
The caret Package

Max Kuhn
max.kuhn@pfizer.com

July 11, 2008

1 Model Training and Parameter Tuning

caret has several functions that attempt to streamline the model building and evaluation process.

The train function can be used to

• evaluate, using resampling, the effect of model tuning parameters on performance

• choose the “optimal” model across these parameters

• estimate model performance from a training set

To optimize tuning parameters of models, train can be used to fit many predictive models over
a grid of parameters and return the “best” model (based on resampling statistics). See Table 1 for
the models currently available.

As an example, the multidrug resistance reversal (MDRR) agent data is used to determine a
predictive model for the“ability of a compound to reverse a leukemia cell’s resistance to adriamycin”
(Svetnik et al, 2003). For each sample (i.e. compound), predictors are calculated that reflect
characteristics of the molecular structure. These molecular descriptors are then used to predict
assay results that reflect resistance.

The data are accessed using data(mdrr). This creates a data frame of predictors called mdrrDe-

scr and a factor vector with the observed class called mdrrClass.

To start, we will:

• use unsupervised filters to remove predictors with unattractive characteristics (e.g. spare
distributions or high inter–predictor correlations)

• split the entire data set into a training and test set

http://pubs.acs.org/cgi-bin/abstract.cgi/jcisd8/2005/45/i03/abs/ci0500379.html

The caret Package

• center and scale the training and test set using the predictor means and standard deviations
from the training set

See the package vignette “caret Manual – Data and Functions” for more details about these
operations.

> print(ncol(mdrrDescr))

[1] 342

> nzv <- nearZeroVar(mdrrDescr)

> filteredDescr <- mdrrDescr[, -nzv]

> print(ncol(filteredDescr))

[1] 297

> descrCor <- cor(filteredDescr)

> highlyCorDescr <- findCorrelation(descrCor, cutoff = 0.75)

> filteredDescr <- filteredDescr[, -highlyCorDescr]

> print(ncol(filteredDescr))

[1] 50

> set.seed(1)

> inTrain <- sample(seq(along = mdrrClass), length(mdrrClass)/2)

> trainDescr <- filteredDescr[inTrain,]

> testDescr <- filteredDescr[-inTrain,]

> trainMDRR <- mdrrClass[inTrain]

> testMDRR <- mdrrClass[-inTrain]

> print(length(trainMDRR))

[1] 264

> print(length(testMDRR))

[1] 264

> preProcValues <- apply(trainDescr, 2, processData)

> trainDescr <- applyProcessing(trainDescr, preProcValues)

> testDescr <- applyProcessing(testDescr, preProcValues)

2 of 18

The caret Package

To estimate model performance across the tuning parameters “leave group out cross–validation”
(LGOCV) can be used. This technique is repeated splitting of the data into training and test sets
(without replacement). If the resampling method is not specified, simple bootstrapping is used. To
train a support vector machine classification model (radial basis function kernel) on these multidrug
resistance reversal agent data, we can first setup a control object1 that specifies the type of resam-
pling used, the number of data splits (30), the proportion of data in the sub–training sets (75%)
and whether the iterations should be printed as they occur. In this case, we need to specify the
proportion of samples used in each resampled training set. We also set the seed.

> fitControl <- trainControl(method = "LGOCV", p = 0.75, number = 30,

+ verboseIter = FALSE)

> set.seed(2)

The first two arguments to train are the predictor and outcome data objects, respectively. The
third argument, method, specifies the type of model. For this model, the tuning parameters are
the cost value (C and the radius of the RBF (sigma)). The tuneLength argument sets the size of
the grid used to search the tuning parameter space and trControl is the control parameter for the
train function.

> svmFit <- train(trainDescr, trainMDRR, method = "svmradial",

+ tuneLength = 4, trControl = fitControl)

> svmFit

Call:
train.default(x = trainDescr, y = trainMDRR, method = "svmradial",

trControl = fitControl, tuneLength = 4)

264 samples
50 predictors

summary of leave group out cross-validation (30 reps) sample sizes:
198, 198, 198, 198, 198, 198, ...

LGOCV resampled training results across tuning parameters:

sigma C Accuracy Kappa Accuracy SD Kappa SD Selected
0.00571 0.1 0.574 0.0346 0.0128 0.0323
0.00571 1 0.829 0.649 0.0438 0.091 *
0.00571 10 0.814 0.621 0.0467 0.0951
0.00571 100 0.777 0.553 0.0472 0.0933

1This is optional; to use the default specifications, the control object does not need to be specified

3 of 18

The caret Package

Accuracy was used to select the optimal model using the largest value.

