centering and Scaling

The preProcess class can be used for many operations on predictors, including centering and
scaling2. The functiontexttpreProcess estimates the required parameters for each operation and
predict.preProcess is used to apply them to specific data sets.

2Two functions, processData and applyProcessing, are being replaced by preProcess. They are still in the
package, but will not be in upcoming versions

7 of 21

The caret Package – Data Sets and Miscellaneous Functions

In the example below, the half of the MDRR data are used to estimate the location and scale of the
predictors. The function preProcess doesn’t actually pre–process the data. predict.preProcess
is used to pre–process this and other data sets.

> set.seed(96)

> inTrain <- sample(seq(along = mdrrClass), length(mdrrClass)/2)

> training <- filteredDescr[inTrain,]

> test <- filteredDescr[-inTrain,]

> trainMDRR <- mdrrClass[inTrain]

> testMDRR <- mdrrClass[-inTrain]

> preProcValues <- preProcess(training, method = c("center", "scale"))

> trainDescr <- predict(preProcValues, training)

> testDescr <- predict(preProcValues, test)

3.5 Transforming Predictors

In some cases, there is a need to use principal component analysis (PCA) to transform the data to
a smaller sub–space where the new variable are uncorrelated with one another. The preProcess

class can apply this transformation by including "pca" in the method argument. Doing this will also
force scaling of the predictors. Note that when PCA is requested, predict.preProcess changes
the column names to PC1, PC2 and so on.

The “spatial sign” transformation (Serneels et al, 2006) projects the data for a predictor to the
unit circle in p dimensions, where p is the number of predictors. Essentially, a vector of data is
divided by its norm. Figures 1 and 2 show two centered and scaled descriptors from the MDRR
data before and after the spatial sign transformation. The predictors should be centered and scaled
before applying this transformation.

This transformation can also be applied using the preProcess class.

3.6 Data Splitting

The function createDataPartition can be used to create balanced splits of the data. If the y
argument to this function is a factor, the random sampling occurs within each class and should
preserve the overall class distribution of the data. For example, to create a single 80%\20% split of
the MDRR data:

> set.seed(3456)

> set1index <- createDataPartition(mdrrClass, p = 0.8, list = FALSE,

+ times = 1)

> set1 <- mdrrClass[set1index]

> round(table(set1)/length(set1), 2)

8 of 21

http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/2006/46/i03/abs/ci050498u.html

The caret Package – Data Sets and Miscellaneous Functions

X4v

nC

−2

0

2

−2 0 2 4 6

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

● ●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

● ●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

Active Inactive●

Figure 1: A plot of two descriptors from the MDRR training set (centered and scaled)

9 of 21

The caret Package – Data Sets and Miscellaneous Functions

X4v

nC

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

●
●●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●●●●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●
●

●

●●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

Active Inactive●

Figure 2: A plot of the two descriptors from the MDRR training set after the spatial sign transfor-
mation

10 of 21

The caret Package – Data Sets and Miscellaneous Functions

set1
Active Inactive
0.57 0.43

> round(table(mdrrClass)/length(mdrrClass), 2)

mdrrClass
Active Inactive
0.56 0.44

The list = FALSE returns the data in an integer vector. This function also has an argument, times,
that can create multiple splits at once; the data indices are returned in a list of integer vectors. Similarly,
createResample can be used to make simple bootstrap samples and createFolds can be used to generate
balanced cross–validation groupings from a set of data.

Also, the function maxDissim can be used to create sub–samples using a maximum dissimilarity
approach (Willett, 1999). Suppose there is a data set A with m samples and a larger data set B
with n samples. We may want to create a sub–sample from B that is diverse when compared to
A. To do this, for each sample in B, the function calculates the m dissimilarities between each
point in A. The most dissimilar point in B is added to A and the process continues. There are
many methods in R to calculate dissimilarity. caret uses the proxy package. See the manual for
that package for a list of available measures. Also, there are many ways to calculate which sample
is “most dissimilar”. The argument obj can be used to specify any function that returns a scalar
measure. caret includes two functions, minDiss and sumDiss, that can be used to maximize the
minimum and total dissimilarities, respectfully.

