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Some Useful R Pointers 
 

P. Rossi  1/1/05 
Revised  4/21/05 
 
Note: these notes assume a Windows environment.  All R commands and objects are the 
same under Windows and LINUX but the install procedure and GUI are different. 
 
Obtaining R 
 
Visit http://cran.r-project.org/  or google “R language.”   
 
CRAN is a network of mirror sites that allow you to download precompiled binary versions 
of R or source.   
 
 Look under “Precompiled Binary Distributions” and click on Windows.  Click on base on 
the next page and download the rwXXXX.exe file (XXXX=2010 at present) – right click 
and “save target as.”  Doubleclick the file name under Windows Explorer and R will install 
itself in the usual fashion for Windows software. 
 
You may also obtain the optimized BLAS version for Pentium 4 chips by visiting the 
contributed link and click on the ATLAS directory.  Simply download the RBLAS.dll file 
for your chip (invariably Pentium 4) and replace the RBLAS.dll file in the R/bin directory 
(this will be something like  C:/Program Files/R/rwXXXX/bin).   My experience is that this 
will double the speed of many common matrix operations. 
 
Customizing the R Shortcut 
 
The standard R install will create a desktop shortcut to invoke R.  This will start up R 
pointing to the rwXXXX directory.  It is more useful to modify the shortcut to start up with 
R pointing to a directory which is “closer” to the directories you plan on working in.  To 
modify the short-cut, right click on it and choose “properties”, change the “Startin: ” value 
to any valid directory on your machine.  You can also copy the short-cut and make a short-
cut for each of your major “projects.”  
 
If you have more than 500 MB of memory (I highly recommend min 1 GB memory), you 
may also want to add the option to increase the memory available on the short cut.  This is 
accomplished by adding a parameter to the command line which invokes R.  Again, right 
click the short-cut and modify the command in the target line.  I’ve set mine to: 
 
"C:\Program Files\R\rw2010\bin\Rgui.exe" --max-mem-size=1900Mb 
Note the closed-quote after Rgui.exe BEFORE the specification of the –max-mem-size 
parm. 
 
You may also copy this shortcut to your “taskbar” – don’t forget to “unlock” it first! 
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Invoking R and Using the R GUI 
 
Click the short-cut to invoke R.  Something like the screen shot below will appear. 

 

Console Window: 
this is where you 
type commands 

File Menu allows you 
to change directories, 
“source” or read in 
files of commands to 
execute. 

Packages Menu allows you to 
select contributed packages 
to download and install 
automatically 

Help Menu allows you 
access to all of the R 
manuals in PDF or 
HTML form. 
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If you create graphics, a separate graphics window will appear within the RGUI main 
window.  For example, if we create a histogram of 1000, normal random numbers by using 
the hist command (more below in graphics section).  A window will automatically open 
with the plot. (It is possible to create multiple graphics windows and “paint” different 
graphics in each – see commands dev.cur(), dev.list(), dev.set() ) 
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The contents of this graphics window can be “clipped” into the clipboard for pasting into 
your favorite application by selecting the graph window and using Ctl-W (not Ctl-C) and the 
paste or Ctl-V to paste into the app. 
 
Obtaining Help in R 
 
There are a number of different ways to obtain help in R.  The “Help” menu allows you to 
access the manuals in PDF or HTML form as well as to search for keywords. Note: the help 
menu does not appear in the R GUI unless the console window is “active.”  To make any 
window active, click on the “button bar” or the blue bar on the top of the window. 
 
You can also use the help and help.search commands in the R console windows.  For 
example, we just used two commands, hist and rnorm.  help(rnorm) produces a 
window with the following content (a short cut is the command ?rnorm): 
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Each R help window has the same sections:  
 Description 
 Usage 
 Arguments 
 Details 
 Value 
 References 
 See Also 
 Examples   (note this is “cut-off” in the screen shot above) 
 
Usage/Arguments/Examples are the most useful. 
 
If you are not sure what command you need, help.search(“key word”) can be very 
useful.  
 
Program Editing and R 
 
For all but the simplest tasks, it is useful to edit a file with R commands in it.  R syntax is 
sufficiently complex that it is difficult to write directly into the command window without 
making numerous syntax errors.  
 
Open a text editor (VIM – improved VI is recommended; this is shareware, 
http://www.vim.org/); type in R commands and save the file.  You can either cut the 
commands from the editor window and paste into the R console window to run or use the R 
command, source – also available from the File menu in the Windows GUI.  
 