The final values used in the model were C = 1 and sigma = 0.00570685013628034.

There are two tuning parameters for this model: sigma is a parameter for the kernel function
that can be used to expand/contract the distance function and C is the cost parameter that can
be used as a regularization term that controls the complexity of the model. For this model, the
function sigest in the kernlab package is used to provide a good estimate of the sigma parameter,
so that only the cost parameter is tuned. This tuning scheme is the default, but can be modified
(details are below).

The column labeled “Accuracy” is the overall agreement rate averaged over cross–validation
iterations. The agreement standard deviation is also calculated from the cross-validation results.
The column “Kappa” is Cohen’s (unweighted) Kappa statistic averaged across the resampling results

For regression models (i.e. a numeric outcome), a similar table would be produced showing the
average root mean squared error and average R2 value statistic across tuning parameters, otherwise
known as Q2 (see the note below related to this calculation).

caret works with specific models (see Table 1). For these models, train can automatically create
a grid of tuning parameters. By default, if p is the number of tuning parameters, the grid size is
3p. For example, regularized discriminant analysis (RDA) models have two parameters (gamma and
lambda), both of which lie on [0, 1]. The default training grid would produce nine combinations in
this two–dimensional space.

Alternatively, the grid can be specified by the user. The argument tuneGrid can take a data
frame with columns for each tuning parameter (see Table 1 for specific details). The column names
should be the same as the fitting function’s arguments with a period preceding the name. For our
RDA example, the names would be .gamma and .lambda. train will tune the model over each
combination of values in the rows.

For a gradient boosting machine (GBM) model, the amount of “shrinkage” in a gradient boosting
model is fixed at 0.1 and the other meta–parameters can be manually specified:

4 of 18

The caret Package
>
g
b
m
G
r
i
d
<
-
e
x
p
a
n
d
.
g
r
i
d
(
.
i
n
t
e
r
a
c
t
i
o
n
.
d
e
p
t
h
=
c
(
1
,
3
)
,
.
n
.
t
r
e
e
s
=
c
(
1
0
0
,
3
0
0
,

+
5
0
0
)
,
.
s
h
r
i
n
k
a
g
e
=
0
.
1
)

>
s
e
t
.
s
e
e
d
(
3
)

>
g
b
m
F
i
t
<
-
t
r
a
i
n
(
t
r
a
i
n
D
e
s
c
r
,
t
r
a
i
n
M
D
R
R
,
"
g
b
m
"
,
t
u
n
e
G
r
i
d
=
g
b
m
G
r
i
d
,
t
r
C
o
n
t
r
o
l
=
f
i
t
C
o
n
t
r
o
l
,

+
v
e
r
b
o
s
e
=
F
A
L
S
E
)

>
g
b
m
F
i
t

C
a
l
l
:

t
r
a
i
n
.
d
e
f
a
u
l
t
(
x
=
t
r
a
i
n
D
e
s
c
r
,
y
=
t
r
a
i
n
M
D
R
R
,
m
e
t
h
o
d
=
"
g
b
m
"
,

v
e
r
b
o
s
e
=
F
A
L
S
E
,
t
r
C
o
n
t
r
o
l
=
f
i
t
C
o
n
t
r
o
l
,
t
u
n
e
G
r
i
d
=
g
b
m
G
r
i
d
)

2
6
4
s
a
m
p
l
e
s

5
0
p
r
e
d
i
c
t
o
r
s

s
u
m
m
a
r
y
o
f
l
e
a
v
e
g
r
o
u
p
o
u
t
c
r
o
s
s
-
v
a
l
i
d
a
t
i
o
n
(
3
0
r
e
p
s
)
s
a
m
p
l
e
s
i
z
e
s
:

1
9
8
,
1
9
8
,
1
9
8
,
1
9
8
,
1
9
8
,
1
9
8
,
.
.
.