As an example, Figure 3 shows a scatter plot of two chemical descriptors for the Cox2 data.
Using an initial random sample of 5 compounds, we can select 20 more compounds from the data
so that the new compounds are most dissimilar from the initial 5 that were specified. The panels
in Figure 3 show the results using several combinations of distance metrics and scoring functions.
For these data, the distance measure has less of an impact than the scoring method for determining
which compounds are most dissimilar.

4 Visualizing Data

The featurePlot function is a wrapper for different lattice plots to visualize the data.

For example, Figures 4, 5, 6 and 7 shows the default plot for continuous outcomes generated
using the featurePlot function.

11 of 21

http://www.liebertonline.com/doi/abs/10.1089/106652799318382

The caret Package – Data Sets and Miscellaneous Functions

●

●●
● ●

●

●● ●
●

●●

●●

●

●

●●

●

●

●●

●

●●

●
●

●●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●●

●

●
●●●

●

●

●

● ●

●

●

●

●

●● ●
●

●

● ●

●●

●

●

●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●

●

●

●

●

●●

● ●

●●

●

●

●
●●

●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●
● ●

●

●

●●

●●

●
●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

●

● ●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

Total positive partial charge

P
re

di
ct

ed
 S

ki
n

P
er

m
ea

bi
lit

y

Original Data

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

Total positive partial charge

P
re

di
ct

ed
 S

ki
n

P
er

m
ea

bi
lit

y

●

●●
● ●

●

●● ●
●

●●

●●

●

●

●●

●

●

●●

●

●●

●
●

●●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●●

●

●
●●●

●

●

●

● ●

●

●

●

●

●● ●
●

●

● ●

●●

●

●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●

●

●

●

●●

● ●

●●

●

●

●
●●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●
● ●

●

●

●●

●●

●
●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19
20

Euclidean Dist with MaxMin

S

S
S

S

S

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

Total positive partial charge

P
re

di
ct

ed
 S

ki
n

P
er

m
ea

bi
lit

y

●

●●
● ●

●

●● ●
●

●●

●●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●●

●

●
●●●

●

●

●

● ●

●

●

●

●

●● ●
●

●

● ●

●●

●

●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●

●

●

●

●●

● ●

●●

●

●

●
●●

●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●
● ●

●

●

●●

●●

●
●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Euclidean Dist with MaxSum