Customizing the R session 
 
When R is invoked, R looks for a file .Rprofile in the directory that R is pointing at.  If 
this file is not found, R then looks for the file in the directory specified by the environmental 
variable HOME or R_USER.   To set HOME or R_USER environmental variable, right 
click on My Computer icon on desktop, select properties, selected advanced tab, 
environment variables and add new variables to the user.   
 
Typically, the .Rprofile file is used to source various files which contain customized 
function definitions of use either for a particular project or for a particular user. You can 
also use it to load an installed package using the library command, as in 
library(bayesm). 
 
For more information on R startup, see help(Startup).  
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An Introductory Example:  Reading in Data and Dataframes 
 
R language is a functionally-oriented language.  All commands are functions which act upon 
objects of various types.  All commands produce objects as well.   
 
The basic R command is of the form: object=function(object) 
 
Functions can be composed to produce powerful (but sometimes hard-to-read) expressions. 
Users can define their own functions.  Writing these user functions constitutes R-
programming. 
 
Let’s start by reading in some data.   Suppose we have a file in a spreadsheet that with some 
regression data on several different units.   The file has a UNIT variable to identify which 
unit the data comes from, a dependent variable Y, and two independent variables X1, X2.   
 
UNIT Y X1 X2 
A 1 0.23815 0.4373
A 2 0.55508 0.47938
A 3 3.03399 -2.17571
A 4 -1.49488 1.66929
B 10 -1.74019 0.35368
B 9 1.40533 -1.2612
B 8 0.15628 -0.27751
B 7 -0.93869 -0.0441
B 6 -3.06566 0.14486
 
 
We write this data out of Excel by saving it as a text (tab-delimited file), data.txt (use the 
save as option on the file menu and choose text file in the file type box). Note: there is no 
simple, direct way to read .XLS files in R1.   
 
We can read this file into R using the READ.TABLE command. 
 
> df=read.table("data.txt",header=TRUE) 
> df 
  UNIT  Y       X1       X2 
1    A  1  0.23815  0.43730 
2    A  2  0.55508  0.47938 
3    A  3  3.03399 -2.17571 
4    A  4 -1.49488  1.66929 
5    B 10 -1.74019  0.35368 
6    B  9  1.40533 -1.26120 
7    B  8  0.15628 -0.27751 
8    B  7 -0.93869 -0.04410 
9    B  6 -3.06566  0.14486 
 

                                                 
1 Another option is to select a portion of a worksheet in Excel, copy this into the clipboard and use the 
command, df=read.table(file=”clipboard”,header=TRUE). 
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The read.table function has two arguments: the name of the file, and the argument 
“header.”  There are many other arguments but they are optional and often have defaults.  
The default for the header argument is the value FALSE.    
 
Using the argument, header=TRUE, tells the read.table function to expect that the first line 
of the file will contain (delimited by spaces or tabs) the names of each variable.   
 
TRUE and FALSE are examples of reserved values in R indicating a logical switch for true 
or false.  Another useful reserved value is NULL which is often used to create an object with 
nothing in it. 
 
The command df=read.table(…) assigns the output of the read.table function to the R 
object named “df.”  
 
df is a member of a class or type of object called a data frame.  A “data frame” is preferred 
by R as the format for datasets.  A data frame contains a set of observations on variables 
with the same number of observations in each variable.   In this example, each of the 
variables, Y, X1, and X2,  is of type numeric (R does not distinguish between integers and 
floating point numbers), while the variable UNIT is character. 
 
There are two reasons to store your data as a data frame: 1. most R statistical functions 
require a data frame and 2. the data frame object allows the user to access the data either via 
the variables names or by viewing the dataframe as a two-dimensional array. 
 
> df$Y 
[1]  1  2  3  4 10  9  8  7  6 
> mode(df$Y) 
[1] "numeric" 
> df[,2] 
[1]  1  2  3  4 10  9  8  7  6 
 
We can refer to the Y variable in df by using the df$XXX notation (where XXX is the name 
of the variable).  The “mode” command confirms that this variable is, indeed, numeric. 
 
We can also access the Y variable by using notation in R for subsetting a portion of an array. 
 
The notation df[,2]  means the values of the 2nd column of df.   Below we will explore the 
many ways we can subset an array or matrix. 
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Using Built-In Functions:  Running a regression 
 
Let’s now use the built-in linear model function in R to run a regression of Y on X1 and X2, 
pooled across both units A and B. 
 