L
G
O
C
V
r
e
s
a
m
p
l
e
d
t
r
a
i
n
i
n
g
r
e
s
u
l
t
s
a
c
r
o
s
s
t
u
n
i
n
g
p
a
r
a
m
e
t
e
r
s
:

i
n
t
e
r
a
c
t
i
o
n
.
d
e
p
t
h

n
.
t
r
e
e
s

s
h
r
i
n
k
a
g
e

A
c
c
u
r
a
c
y

K
a
p
p
a

A
c
c
u
r
a
c
y
S
D

K
a
p
p
a
S
D

S
e
l
e
c
t
e
d

1
1
0
0

0
.
1

0
.
8
0
9

0
.
6
0
8

0
.
0
4
1
4

0
.
0
8
3
3

*
1

3
0
0

0
.
1

0
.
7
9
5

0
.
5
8
1

0
.
0
4
8
2

0
.
0
9
6
5

1
5
0
0

0
.
1

0
.
7
8
3

0
.
5
5
7

0
.
0
4
4
5

0
.
0
8
9
6

3
1
0
0

0
.
1

0
.
8
0
8

0
.
6
0
6

0
.
0
3
9
9

0
.
0
8
1
3

3
3
0
0

0
.
1

0
.
8
0
1

0
.
5
9
2

0
.
0
4
2
8

0
.
0
8
6
9

3
5
0
0

0
.
1

0
.
8
0
4

0
.
5
9
8

0
.
0
3
6
2

0
.
0
7
5
4

A
c
c
u
r
a
c
y
w
a
s
u
s
e
d
t
o
s
e
l
e
c
t
t
h
e
o
p
t
i
m
a
l
m
o
d
e
l
u
s
i
n
g
t
h
e
l
a
r
g
e
s
t
v
a
l
u
e
.

T
h
e
f
i
n
a
l
v
a
l
u
e
s
u
s
e
d
i
n
t
h
e
m
o
d
e
l
w
e
r
e
i
n
t
e
r
a
c
t
i
o
n
.
d
e
p
t
h
=
1
,
n
.
t
r
e
e
s
=
1
0
0
a
n
d
s
h
r
i
n
k
a
g
e
=
0
.
1
.

5 of 18

The caret Package

Some notes about the use of train:

• The function determines the type of problem (classification or regression) from the type of
the response given in the y argument.

• The . . . option can be used to pass parameters to the fitting function. For example, in random
forest models, you can specify the number of trees to be used in the call to train. In the
example above, the default trace for a gbm model was turned off using the verbose argument
to gbm.

• For regression models, the classical R2 statistic cannot be compared between models that
contain an intercept and models that do not. Also, some models do not have an intercept
only null model.

To approximate this statistic across different types of models, the square of the correlation
between the observed and predicted outcomes is used. This means that the R2 values produced
by train will not match the results of lm and other functions.

Also, the correlation estimate does not take into account the degrees of freedom in a model and
thus does not penalize models with more parameters. For some models (e.g random forests or
on–linear support vector machines) there is no clear sense of the degrees of freedom, so this
information cannot be used in R2 if we would like to compare different models.

• The nearest shrunken centroid model of Tibshirani et al (2003) is specified using method

= "pam". For this model, there must be at least two samples in each class. train will
ignore classes where there are less than two samples per class from every model fit during
bootstrapping or cross–validation (this model only).

• For recursive partitioning models, an initial model is fit to all of the training data to obtain
the possible values of the maximum depth of any node (maxdepth). The tuning grid is created
based on these values. If tuneLength is larger than the number of possible maxdepth values
determined by the initial model, the grid will be truncated to the maxdepth list.

The same is also true for nearest shrunken centroid models, where an initial model is fit to
find the range of possible threshold values, and MARS models (see the details below).

• For multivariate adaptive regression splines (MARS), the earth package is used with a model
type of mars or earth is requested. The tuning parameters used by train are degree and
nprune. The parameter nk is not automatically specified and, if not specified, the default in
the earth function is used.

For example, suppose a training set with 40 predictors is used with degree = 1 and nprune

= 20. An initial model with nk = 41 is fit and is pruned down to 20 terms. This number
includes the intercept and may include “singleton” terms instead of pairs.

6 of 18

http://projecteuclid.org/handle/euclid.ss/1056397488

The caret Package

Alternate model training schemes can be used by passing nk and/or pmethod to the earth

function.

Also, there may be cases where the message such as “specified ’nprune’ 29 is greater than
the number of available model terms 24, forcing ’nprune’ to 24” show up after the model fit.
This can occur since the earth function may not actually use the number of terms in the
initial model as specified by nk. This may be because the earth function removes terms with
linear dependencies and the forward pass counts as if terms were added in pairs (although
singleton terms may be used). By default, the train function fits and initial MARS model is
used to determine the number of possible terms in the training set to create the tuning grid.
Resampled data sets may produce slightly different models that do not have as many possible
values of nprune.