S

S
S

S

S

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

Total positive partial charge

P
re

di
ct

ed
 S

ki
n

P
er

m
ea

bi
lit

y

●

●●
● ●

●

●● ●
●

●●

●●

●

●

●●

●

●
●

●●

●
●

●●

●

●
● ●

●●

●
●

●

● ●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●●

●

●
●●●

●

●

●

● ●

●

●

●

●

●● ●
●

●

● ●

●●

●

●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●

●

●

●

●●

● ●

●●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●
● ●

●

●

●●

●●

●
●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16
17

18
19

20

Euclidean Dist with MaxSum and 5% Sampling

S

S
S

S

S

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

Total positive partial charge

P
re

di
ct

ed
 S

ki
n

P
er

m
ea

bi
lit

y

●

●●
● ●

●

●● ●
●

●●

●●

●

●

●●

●

●

●●

●

●●

●
●

●●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●●

●

●
●●●

●

●

●

● ●

●

●

●

●

●● ●
●

●

● ●

●●

●

●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●

●

●●

● ●

●●

●

●

●
●●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●
● ●

●

●

●●

●●

●
●

●

●● ●

●

●

●

●●

●

●● ●●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

Manhattan Dist with MaxMin

S

S
S

S

S

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

Total positive partial charge

P
re

di
ct

ed
 S

ki
n

P
er

m
ea

bi
lit

y

●

●●
● ●

●

●● ●
●

●●

●●

●

●

●●

●

●

●●

●

●●

●
●

●●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●●

●

●
●●●

●

●

●

● ●

●

●

●

●● ●
●

●

● ●

●●

●

●
●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●

●

●

●

●●

● ●

●●

●

●

●
●●

●

●

●

●
●

●

●
● ●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●
● ●

●

●

●●

●●

●
●

●

●● ●●

●

●●

●

●● ●●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

1

2

3

4
5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

Manhattan Dist with MaxSum

S

S
S

S

S

Figure 3: Examples of selecting 20 dissimilar compounds from an initial set of 5 (denoted by “S”)
for different combinations of arguments to the function maxDissim.