> lmout=lm(Y ~ X1 + X2, data=df) 
> names(lmout) 
 [1] "coefficients"  "residuals"     "effects"       "rank"          
 [5] "fitted.values" "assign"        "qr"            "df.residual"   
 [9] "xlevels"       "call"          "terms"         "model"         
> print(lmout) 
 
Call: 
lm(formula = Y ~ X1 + X2, data = df) 
 
Coefficients: 
(Intercept)           X1           X2   
      5.084       -1.485       -2.221   
> summary(lmout) 
 
Call: 
lm(formula = Y ~ X1 + X2, data = df) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.3149 -2.4101  0.4034  2.5319  3.2022  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   5.0839     1.0194   4.987  0.00248 ** 
X1           -1.4851     0.8328  -1.783  0.12481    
X2           -2.2209     1.3820  -1.607  0.15919    
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 2.96 on 6 degrees of freedom 
Multiple R-Squared: 0.3607,     Adjusted R-squared: 0.1476  
F-statistic: 1.693 on 2 and 6 DF,  p-value: 0.2612 
 
 
lm is the function in the package (stats) which fits linear models.  Note that the regression is 
specified via a “formula”  that tells lm which is the dependent and independent variables.  
 
We assign the output from the lm function to the object, lmout.   lmout is a special type 
of object called a “list.”  A list is simply an ordered collection of objects of any type.    
 
The names command will list the names of the elements of the list. We can access any 
element of the list by using the $ notation. 
 
> lmout$c 
(Intercept)          X1          X2  
   5.083871   -1.485084   -2.220859   
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Note: that we only need to specify enough of the name of the list component to uniquely 
identify it,  e.g.  lmout$c is the same as lmout$coefficients. 
 
We can “print” the object lmout and get a brief summary of it’s contents.   Print is a 
generic command which uses a different “print method” for each type of object.   Print 
recognizes that lmout is a list of type lm and uses a specific routine to printout the contents 
of the list. 
 
A more useful summary of contents of lmout can be obtained with the summary 
command. 
 
Inspecting objects and the R workspace 
 
When you start up R, R looks for a file .Rdata in the directory in which R is started from 
(you can also double-click the file to start R).  This file contains a copy of the R “workspace” 
which is a list of R objects created by the user.   For example we just created two R objects 
in the example above:  df (the data frame) and lmout, the lm output object. 
 
To list all objects in the current workspace, use the command ls()2.  
 
> ls() 
[1] "df"    "lmout" 
 
This doesn’t tell us too much about the objects.  If you just type the object name at the 
command prompt and return, then you will invoke the default print method for this type of 
object as we saw above in the data frame example. 
 
As useful command is the structure (str for short) command. 
 
> str(df) 
`data.frame':   9 obs. of  4 variables: 
 $ UNIT: Factor w/ 2 levels "A","B": 1 1 1 1 2 2 2 2 2 
 $ Y   : int  1 2 3 4 10 9 8 7 6 
 $ X1  : num   0.238  0.555  3.034 -1.495 -1.740 ... 
 $ X2  : num   0.437  0.479 -2.176  1.669  0.354 ... 
 
 
Note that the str command tells us a bit about the variables in the data frame.  The UNIT 
variable is of type “factor” with two levels.   Type “factor” is used by many of the built-in R 
functions and is way to store qualitative variables.  A “factor” is usually an identifier of some 
sort of classification of the observation, e.g. which “UNIT” or which state or which store … 
levels() gives a list of the unique values of this variable.  as.factor can be used to 
convert a standard numeric or character vector into a factor. 
 

                                                 
2 Note you can specify regular expressions as an argument to ls so that you can specify only object whose 
names match these patterns,  e.g. to list all objects whose name begins with a, ls(pat=”^a”), or all objects 
whose name includes the string “gibbs,” ls(pat=”gibbs”). See ?regex for more. 
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To remove objects, use the rm() function.  To remove a list of objects, use ls to create the 
list as follows: 
 
rm(list=ls(pat=”*”)) 
 
This will remove all objects (except the ones with names starting with .), so be careful! 
 
The R workspace exists only in memory.  You must either save the workspace when you 
exist (you will be prompted for this) or you must recreate the objects again. 
 
Vectors, Matrices and Lists  
 
From our point of view, the power of R comes from statistical programming at a relatively 
high level.  To do so, we will need to organize data as vectors, arrays and lists. 
 
Vectors are ordered collections of the same type of object.  If we access one variable from 
our data frame above, it will be a vector.  
 
> df$X1 
[1]  0.23815  0.55508  3.03399 -1.49488 -1.74019  1.40533  0.15628 -
0.93869 -3.06566 
> length(df$X1) 
[1] 9 
> is.vector(df$X1) 
[1] TRUE 
 
The function is.vector returns a logical flag as to whether or not the input argument is a 
vector. 
 