• For the glmboost and gamboost functions form the mboost package, an additional tuning
parameter, prune, is used by train. If prune = "yes", the number of trees is reduced based
on the AIC statistic. If "no", the number of trees is kept at the value specified by the mstop

parameter. See the mboost package vignette for more details about AIC pruning.

• For some models (pls, plsda, earth, rpart, gbm, gamboost, glmboost, blackboost, ctree,
pam, enet and lasso), the train function will fit a model that can be used to derive pre-
dictions for some sub-models. For example, for MARS (via the earth function), for a fixed
degree, a model with a maximum number of terms will be fit and the predictions of all of the
requested models with the same degree and smaller number of terms will be computed using
update.earth instead of fitting a new model. When the verboseIter option is used, a line
is printed for the “top–level” model (instead of each model in the tuning grid).

• There are print and plot methods. See Figures 1 and 2 for examples. This is also a function,
resampleHist, that will plot a histogram or density plot of the resampled performance esti-
mates for the optimal model. Figure 2 shows and example of this type of plot for the support
vector machine example.

• Using the first set of tuning parameters that are optimal (in the sense of accuracy or mean
squared error), train automatically fits a model with these parameters to the entire training
data set. That model object is accessible in the finalModel object within train. For example,
gbmFit$finalModel is the same object that would have been produced using a direct call to
the gbm function. The metric argument of the train function allows the user to control which
the optimality criterion is used. For example, in problems where there are a low percentage
of samples in one class, using metric = "Kappa" can improve the model selection procedure.

The function trainControl, generates parameters that control how models are built with pos-
sible values:

• method: The resampling method: boot, cv, LOOCV, LGOCV and oob. The last value, out–of–
bag estimates, can only be used by random forest, bagged trees, bagged earth, bagged flexible

7 of 18

The caret Package

discriminant analysis, or conditional tree forest models. GBM models are not included (the gbm
package maintainer has indicated that it would not be a good idea to choose tuning parameter
values based on the model OOB error estimates with boosted trees). Also, for leave–one–out
cross–validation, no uncertainty estimates are given for the resampled performance measures.

• number: Either the number of folds or number of resampling iterations

• verboseIter: A logical for printing a training log.

• returnData: A logical for saving the data

• p: For leave-group out cross-validation: the training percentage

• index: a list with elements for each resampling iteration. Each list element is the sample rows
used for training at that iteration. When these values are not specified, caret will generate
them.

• selectionFunction: In the previous examples, train selected the final model using classi-
fication accuracy. By default, the function chooses the model with the largest performance
value (or smallest, for mean squared error in regression models). Other schemes for selecting
model can be used. Breiman et al (1984) suggested the “one standard error rule” for simple
tree–based models. In this case, the model with the best performance value is identified and,
using resampling, we can estimate the standard error of performance. The final model used
was the simplest model within one standard error of the (empirically) best model. With sim-
ple trees this makes sense, since these models will start to overfit as they become more and
more specific to the training data.

train allows the user to specify alternate rules for selecting the final model. The argument
selectionFunction can be used to supply a function to algorithmically determine the final
model. There are three existing functions in the package: best is chooses the largest/smallest
value, oneSE attempts to capture the spirit of Breiman et al (1984) and tolerance selects
the least complex model within some percent tolerance of the best value. See ?best for more
details.

The main issue with these functions is related to ordering the models form simplest to complex.
In some cases, this is easy (e.g. simple trees, partial least squares), but in most cases, the
ordering of models is subjective. For example, is a boosted tree model using 100 iterations and
a tree depth of 2 more complex than one with 50 iterations and a depth of 8? The package
makes some choices regarding the orderings. In the case of boosted trees, the package assumes
that increasing the number of iterations adds complexity at a faster rate than increasing the
tree depth, so models are ordered on the number of iterations then ordered with depth. See
?best for more examples for specific models..