12 of 21

The caret Package – Data Sets and Miscellaneous Functions

Scatter Plot Matrix

Wap
4

6
4 6

0

2

0 2 ●●●
●●

●●
●●

●
●

●

●●
●●●

●
●
●●
●

●

●

●

●
●

●●

●

●

●

●
●
●●●●
●
●●

●
●●●●

●

●

●
●

●

●
●
●●

●

●

●●
●●

●

●●

●
●

●●
●

●

●
●

●
●
●
●●●

● ●●

●

●

●
●

●

●

●

●

●●●
●
●
●
●

●●●

●

●●

●

●
●● ●

●

●

●

●

●
●

●●●●

●

●

●●

●●

●
●

●● ●
●

●

●● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●
●
●

●

●●

●

●
●
●●

●●●●●
●
●●●●●●●
●●

●
●●●●●
●●
●●●

●●

●

●

●●
●

●

●
●
●●

●
●

●

●●●
●

●

●

●

●
●

●

●

●●●

●

●

●● ●

●

●

●

● ●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●● ●●
●

●
●

●●●●●

●

●

●●●●

●●

●●●●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●● ●
● ●

●●●●

●
●

●

●●
● ●

●
●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●●●
●

●●
●

● ●● ●
●

●

●
●

●

●
●

●●

●

●

●●
●●

●

●●

●
●

●●
●

●

●
●

●
●
●
●●●

●●●

●

●

●
●

●

●

●

●

● ●●●
●
●

●

●● ●

●

●●

●

●
●●●

●

●

●

●

●
●

●● ●●

●

●

●●

●●

●
●

● ●●
●

●

●●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●●

●

● ●●●
●

●

●●

●

●
●

● ●
●●●●●

●
●●●● ● ●●

●●

●
●● ●●●

●●
●●●

●●

●

●

●●
●

●

●
●

● ●
●

●
●

●● ●
●

●

●

●

●
●

●

●

●● ●

●

●

●● ●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●●●●

●

●
●

●●● ●●

●

●

●● ●●

●●

●●●●

●

●
●

●●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●●●●● ●●●● ●●●

●● ●●●

●

●●● ● ●● ●

●
●

●
●

●

● ●●
●●●●●●●●

●

●
●●●● ● ●

●

●
●

●●●● ●●●●● ●●● ●●

●●●● ●

●

●

●●●●●●

●

●

● ●

●

●●

●

●

●●●●

●●●●

●●● ●●● ●●
●
●

● ●

● ●● ●●●●●
● ● ●●●

●● ●●

●

●

●●

●

●

●

●

●

● ●● ●

●

●●

●

●

●

●

●

●

●
●● ●●●●● ●●●●

●

●●●
●●●●●●●●●●●●●●●●
●●●

●●●●●●●● ●●

●

●●●●

●

●●●●
●

●
●

●●●
● ●●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●● ● ●
● ●

●

● ●●
●

● ●●●

●●
●● ●● ●●●

●●

●

●

●

●●●●● ●● ●●●●

●

●●●●● ● ●

●

●●

●

●

●

●

●

●●●

● ●●● ●●

●●

G.N..N.
3

4

5

6

3 4 5 6

0

1

2

3

0 1 2 3 ●● ●● ●●●●●● ● ●

●●● ● ●

●

●●●● ● ● ●

●
●

●
●

●

●●●
●●●●●● ●●

●

●
●● ●●●●

●

●
●

●●● ●● ●●●●● ●●●●

●●●●●

●

●

●●●●● ●

●

●

● ●

●

● ●

●

●

● ● ●●

●●●●

●● ●● ●●●●
●

●

●●

●●●● ● ●● ●
●●● ●●

●● ●●

●

●

●●

●

●

●

●

●

●●● ●

●

●●

●

●

●

●

●

●

●
●●● ● ●●●● ●●●

●

● ●●
●●●●●●● ●●●● ● ●●●●

●●●
●●● ●●●●● ●●

●

●●●●

●

●● ● ●
●

●
●

●● ●
●● ●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●● ●●
● ●

●

●● ●
●

●● ●●

●●
●●●●● ●●

●●

●

●

●

●●● ●●● ●●● ●●

●

● ●●●●●●

●

●●

●

●

●

●

●

●●●

●● ●●●●

●●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

● ●●
●

●●

●●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●●

●

●

●●●●

●

●

●

●

●

●●●● ●

●

●

●●●●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●●
●●

●
●
● ●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●●

●

●

●
●●

●●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●
●● ●

●

●

●●

●
●

●

●

●

●●●

●

●

●● ●●

●●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●●
●

●

●

●●●
●
●●

●●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●●

●

●

●●●●

●

●

●

●

●

●●●●●

●

●

●●●●

●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●●●●

●

●

●

●

●●
●●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●●

● ●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●
●●●

●

●

●●

●
●

●

●

●

●●●

●

●

●●●●

●●

SEigp−1

0

1
−1 0 1

−4

−3

−2

−4 −3 −2

Figure 4: An example plot of three example predictors from the MDRR data using the featurePlot
function with density ellipses for each class generated with the arguments plot = "ellipse" and
a factor outcome.

13 of 21

The caret Package – Data Sets and Miscellaneous Functions

Feature

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0 2 4 6

|||||||||||| ||||| |||||||||| || |||| |||||||| |||||||| || ||||||||||||||| ||||| |||||||| || ||||| |||||| |||||||||||| || |||||||||| ||||| |||| || ||| || ||||||| ||| || || ||||||||||||| |||| ||||||||||||||||||| |||||||||| ||||| ||||| ||| |||||| ||| || ||| | ||| | || || ||| |||||| |||| | |||||| ||||||| ||| ||||||||||||| |||||||| | ||| | ||| ||||||||| ||| ||| || | ||| ||||| ||||||| ||||| |||||| ||||| |||||||| ||||||||| ||| ||||||||| || |||| ||||| |||| || |||||| || ||| || ||||| || | | |||| | ||||||||||||||||| |||||||||| ||||||| | || || || || ||||| ||||| |||||| | ||||| |||| ||||| || || || ||||| ||||| ||||||||| | | | || ||||| || ||||||||

G.N..N.

0.
0

0.
1

0.
2

0.
3

0.
4

−4 −2 0 2

|| || |||||| | | ||| | || |||| | | | ||| || ||||||||| || || || |||| | ||||| || ||||| |||| |||||| | ||||| ||| | ||| || || | |||||| || || ||||| ||| |||| | || |||| || || || | |||| |||| ||| || ||| || | || |||| | |||| |||| | || ||||||| |||| | |||| ||| ||| ||||| ||| |||| ||| | ||| | || ||| | | ||| ||| | || || || || || || || ||| || || | ||| |||| ||||| || |||| |||| ||| ||| || || ||||||||| |||| |||| || |||| || |||| | ||| | | | ||| ||||||| ||| | || | ||||| || ||| || |||||| |||| || ||| | | ||||| ||| |||||| ||| | |||| ||| ||| | |||| ||| ||| || ||| | | ||| ||| | ||| | || || ||| || |||||| | |||| | || |||| |||| || ||| ||| | || | || | || ||| || |||| || | ||| | ||||||| | | || | || ||| || | | |||||||| || |||| | ||| || | | ||| | || |||