We can also create a vector with the c() command. 
 
> vec=c(1,2,3,4,5,6) 
> vec 
[1] 1 2 3 4 5 6 
> is.vector(vec) 
[1] TRUE 
 
A matrix is a two dimensional array. 
 
Let’s create a matrix from a vector. 
 
> mat=matrix(c(1,2,3,4,5,6),ncol=2) 
> mat 
     [,1] [,2] 
[1,]    1    4 
[2,]    2    5 
[3,]    3    6 
 
matrix() is a command to create a matrix from a vector.  ncol is a option to create the 
matrix with a specified number of columns (see also nrow).  Note that the matrix is created 
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column by column from the input vector (first subscripts varies the fastest).  We can also 
create a matrix row by row. 
 
> mat=matrix(c(1,2,3,4,5,6),byrow=TRUE,ncol=2) 
> mat 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 
 
Matrices are simply vectors with the appropriate “dim” attribute (objects in R have attributes 
or other objects attached to them).  We can also create the matrices by changing the dim 
attribute. 
 
> mat=c(1:6) 
> dim(mat)=c(2,3) 
> mat 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 
We can also convert a data frame into a matrix. 
 
> dfmat=as.matrix(df) 
> dfmat 
  UNIT Y    X1         X2         
1 "A"  " 1" " 0.23815" " 0.43730" 
2 "A"  " 2" " 0.55508" " 0.47938" 
3 "A"  " 3" " 3.03399" "-2.17571" 
4 "A"  " 4" "-1.49488" " 1.66929" 
5 "B"  "10" "-1.74019" " 0.35368" 
6 "B"  " 9" " 1.40533" "-1.26120" 
7 "B"  " 8" " 0.15628" "-0.27751" 
8 "B"  " 7" "-0.93869" "-0.04410" 
9 "B"  " 6" "-3.06566" " 0.14486" 
> dim(dfmat) 
[1] 9 4 
 
Note that all of the values of the results matrix are character as one of the variables in the 
data frame (UNIT) is character-valued. 
 
We can also create matrices from other matrices and vectors using the cbind (column bind) 
and rbind (row bind) commands. 
 
> mat1 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 
> mat2 
     [,1] [,2] 
[1,]    7   10 
[2,]    8   11 
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[3,]    9   12 
> cbind(mat1,mat2) 
     [,1] [,2] [,3] [,4] 
[1,]    1    2    7   10 
[2,]    3    4    8   11 
[3,]    5    6    9   12 
> rbind(mat1,mat2) 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 
[4,]    7   10 
[5,]    8   11 
[6,]    9   12 
> rbind(mat1,c(99,99)) 
     [,1] [,2] 
[1,]    1    2 
[2,]    3    4 
[3,]    5    6 
[4,]   99   99 
 
R supports multi-dimensional arrays as well.  Below is an example of creating a three 
dimensional array from a vector. 
 
> ar=array(c(1,2,3,4,5,6),dim=c(3,2,2)) 
> ar 
, , 1 
 
     [,1] [,2] 
[1,]    1    4 
[2,]    2    5 
[3,]    3    6 
 
, , 2 
 
     [,1] [,2] 
[1,]    1    4 
[2,]    2    5 
[3,]    3    6 
 
 
Again, the array is created by using vector for the first dimension, then the second, and then 
third.  A 3 x 2 x 2 array as 12 elements not the six provided as an argument.  R will repeat 
the input vector as necessary until the required number of elements are obtained. 
 
A list is an ordered collection of objects of any type.  It is the most flexible object in R that 
can be indexed.  As we have seen in the lm function output, lists can also have names. 
 
> l=list(1,"a",c(4,4),list(FALSE,2)) 
> l 
[[1]] 
[1] 1 
 
[[2]] 
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[1] "a" 
 
[[3]] 
[1] 4 4 
 
[[4]] 
[[4]][[1]] 
[1] FALSE 
 
[[4]][[2]] 
[1] 2 
 
> l=list(num=1,char="a",vec=c(4,4),list=list(FALSE,2)) 
> l$num 
[1] 1 
> l$list 
[[1]] 
[1] FALSE 
 
[[2]] 
[1] 2 
 
 
In the example, we created a list of a numeric value, character, vector and another list. We 
also can name each component and access them with the $ notation. 
 
Accessing Elements and Subsetting Vectors, Arrays, and Lists 
 
To access an element of a vector, simply enclose index of that element in square brackets. 
 