In the previous examples, train selected the final model using classification accuracy. By default,
the function chooses the model with the largest performance value (or smallest, for mean squared

8 of 18

The caret Package

Table 1: Models used in train
Model method Value Package Tuning Parameters
Recursive partitioning rpart rpart maxdepth

ctree party mincriterion

Boosted Trees gbm gbm interaction.depth,
n.trees, shrinkage

blackboost gbm maxdepth, mstop
ada ada maxdepth, iter, nu

Other Boosted Models glmboost mboost mstop

gamboost mboost mstop

Random forests rf randomForest mtry

cforest party mtry

Bagged Trees treebag ipred None
Neural networks nnet nnet decay, size
Partial least squares pls pls, caret ncomp

Support Vector Machines svmradial kernlab sigma, C
(RBF kernel)

Support Vector Machines svmpoly kernlab scale, degree, C
(polynomial kernel)

Linear least squares lm stats None
Multivariate adaptive earth, mars earth degree, nprune

regression splines
Bagged MARS bagEarth caret, earth degree, nprune
Elastic Net enet elasticnet lambda, fraction
The Lasso lasso elasticnet fraction

Linear discriminant analysis lda MASS None
Stepwise Diagonal sddaLDA, sddaQDA SDDA None

Discriminant Analysis
Logistic/multinomial multinom nnet decay

regression
Regularized discriminant rda klaR lambda, gamma

analysis
Flexible discriminant fda mda, earth degree, nprune

analysis (MARS basis)
Bagged FDA bagFDA caret, earth degree, nprune
k nearest neighbors knn3 caret k

Nearest shrunken centroids pam pamr threshold

Naive Bayes nb klaR usekernel

Generalized partial gpls gpls K.prov

least squares
Learned vector quantization lvq class k

9 of 18

The caret Package

Cost

LG
O

C
V

 r
es

am
pl

ed
 tr

ai
ni

ng
 a

cc
ur

ac
y

0.60

0.65

0.70

0.75

0.80

0 20 40 60 80 100

●

●

●

●

Cost (transformed)

LG
O

C
V

 r
es

am
pl

ed
 tr

ai
ni

ng
 a

cc
ur

ac
y

0.60

0.65

0.70

0.75

0.80

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

●

●

●

●

#Trees

LG
O

C
V

 r
es

am
pl

ed
 tr

ai
ni

ng
 a

cc
ur

ac
y

0.785

0.790

0.795

0.800

0.805

100 200 300 400 500

●

●

●

Interaction Depth
1 3●

#Trees

LG
O

C
V

 r
es

am
pl

ed
 tr

ai
ni

ng
 k

ap
pa

0.56

0.57

0.58

0.59

0.60

100 200 300 400 500

●

●

●

Interaction Depth
1 3●

Figure 1: Examples of output from plot.tain. top left a plot produced using plot(svmFit)

showing the relationship between SVM cost parameter and the resampled classification accuracy.
Although this model has two tuning parameters, a constant value for the parameter sigma was used.
top right the same plot but the xTrans argument was used to log–transform the cost parameter.
bottom left a plot produced using plot(gbmFit) showing the relationship between the number of
boosting iterations, the interaction depth and the resampled classification accuracy bottom right
the same plot, but the Kappa statistic is plotted using plot(gbmFit metric = "Kappa")

10 of 18

The caret Package

LGOCV resampled training accuracy

#Trees

In
te

ra
ct

io
n

D
ep

th

1

3

100 300 500

0.785

0.790

0.795

0.800

0.805

0.810
D

en
si

ty

0
2

4
6

8

0.7 0.8 0.9 1.0

● ●
●● ●● ●●● ●● ● ●● ● ●● ●● ● ● ●● ●● ●● ●● ●

Accuracy

0
1

2
3

0.2 0.4 0.6 0.8 1.0

● ●●● ●● ●●● ●● ● ●● ● ●● ●● ● ●●● ●●●● ●● ●

Kappa

Figure 2: More examples. top: A plot produced using plot(gbmFit metric = "Kappa", plot-

Type = "level") showing the relationship (using a levelplot) between the number of boosting
iterations, the interaction depth and the resampled estimate of the Kappa statistic. bottom: A plot
of the resampling estimates of performance from the optimal support vector machine model pro-
duced using resampleHist(svmFit, type = "density", layout = c(2, 1), adjust = 1.5).