SEigp

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−2 0 2 4 6 8

||||| |||| ||||| ||| || || | || || | |||| ||||||| ||| |||||| | ||| || ||| ||||| ||| || || || | ||| ||||||| | || || | | ||||||||||| ||| || ||| || || |||||| | ||| || | |||| || ||| || || || | || || || |||| ||||| |||| ||||| ||||| |||||||| ||| ||||||| ||| ||| ||| | || ||| | || ||| | || ||| || |||| |||| || |||| ||| | || | || || | | ||| || || || ||||| ||| ||||| || |||||||||| | ||||| | ||| ||| | ||| ||||| | | |||| |||| |||||||| ||| ||||| |||||||||| |||||||||||||| |||||||||||||||||| | |||||||||||||||||||||||||| ||| | || || ||||| || |||||| |||||||||| | |||| | ||||| |||| | |||||| || | ||| ||||||||| || |||| || || || ||||| ||||| ||| || || ||| ||| |||| ||| || ||| || || |||| ||| || |||| ||

Wap

Active Inactive

Figure 5: An example of using the plot = "density" argument in the featurePlot function with
three example predictors from the MDRR data and a factor outcome.

Feature

0
1

2
3

4
5

Active Inactive

● ●

●●

●

●

●

●
●

●
●●
●
●

●●

●

●

●

●

●

●●●

●●●●●●

●●

●

●●

●

●

●
●
●

●

●

●●

●

●

●●●●

●

●

●

●●●●●●

●●

G.N..N.

−
4

−
3

−
2

−
1

0
1

Active Inactive

●

●

●

●
●●

●

● ●

SEigp

0
2

4
6

Active Inactive

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●
●

●●

Wap

Figure 6: An example of using the plot = "boxplot" argument in the featurePlot function with
three example predictors from the MDRR data and a factor outcome.

Feature

−2

−1

0

1

−2 0 2 4 6

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

● ●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

clogp

0.0 0.2 0.4 0.6 0.8 1.0 1.2

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●●

●

●
●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

psa_npsa

0 20 40 60

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

● ●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●●

●

●
●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

vsa_acc

Figure 7: A set of scatter–plots for three example predictors from the blood–brain barrier data and
a numeric outcome (on the y–axis).

14 of 21

The caret Package – Data Sets and Miscellaneous Functions

5 Other Functions

5.1 Processing Affy Arrays

For Affymetrix gene chip data, RMA processing (Irizarry, 2003) is a popular method of processing
gene expression data. However, for predictive modeling, it has a drawback in that the processing
is batch oriented; if an additional sample is collected, the RMA processing must be repeated using
all the samples. This is mainly because of two steps in the processing: the quantile normalization
process and the calculation of expression. Quantile normalization normalizes the data such that the
between–chip distributions have equivalent quantiles and is very effective in improving the quality
of the data. It is possible to let the samples in the training set define the reference distribution for
normalization. For the expression calculation, a robust method such as a trimmed mean can be
used to summarize the probe level data into a single summary metric per sample. For example,

first, let affy/expresso know that the method exists

normalize.AffyBatch.methods <- c(normalize.AffyBatch.methods, "normalize2Reference")

RawData <- ReadAffy(celfile.path=FilePath)

Batch1Step1 <- bg.correct(RawData, "rma")

Batch1Step2 <- normalize.AffyBatch.quantiles(Batch1Step1)

referencePM <- pm(Batch1Step2)[,1]

Batch1Step3 <- computeExprSet(Batch1Step2, "pmonly", "trimMean")

Batch2Step1 <- bg.correct(RawData2, "rma")