> vec=c(1,2,3,2,5) 
> vec[3] 
[1] 3 
 
To access a sub-set of elements, there are two approaches: 1. specify a vector of integers of 
the required indices, 2. specify a logical variable which is TRUE for the desired indices. 
 
> index=c(3:5) 
> index 
[1] 3 4 5 
> vec[index] 
[1] 3 2 5 
> index=vec==2 
> index 
[1] FALSE  TRUE FALSE  TRUE FALSE 
> vec[index] 
[1] 2 2 
> vec[vec!=2] 
[1] 1 3 5 
 
c(3:5)  creates a vector from the “pattern” or sequence from 3 to 5.   The seq command 
can create a wide variety of different patterns.  
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To properly understand the example of the logical index,  it should be noted that “=” is an 
assignment operator while “==” is a comparison operator.   Vec==2 creates a logical vector 
with flags for if the elements of vec are 23.  The last example uses the “not equal” 
comparison operator !=. 
 
We can also access the elements not in a specified index vector. 
 
> vec[-c(3:5)] 
[1] 1 2 
 
To access elements of arrays, we can use the same ideas for vectors but we must specify a set 
of row and column indices.  If no indices are specified, we get all of the elements on that 
dimension.  For example, earlier we used the notation df[,2]  to access the second column 
of the data frame df.   
 
We can pull off the observations corresponding to unit “A” from the matrix version of 
dfmat using the commands: 
 
 
> dfmat 
  UNIT Y    X1         X2         
1 "A"  " 1" " 0.23815" " 0.43730" 
2 "A"  " 2" " 0.55508" " 0.47938" 
3 "A"  " 3" " 3.03399" "-2.17571" 
4 "A"  " 4" "-1.49488" " 1.66929" 
5 "B"  "10" "-1.74019" " 0.35368" 
6 "B"  " 9" " 1.40533" "-1.26120" 
7 "B"  " 8" " 0.15628" "-0.27751" 
8 "B"  " 7" "-0.93869" "-0.04410" 
9 "B"  " 6" "-3.06566" " 0.14486" 
> dfmat[dfmat[,1]=="A",2:4] 
  Y    X1         X2         
1 " 1" " 0.23815" " 0.43730" 
2 " 2" " 0.55508" " 0.47938" 
3 " 3" " 3.03399" "-2.17571" 
4 " 4" "-1.49488" " 1.66929" 
 
 
The result is a 4 x 3 matrix.  Note that we are using the values of the dfmat to index into 
itself.  This means that R evaluates the expression dfmat[,1] == “A” and passes the 
result into the matrix subsetting operator [ ] which is a function that processes dfmat. 
 
To access elements of lists, we can use the $ notation if the element has a name or we can 
use a special operator [[ ]].  To see how this works, let’s make a list with two elements, 
each corresponding to the observations for unit A and B.   
 

                                                 
3 It is sometimes desired to obtain the indices for which a logical expression is true.  The function which 
returns these indices, e.g. which(vec==2) will return a vector of (2,4) in the example here. 
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Note that the size of the matrices in correspond to each unit is different – unit A has four 
obs and unit B has five!  This means that we can’t use a three dimensional array to store this 
data (we need would need a “ragged” array).  
 
> ldata=list(A=dfmat[dfmat[,1]=="A",2:4],B=dfmat[dfmat[,1]=="B",2:4]) 
> ldata 
$A 
  Y    X1         X2         
1 " 1" " 0.23815" " 0.43730" 
2 " 2" " 0.55508" " 0.47938" 
3 " 3" " 3.03399" "-2.17571" 
4 " 4" "-1.49488" " 1.66929" 
 
$B 
  Y    X1         X2         
5 "10" "-1.74019" " 0.35368" 
6 " 9" " 1.40533" "-1.26120" 
7 " 8" " 0.15628" "-0.27751" 
8 " 7" "-0.93869" "-0.04410" 
9 " 6" "-3.06566" " 0.14486" 
 
> ldata[1] 
$A 
  Y    X1         X2         
1 " 1" " 0.23815" " 0.43730" 
2 " 2" " 0.55508" " 0.47938" 
3 " 3" " 3.03399" "-2.17571" 
4 " 4" "-1.49488" " 1.66929" 
 
> is.matrix(ldata[1]) 
[1] FALSE 
> is.list(ldata[1]) 
[1] TRUE 
> ldata$A 
  Y    X1         X2         
1 " 1" " 0.23815" " 0.43730" 
2 " 2" " 0.55508" " 0.47938" 
3 " 3" " 3.03399" "-2.17571" 
4 " 4" "-1.49488" " 1.66929" 
> is.matrix(ldata$A) 
[1] TRUE 
 
 If we specify ldata[1], we don’t get the contents of the list element (which is a matrix) 
but we get a list!  If we specify ldata$A, we obtain the matrix.  If we have a long list or we 
don’t wish to name each element, we can use the [[ ]] operator to access elements in the 
list. 
 