11 of 18

The caret Package

error in regression models). Other schemes for selecting model can be used. Breiman et al (1984)
suggested the “one standard error rule” for simple tree–based models. In this case, the model with
the best performance value is identified and, using resampling, we can estimate the standard error
of performance. The final model used was the simplest model within one standard error of the
(empirically) best model. With simple trees this makes sense, since these models will start to
overfit as they become more and more specific to the training data.

train allows the user to specify alternate rules for selecting the final model. The trainControl

function has an argument, selectionFunction that can be used to supply a function to algorithmi-
cally determine the final model. There are three existing functions in the package: best is chooses
the largest/smallest value, oneSE attempts to capture the spirit of Breiman et al (1984) and tol-

erance selects the least complex model within some percent tolerance of the best value. See ?best

for more details.

The main issue with these functions is related to ordering the models form simplest to complex.
In some cases, this is easy (e.g. simple trees, partial least squares), but in most cases, the ordering
of models is subjective. For example, is a boosted tree model using 100 iterations and a tree depth
of 2 more complex than one with 50 iterations and a depth of 8? The package makes some choices
regarding the orderings. In the case of boosted trees, the package assumes that increasing the
number of iterations adds complexity at a faster rate than increasing the tree depth, so models are
ordered on the number of iterations then ordered with depth. See ?best for more examples for
specific models..

2 Extracting Predictions and Class Probabilities

As previously mentioned, objects produced by the train function contain the “optimized” model in
the finalModel sub–object. Predictions can be made from these objects as usual. Alternatively,
predictions can be extracted from a series of model using the function extractPrediction.

For example, we can load the Boston Housing data:

> library(mlbench)

> data(BostonHousing)

> bhDesignMatrix <- model.matrix(medv ~ . - 1, BostonHousing)

split the data into random training/test groups:

> set.seed(4)

> inTrain <- createDataPartition(BostonHousing$medv, p = 0.8, list = FALSE,

+ times = 1)

> trainBH <- bhDesignMatrix[inTrain,]

> testBH <- bhDesignMatrix[-inTrain,]

12 of 18

The caret Package

> trainMedv <- BostonHousing$medv[inTrain]

> testMedv <- BostonHousing$medv[-inTrain]

fit a regression tree, random forest and multivariate adaptive regression spline model (none of these
models require centering and scaling):

> rpartFit <- train(trainBH, trainMedv, "rpart", tuneLength = 9,

+ trControl = trainControl(verboseIter = FALSE))

> marsFit <- train(trainBH, trainMedv, "mars", trControl = trainControl(verboseIter = FALSE))

> rfFit <- train(trainBH, trainMedv, "rf", trControl = trainControl(verboseIter = FALSE,

+ method = "oob"))

obtain predictions for the test samples for both models:

> bhPredictions <- extractPrediction(list(rpartFit, marsFit, rfFit),

+ testX = testBH, testY = testMedv)

> bhTestPred <- bhPredictions[bhPredictions$dataType != "Resampled",

+]

> str(bhPredictions)

'data.frame': 1518 obs. of 4 variables:
$ obs : num 16.5 15 13.6 14.5 13.9 16.6 14.8 12.7 13.2 13.1 ...
$ pred : num 18.1 18.1 18.1 18.1 18.1 ...
$ model : Factor w/ 3 levels "mars","rf","rpart": 3 3 3 3 3 3 3 3 3 3 ...
$ dataType: Factor w/ 2 levels "Test","Training": 2 2 2 2 2 2 2 2 2 2 ...

and evaluate the test set:

> by(bhTestPred, list(model = bhTestPred$model), function(x) postResample(x$pred,

+ x$obs))

model: mars
RMSE Rsquared

3.5881664 0.8479199
--
model: rf

RMSE Rsquared
2.071966 0.954025
--
model: rpart

RMSE Rsquared
4.0730971 0.8046558

13 of 18

The caret Package

The output of extractPrediction is a data frame with columns:

• obs, the observed data

• pred, the predicted values from each model

• model, a character string (“rpart”, “pls” etc.)

• dataType, a character string for the type of data:

– “Training” data are the predictions on the training data from the optimal model,

– “Test” denote the predictions on the test set (if one is specified),

– “Unknown” data are the predictions on the unknown samples (if specified). Only the
predictions are produced for these data. Also, if the quick prediction of the unknowns is
the primary goal, the argument unkOnly can be used to only process the unknowns.

Some classification models can produce probabilities for each class. The function extractProbs

can be used to get these probabilities from one or more models. The results are very similar to what
is produced by extractPrediction but with columns for each class. The column pred is still the
predicted class from the model.