Batch2Step2 <- normalize.AffyBatch.normalize2Reference(Batch2Step1, ref = referencePM)

Batch2Step3 <- computeExprSet(Batch2Step2, "pmonly", "trimMean")

5.2 Yet Another k–Nearest Neighbor Function

knn3 is a function for k–nearest neighbor classification. This particular implementation is a modi-
fication of the knn C code and returns the vote information for all of the classes (knn only returns
the probability for the winning class). There is a formula interface via

knn3(formula, data)

or by passing the training data directly

x is a matrix, y is a factor vector

knn3(x, y)

15 of 21

http://nar.oxfordjournals.org/cgi/content/abstract/31/4/e15

The caret Package – Data Sets and Miscellaneous Functions

There are also print and predict methods.

Similarly, caret contains a k–nearest neighbor regression function, knnreg. It returns the average
outcome for the neighbor.

5.3 Partial Least Squares Discriminant Analysis

The plsda function is a wrapper for the plsr function in the pls package that does not require
a formula interface and can take factor outcomes as arguments. The classes are broken down into
dummy variables (one for each class). These 0/1 dummy variables are modeled by partial least
squares.

From this model, there are two approaches to computing the class predictions and probabilities:

• the softmax technique can be used on a per-sample basis to normalize the scores so that they
are more “probability like” (i.e. they sum to one and are between zero and one). For a vector
of model predictions for each class x, the softmax class probabilities are computed as

probk =
exp(xk)∑C

k=1 exp(xk)

The predicted class is simply the class with the largest model prediction, or equivalently, the
largest class probability. This is the default behavior for plsda.

• Bayes rule can be applied to the model predictions to form posterior probabilities. Here, the
model predictions for the training set are used along with the training set outcomes to create
conditional distributions for each class. When new samples are predicted, the raw model
predictions are run through these conditional distributions to produce a posterior probability
for each class (along with the prior). Bayes rule can be used by specifying probModel =

"Bayes". An additional parameter, prior, can be used to set prior probabilities for the
classes.

The advantage to using Bayes rule is that the full training set is used to directly compute the class
probabilities (unlike the softmax function which only uses the current sample’s scores). This creates
more realistic probability estimates (See Figure 8). The disadvantage is that a separate Bayesian
model must be created for each value of ncomp, which is more time consuming.

For the MDRR data set, we can fit two PLS models using each technique and predict the class
probabilities for the test set. Figure 8 shows the results.

Similar to plsda, caret also contains a function splsda that allows for classification using sparse
PLS. A dummy matrix is created for each class and used with the spls function in the spls package.
The same approach to estimating class probabilities is used for plsda and splsda.

16 of 21

The caret Package – Data Sets and Miscellaneous Functions

Active Probability

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

Bayes Rule
Active

0.0 0.2 0.4 0.6 0.8 1.0

Softmax
Active

0.0 0.2 0.4 0.6 0.8 1.0

Bayes Rule
Inactive

0

10

20

30

40

Softmax
Inactive

Figure 8: A comparison of two methods for computing class probabilities for PLS classification
models on the MDRR data. Using a 5 component PLS model, the test set sample class proba-
bilities were predicted using either the softmax function or Bayes rule. The histograms show the
distributions of the active class probabilities for both methods and the true class of the samples.
While Bayes rule takes more time to compute (2.43 seconds compared to 0.015 seconds for softmax),
the probabilities using Bayes rule appear more appropriate since they encompass the full scale. The
softmax probabilities are close to the middle of the distribution and rarely show high confidence in
the predicted class. Both techniques show approximately the same accuracy (0.79 for Bayes and
0.77 for softmax) and Kappa values (0.56 for Bayes and 0.52 for softmax).