> is.matrix(ldata[[1]]) 
[1] TRUE 
> ldata[[1]] 
  Y    X1         X2         
1 " 1" " 0.23815" " 0.43730" 
2 " 2" " 0.55508" " 0.47938" 
3 " 3" " 3.03399" "-2.17571" 
4 " 4" "-1.49488" " 1.66929" 
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Loops 
 
As with all interpreted languages, loops in R are slow.  That is, they typically take more time 
than if implemented in a compiled language.  On the other hand,  matrix/vector operations 
are typically faster in R than in compiled language such as C and Fortran unless the 
optimized BLAS is called.   Thus, wherever possible, “vectorization” or writing expressions 
as only involving matrix/vector arithmetic is desirable.  This is more of an art than a science, 
however. 
 
If a computation is fundamentally iterative (such as maximization or MCMC simulation), a 
loop will be required. 
 
A simple loop can be accomplished with the for structure.  The syntax is of the form 
 
for (var in range) { } 
 
var is a numeric loop index.  range is a range of values of var.   Enclosed in the braces is 
any valid R expression.  There can be more than one R statement in the R expression. 
 
 
Let’s loop over both units and create a list of lists of the regression output from each. 
 
 
> ldatadf=list(A=df[df[,1]=="A",2:4],B=df[df[,1]=="B",2:4]) 
> lmout=NULL 
> for (i in 1:2) { 
+    lmout[[i]]=lm(Y ~ X1+X2,data=ldatadf[[i]]) 
+    print(lmout[[i]]) 
+    } 
 
Call: 
lm(formula = Y ~ X1 + X2, data = ldatadf[[i]]) 
 
Coefficients: 
(Intercept)           X1           X2   
      4.494       -2.860       -3.180   
 
 
Call: 
lm(formula = Y ~ X1 + X2, data = ldatadf[[i]]) 
 
Coefficients: 
(Intercept)           X1           X2   
      9.309        1.051        1.981   
 
 
Here we subset the data frame directly rather than the matrix created from the data frame to 
avoid the extra-step of converting character to numeric values and so that we can use the lm 
function which requires data frame input.  We can see that the same sub-setting command 
that work on arrays will also work on data frames. 
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Implicit Loops 
 
In many contexts, a loop is used to compute the results of applying a function to either the 
row or column dimensions of an array.  For example, if we wish to find the mean of each 
variable in a data frame, we want to apply the function “mean” to each column.  This can be 
done with the apply() function.   
 
> apply(df[,2:4],2,mean) 
         Y         X1         X2  
 5.5555556 -0.2056211 -0.0748900 
 
The first argument specifies the array, the second the dimension (1=row, 2=col), and the 
third the function to be applied.   In R, the apply function is simply an elegant loop so don’t 
expect to speed things up with this.  Of course, we could write this as a matrix operation 
which would be much faster. 
 
If you want to apply a function to a list, sapply can be used.  sapply will attempt to 
coerce the output of the function into a vector or array if possible.  This is marginally faster 
than an explicit loop over the elements of the list but it is much more elegant! sapply is a 
simplified version of lapply (see also mapply for applying functions to multiply lists).  
 
betas=sapply(regdata,myreg) 
myreg=function(list) { statements to do regression here } 
 
This is the same as 
 
for (i in 1:regdata)  
{ 
   betas[i,]=myreg(regdata[[i]]) 
} 
 
regdata is a list of lists of regression (y, X) data.  myreg is a function which takes a list of 
regression data and computes the least squares betahats.  betas will be a 
length(betahat) x length(regdata) array. 
 
 
Matrix Operations 
 
One of the primary advantages of R is that we can write matrix/vector expressions directly 
in R code.  Let’s review some of these operators by computing a pooled regression using 
matrix statements. 
 