3 Evaluating Models

A function, postResample, can be used obtain the same performance measures as generated by
train.

caret also contains several functions that can be used to describe the performance of classification
models. The functions sensitivity, specificity, posPredValue and negPredValue can be used
to characterize performance where there are two classes. By default, the first level of the outcome
factor is used to define the “positive” result, although this can be changed.

The function confusionMatrix can also be used to summarize the results of a classification
model:

> mbrrPredictions <- extractPrediction(list(svmFit), testX = testDescr,

+ testY = testMDRR)

> mbrrPredictions <- mbrrPredictions[mbrrPredictions$dataType ==

+ "Test",]

> sensitivity(mbrrPredictions$pred, mbrrPredictions$obs)

[1] 0.7933333

14 of 18

The caret Package

> confusionMatrix(mbrrPredictions$pred, mbrrPredictions$obs)

Confusion Matrix and Statistics

Reference
Prediction Active Inactive
Active 119 27
Inactive 31 87

Accuracy : 0.7803
95% CI : (0.7255, 0.8287)

No Information Rate : 0.5682
P-Value [Acc > NIR] : 4.063e-13

Kappa : 0.5542

Sensitivity : 0.7933
Specificity : 0.7632

Pos Pred Value : 0.8151
Neg Pred Value : 0.7373

The “no–information rate” is the largest proportion of the observed classes (there were more
actives than inactives in this test set). A hypothesis test is also computed to evaluate whether the
overall accuarcy rate is greater than the rate of the largest class.

When there are three or more classes, confusionMatrix will show the confusion matrix and a
set of “one–versus–all” results. For example, in a three class problem, the sensitivity of the first
class is calculated against all the samples in the second and third classes (and so on).

ROC Curves

The function roc2 can be used to calculate the sensitivity and specificity used in an ROC plot.
For example, using the previous support vector machine fit to the MBRR data, the predicted class
probabilities on the test set can used to create an ROC curve. The area under the ROC curve, via
the trapezoidal rule, is calculated using the aucRoc function.

> mbrrProbs <- extractProb(list(svmFit), testX = testDescr, testY = testMDRR)

> mbrrProbs <- mbrrProbs[mbrrProbs$dataType == "Test",]

> mbrrROC <- roc(mbrrProbs$Active, mbrrProbs$obs)

> aucRoc(mbrrROC)

2I’m looking into using the ROCR package for ROC curves, so don’t get too attached to these functions

15 of 18

The caret Package

[1] 0.8749415

See Figure 4 for an example.

Plotting Predictions and Probabilities

Two functions, plotObsVsPred and plotClassProbs, are interfaces to lattice to plot model results.
For regression, plotObsVsPred plots the observed versus predicted values by model type and data
(e.g. test). See Figures 5 and 4 for examples. For classification data, plotObsVsPred plots the
accuracy rates for models/data in a dotplot.

To plot class probabilities, plotClassProbs will display the results by model, data and true class
(for example, Figure 3).

4 References

Breiman, Friedman, Olshen, and Stone. (1984) Classification and Regression Trees. Wadsworth.

Svetnik, V., Wang, T., Tong, C., Liaw, A., Sheridan, R. P. and Song, Q. (2005), “Boosting: An
ensemble learning tool for compound classification and QSAR modeling,” Journal of Chemical
Information and Modeling, 45, 786 –799.

Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G. (2003), “Class prediction by nearest shrunken
centroids, with applications to DNA microarrays,” Statistical Science, 18, 104–117.

16 of 18

The caret Package

Probability of Active

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

25

30

0.0 0.2 0.4 0.6 0.8 1.0

Data: Active

0.0 0.2 0.4 0.6 0.8 1.0

Data: Inactive

Figure 3: The predicted class probabilities from a support vector machine fit for the MBRR test
set. This plot was created using plotClassProbs(mbrrProbs).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

Figure 4: An ROC curve from the predicted class probabilities from a support vector machine fit
for the MBRR test set.