17 of 21

The caret Package – Data Sets and Miscellaneous Functions

5.4 Bagged MARS and FDA

Multivariate adaptive regression splines (MARS) models, like classification/regression trees, are
unstable predictors (Breiman, 1996). This means that small perturbations in the training data
might lead to significantly different models. Bagged trees and random forests are effective ways of
improving tree models by exploiting these instabilities. caret contains a function, bagEarth, that
fits MARS models via the earth function. There are formula and non–formula interfaces.

Also, flexible discriminant analysis is a generalization of linear discriminant analysis that can
use non–linear features as inputs. One way of doing this is the use MARS–type features to classify
samples. The function bagFDA fits FDA models of a set of bootstrap samples and aggregates the
predictions to reduce noise.

5.5 Neural Networks with a Principal Component Step

Neural networks can be affected by severe amounts of multicollinearity in the predictors. the function
pcaNNet is a wrapper around the preProcess and nnet functions that will run principal component
analysis on the predictors before using them as inputs into a neural network. The function will keep
enough components that will capture some pre-defined threshold on the cumulative proportion of
variance (see the thresh argument). For new samples, the same transformation is applied to the
new predictor values (based on the loadings from the training set). The function is available for
both regression and classification.

5.6 Class Distance Calculations

caret contains functions to generate new predictors variables based on distances to class centroids
(similar to how linear discriminant analysis works). For each level of a factor variable, the class
centroid and covariance matrix is calculated. For new samples, the Mahalanobis distance to each
of the class centroids is computed and can be used as an additional predictor. This can be helpful
for non–linear models when the true decision boundary is actually linear.

In cases where there are more predictors within a class than samples, the classDist function
has arguments called pca and keep arguments that allow for principal components analysis within
each class to be used to avoid issues with singular covariance matrices.

predict.classDist is then used to generate the class distances. By default, the distances are
logged, but this can be changed via the trans argument to predict.classDist.

As an example, we can used the Fisher/Anderson iris data.

> inTrain <- seq(1, 150, 6)

> centroids <- classDist(iris[inTrain, 1:4], iris$Species[inTrain])

18 of 21

The caret Package – Data Sets and Miscellaneous Functions

> distances <- predict(centroids, iris[-inTrain, 1:4])

> head(distances)

dist.setosa dist.versicolor dist.virginica

2 2.0414919 5.399257 5.062646

3 0.3929024 5.475529 4.964052

4 0.6155916 5.335095 4.778670

5 1.3192459 5.736292 5.043468

6 2.3251196 5.736759 5.054561

8 -2.6255384 5.613625 4.965432

Figure 9 shows a scatterplot matrix of the class distances for the held–out samples.

For data sets with numerical outcomes, the data can be split into groups based on quantiles
of the data (more fine granularity can be achieved with the groups argument to the classDist

function).

For example, in the Fisher/Anderson iris data there are four predictors and a class variable
describing three species of iris. These data are typically used to demonstrate how the four predictors
can be used to predict the three species.

6 Session Information

• R version 2.9.0 (2009-04-17), x86_64-apple-darwin9.6.0

• Locale: en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, tools, utils

• Other packages: caret 4.20, class 7.2-47, e1071 1.5-19, ellipse 0.3-5, gbm 1.6-3, ipred 0.8-7,
kernlab 0.9-8, klaR 0.5-9, lattice 0.17-22, MASS 7.2-47, mlbench 1.1-6, nnet 7.2-47, pls 2.1-0,
proxy 0.4-3, randomForest 4.5-30, rpart 3.1-44, survival 2.35-4

7 References

Blake, J. F. (2000), “Chemoinformatics: predicting the physicochemical properties of ’drug–like’
molecules,” Current Opinion in Biotechnology, 11, 104–107.

Borggaard, C., Thodberg, H. H. (1992), “Optimal minimal neural interpretation of spectra,” Ana-
lytical Chemistry, 64, 545–551.

Breiman, L. (1996), “Bagging predictors,” Machine Learning, 24, 123–140.