The basic functions needed are: 
 
 %*%     matrix multiplication e.g. (X %*% Y)   

note: X or Y or both can be vectors 
 chol(X)    compute “square” or Cholesky root of square, pd matrix 
    X=U’U  where U=chol(X);  U is upper triangular 
 chol2inv(chol(X))  compute inverse of square pd matrix using its Cholesky root 
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 crossprod(X,Y) t(X) %*% Y  -- very efficient 
 diag   extract diagonal of matrix or create diagonal matrix  

from a vector or create an identity matrix from an integer 
 
Less frequently used are: 
   %x%    Kronecker product  

(to be used carefully as Kronecker products can create very large 
arrays) 

 backsolve() used to compute inverse of a triangular array 
            qr   compute QR decomposition (set LAPACK=TRUE for speed) 
            qr.coef(q,Y)     Least Squares coefficients on Y using QR object q 
   q is output of qr (i.e. q=qr(X)) 
 
The R statements  to compute the regression are: 
 
y=as.numeric(dfmat[,2]) 
X=matrix(as.numeric(dfmat[,3:4]),ncol=2) 
X=cbind(rep(1,nrow(X)),X) 
XpXinv=chol2inv(chol(crossprod(X))) 
bhat=XpXinv%*%crossprod(X,y) 
res=as.vector(y-X%*%bhat) 
ssq=as.numeric(res%*%res/(nrow(X)-ncol(X))) 
se=sqrt(diag(ssq*XpXinv)) 
 
Note: you can also do this by first computing the root of X’X and then inverting this using 
backsolve.  This will leave you a root of ( ) 1X ' X −  which can then be used not only to 
compute regression coefficients but if you need to simulate from various distributions like 
the posterior distribution of beta or the sampling distribution of betahat.  See BSM website 
for examples. 
 
The first two statements create y and X.  Then we add a column of ones for the intercept 
and compute the regression using Cholesky roots.   
 
To create the vector of ones we use the rep() function.  
 
Note that we must convert res to a vector to use the statement res %*% res.  We also must 
convert ssq to a scalar from a 1 x 1 matrix to compute the standard errors in the last 
statement. 
 
Note: the method above is very stable numerically but some would prefer the QR 
decomposition.  This would be simpler but our experience has shown that the method 
above is actually faster in R. 
 
Other Useful Built-In R Functions 
 
R has thousands of built-in function and thousands more than can be added from 
contributed packages.  Some functions that I use regularly (aside from the matrix operations 
above)  include 
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 rnorm  draw univariate normal random variates 
 pnorm/qnorm/dnorm (cdf, inverse cdf, density) 
 runif  draw uniform random variates 
 rchisq draw chi-sq random variates 
  
 
 mean  compute mean of a vector 
 var  compute Covariance matrix given matrix input 
 quantile computes quantiles of a vector 
 

optim  general purpose optimizer 
 
 sort  sort a vector 
 
 seq  create a sequence, e.g. seq(1,100,by=.1) 
 
 unlist attempts to coerce a list into a vector 
 as.integer 
 as.double 
 as.numeric 
 is.[list,integer,double,matrix,list,dataframe] 
 
 if    standard if statement (includes else clause) 
 ifelse vectorized if else statement 
 while  while loop 
 
 scan  read from a file to a vector 
 write  write a matrix to a file 
   cat  write expression to console,  

e.g. cat(“this is a test; i =”,i,fill=TRUE) 
 print  use default print method to print out object 
  paste  paste together two strings, 

 e.g. paste(“A =”,a,sep=” ”) 
 
 sqrt  square root 
 log  natural log 
 %%  modulo  (e.g. 100%%10 = 0) 
 round  round to a specified number of sign digits 
 floor  greatest integer < argument 
 

dyn.load load a library for dynamic linking (more on this in a  
separate document) 

 getLoadedDLLs  find out current loaded DLLS 
 is.loaded check if a symbol is loaded from a DLL 
 .C  interface to C and C++ code (more later) 
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User-defined Functions 
 
The regression example above is a perfect situation for which a user-defined function would 
be useful. 
 
To create a function object in R, simply enclose the R statements in braces as assign this to a 
function variable. 
 
myreg=function(y,X){ 
# 
# purpose: compute lsq regression 
# 
# arguments:   
#    y -- vector of dep var 
#    X -- array of indep vars 
# 
# output: 
#    list containing lsq coef and std errors 
# 
XpXinv=chol2inv(chol(crossprod(X))) 
bhat=XpXinv%*%crossprod(X,y) 
res=as.vector(y-X%*%bhat) 
ssq=as.numeric(res%*%res/(nrow(X)-ncol(X))) 
se=sqrt(diag(ssq*XpXinv)) 
list(b=bhat,std_errors=se) 
} 
 
The code above should be executed either by cutting and pasting into R or by sourcing a file 
containing this code.  This will define an object called “myreg” 
 
ls() 
 [1] "ar"           "bhat"         "df"           "dfmat"        "i"            "index"        
 [7] "l"            "last.warning" "ldata"        "ldatadf"      "ldataidf"     "lmout"        
[13] "mat"          "mat1"         "mat2"         "myreg"        "names"        "res"          
[19] "se"           "ssq"          "vec"          "X"            "XpXinv"       "y"      

 
To execute the function, we simply type it in with arguments at the command prompt or in 
another source file. 
 