17 of 18

The caret Package

Predicted

O
bs

er
ve

d

10

20

30

40

50

10 20 30 40 50

●

●
●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●●

●

● ●●

●
●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●
●

● ●
● ●

●
●

●●

mars
Test

●

●
●

●● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●●
●

●●●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●●●●

●
●

●●

rf
Test

10 20 30 40 50

●

●
●

●● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●●
●

●●●

●
●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●
●

●●●●

●
●

●●

rpart
Test

●
●

●
●●

●
●

●● ●●

●

●
●●

●
●

● ●
●

● ● ●
●
●

●

●●●●

●●
●

● ●●

● ● ●

●
●

●

●

●
●

●

●

●
● ●●

●
●●

●

●

●●

●

●

●
●

●●●
● ●

●●
●

●

● ●
●

●●
●

●

●
●

●●

●

●

●

●

●
●●

●
●

●●
●●

●
●

●

●
●

●

●

●●
●

●
●

● ●
●
●

●
●
●
●●
●●● ●

● ●●
●

●●●
●●

●●●●
●●●●● ●●

●
●

●
●

●●

●
●●

●

●●●●
●

●
●

●● ●

●
●

● ●● ●
●● ●
●●
●

●

●
●

●
●
●

●●
●●

●●●
●

● ●●

●

●
● ●

●● ●●● ● ●
●

●
●●

●●

●

●
●●

●● ●
●

●
●

●
●

●

●

●
●●

●

●
●
●
●

● ●
●

●

●

●●
●●●●
●

●
● ●

●● ●
●●
●●

●
●

●●
● ●

●
●

●

●●●●
●●

●●● ● ●

●
●

●
●
● ●

●

● ●
●●●●

●

● ● ●
●●

●
●

●

●●
●●

●
●● ●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●

●
●

● ●●

●

●

●
●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

mars
Training

10 20 30 40 50

●
●

●
●●

●
●

●●●●

●

●
●●

●
●
●●
●
●● ●

●
●

●

●● ●●

●●
●

●●●

●●●

●
●

●

●

●
●

●

●

●
●●●

●
●●
●

●

●●

●

●

●
●

●●●
●●

●●
●

●

●●
●

●●
●

●

●
●

●●

●

●

●

●

●
●●
●
●

●●
●●

●
●

●

●
●

●

●

●●
●

●
●

●●
●
●

●
●
●
●●

●●●
●

●●●
●
●●
●
●●

●●●●
●●●●●●●

●
●
●
●
●●

●
●●
●

●●●●
●

●
●

●●●

●
●

●●●●
●●

●
●●

●

●

●
●

●
●

●
●●

●●
●●●
●

●●●

●

●
●●

●●●●●●●
●

●
●●

●●

●

●
●●
●●●

●
●

●
●
●

●

●

●
●●

●

●
●

●
●

●●
●

●

●

●●
●●●●

●

●
●●
●●

●
●●

●●
●
●

●●
●●
●

●
●

●●●●
●●
●●●●●

●
●

●
●

●●

●

● ●
●●●●
●

●●●
●●

●
●
●

●●
●●

●
●● ●

●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●

●
●

● ●●

●

●

●
●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●●

●

rf
Training

10

20

30

40

50

●
●
●
●●

●
●
●●●●

●

●
●●

●
●
●●
●
●● ●
●
●

●

●●●●

●●
●

● ●●

●●
●

●
●

●

●

●
●

●

●

●
● ●●

●
●●
●

●

●●

●

●

●
●

●●●
●●

●●
●

●

●●
●

●●
●

●

●
●
●●

●

●

●

●

●
●●
●
●
●●
●●
●

●
●

●
●

●

●

● ●
●

●
●

●●
●
●

●
●
●
●●
●● ●●●●●
●
●●
●
●●
●●●●
●●●●● ●●

●
●

●
●
●●

●
●●

●

● ●●●
●

●
●

●● ●

●
●

●●● ●
●● ●
●●
●

●

●
●
●
●
●
●●
●●
●●●
●

●●●

●

●
●●

●●●●●● ●
●
●
●●
●●

●

●
● ●
● ●●
●

●
●
●
●

●

●

●
●●

●

●
●
●

●
●●

●
●

●

●●
●●●●

●

●
●●
●●
●
●●

●●
●
●

●●
● ●
●

●
●

●● ●●
●●

●●● ● ●

●
●
●

●
●●

●

● ●
●● ●●

●

● ●●
●●
●
●

●

●●
●●
●
●● ●

●

●

●
● ●

●
●

●

●

●
●

●

●

●
●

●

●
●

● ●●

●

●

●
●

●

●

●●●

● ●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●●

●

rpart
Training

Figure 5: The results of using plotObsVsPred to show plots of the observed median home price
against the predictions from two models. The plot shows the training and test sets in the same
Lattice plot

18 of 18

	Model Training and Parameter Tuning
	Extracting Predictions and Class Probabilities
	Evaluating Models
	References