19 of 21

The caret Package – Data Sets and Miscellaneous Functions

Scatter Plot Matrix

dist.setosa
4

6

8 4 6 8

−2

0

2

−2 0 2

●

●●
●

●

●

●
●●

●

●
●●●

●●●

●
●

●

●
●

●
●

●

●
●
●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●●
●

●

●

●
●●

●

●
●●

●

●●●

●
●

●

●
●

●
●

●

●
●
●

● ●

●

●

●

●

●●

●
●
●

●
●

●●●
● ●●

●
●

●
● ●

●●
●

●●● ●●
●● ●

●●
● ●

●●

●●
●

●
● ●

●
●

●
●

●
●●

dist.versicolor

4

6
4 6

0

2

0 2

●●●
●●●

●
●

●
●●

●●
●

●●●●●
●●●
●●

● ●

●●

● ●
●

●
●●

●
●
●
●

●
●●

●●
●

● ●●
●

●
●

● ●

●
●●

●●● ●●
●● ●

●●
●

●●●
●
●

●
●

● ●
●
●●●●

●
● ●●

●
●●●

●
●

●
●●

●
●●

●●●●●●●●
●●

●

● ●●
●
●
●

●
●●

●
●●● ●
●
●

dist.virginica3

4

5 3 4 5

0

1

2

0 1 2

setosa versicolor virginica●

Figure 9: Class distances for the help–out samples for the Fisher/Anderson iris computed using the
classDist function. The distances have been logged.

20 of 21

The caret Package – Data Sets and Miscellaneous Functions

Brodnjak-Voncina et al. (2005). “Multivariate data analysis in classification of vegetable oils
characterized by the content of fatty acids,”Chemometrics and Intelligent Laboratory Systems,
75, 31–45.

Clark, D. E., Pickett, S. D. (2000), “Computational methods for the prediction of ’drug–likeness’,”
Drug Discov Today, 5, 49–58.

Irizarry, RA, Bolstad BM, Collin, F, Cope, LM, Hobbs, B, and, Speed, TP (2003), “Summaries of
Affymetrix Genechip probe level data,” Nucleic Acids Research, 31, e15

Mente, S. R., Lombardo, F. (2005), “A recursive-partitioning model for blood–brain barrier per-
meation,” Journal of Computer–Aided Molecular Design, 19, 465–481.

Serneels, S., De Nolf, E. and Van Espen, P. J. (2006), “Spatial sign preprocessing: a simple way
to impart moderate robustness to multivariate estimators,” Journal of Chemical Information
and Modeling, 46, 1402–1409.

Sutherland, J.J., O’Brien L.A. and Weaver D.F. (2004), “A comparison of methods for modeling
quantitative structure-activity relationships,” Journal of Medicinal Chemistry, 47, 5541–5554.

Svetnik, V., Wang, T., Tong, C., Liaw, A., Sheridan, R. P. and Song, Q. (2005), “Boosting: An
ensemble learning tool for compound classification and QSAR modeling,”Journal of Chemical
Information and Modeling, 45, 786 –799.

Willett, P. (1999), “Dissimilarity-Based Algorithms for Selecting Structurally Diverse Sets of Com-
pounds,” Journal of Computational Biology, 6, 447–457.

21 of 21

	Introduction
	Example Data
	Blood–Brain Barrier Data
	COX-2 Activity Data
	Multidrug Resistance Reversal (MDRR) Agent Data
	Tecator NIR Data
	Fatty Acid Composition Data

	Data Pre–Processing Functions
	Zero– and Near Zero–Variance Predictors
	Identifying Correlated Predictors
	Linear Dependencies
	Centering and Scaling
	Transforming Predictors
	Data Splitting

	Visualizing Data
	Other Functions
	Processing Affy Arrays
	Yet Another k–Nearest Neighbor Function
	Partial Least Squares Discriminant Analysis
	Bagged MARS and FDA
	Neural Networks with a Principal Component Step
	Class Distance Calculations

	Session Information
	References