 
> myreg(X=X,y=y) 
$b 
          [,1] 
[1,]  5.083871 
[2,] -1.485084 
[3,] -2.220859 
 
$std_errors 
[1] 1.0193862 0.8327965 1.3820287 
 
myreg results a list with b and the standard errors.   
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Objects are passed by copy in R rather than by reference.  This means that if I give the 
command myreg(Z,d) a copy of Z will be assigned to the “local” variable X in the 
function myreg and a copy of d to y.  In addition, variables created in the function (e.g. 
XpXinv and res in myreg) are created only during the execution of the function and then 
erased when the function returns to the calling environment. 
 
The arguments are passed and copied in the order supplied at the time of the call so that you 
must be careful!  myreg(d,Z) will bomb. 
 
If I explicitly name the arguments as in myreg(X=Z,y=d) then I can give the arguments in 
any order I desire. 
 
Many functions have default arguments and R has what is called “lazy” function evaluation 
which means that if an argument is not needed it is not checked.  See Introduction to R for a 
more discussion on default and other types of arguments.   
 
If a local variable cannot be found while executing a function, R will look in the 
environment or workspace that the function was called from.  This can be convenient but it 
can also be dangerous!   
 
Many functions are dependent on other functions.  If a function called within a function is 
only used by that calling function and has no other use, it can be useful to define these utility 
functions in the calling function definition.  This means that they will not be visible to the 
user of the function.   
 
Example: 
 
Myfun= function(X,y) { 
# 
# define utilty function needed 
# 
Util=function(X) { … } 
# 
# main body of myfun  
# 
… 
} 
 
Debugging Functions 
 
It is a good practice to define your functions in a file and “source” them into R.  This will 
allow you to recreate your set of function objects for a given project without having to save 
the workspace.   
 
To debug a function,  you can use the brute force method of placing print statements in the 
function.  cat() can be useful here.  For example, we can define a “debugging” version of 
myreg which prints out the value of se in the function.  The cat command prints out a 
statement reminding us of where the “print” output comes from (note the use of 
fill=TRUE which insures that a new line will be generated on the console).  
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myreg=function(y,X){ 
# 
# purpose: compute lsq regression 
# 
# arguments:   
#    y -- vector of dep var 
#    X -- array of indep vars 
# 
# output: 
#    list containing lsq coef and std errors 
# 
XpXinv=chol2inv(chol(crossprod(X))) 
bhat=XpXinv%*%crossprod(X,y) 
res=as.vector(y-X%*%bhat) 
ssq=as.numeric(res%*%res/(nrow(X)-ncol(X))) 
se=sqrt(diag(ssq*XpXinv)) 
cat("in myreg, se = ",fill=TRUE) 
print(se) 
list(b=bhat,std_errors=se) 
} 
 
When run, this new function will produce the output: 
 
> myregout=myreg(y,X) 
in myreg, se =  
[1] 1.0193862 0.8327965 1.3820287 
 
 
R also features a simple debugger.  If you “debug” a function, you can step through the 
function and inspect the contents of local variables.  One can also modify their contents. 
 
> debug(myreg) 
> myreg(X,y) 
debugging in: myreg(X, y) 
debug: { 
    XpXinv = chol2inv(chol(crossprod(X))) 
    bhat = XpXinv %*% crossprod(X, y) 
    res = as.vector(y - X %*% bhat) 
    ssq = as.numeric(res %*% res/(nrow(X) - ncol(X))) 
    se = sqrt(diag(ssq * XpXinv)) 
    cat("in myreg, se = ", fill = TRUE) 
    print(se) 
    list(b = bhat, std_errors = se) 
} 
Browse[1]>  
debug: XpXinv = chol2inv(chol(crossprod(X))) 
Browse[1]> X 
[1]  1  2  3  4 10  9  8  7  6 
Browse[1]> #OOPS! 
debug: bhat = XpXinv %*% crossprod(X, y) 
Browse[1]> XpXinv 
            [,1] 
[1,] 0.002777778 
Browse[1]> Q 
> undebug(myreg) 
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If there are loops in the function, the debugging command “c” can be used to allow the loop 
to finish.  “Q” quits the debugger.  You must turn off the debugger with the undebug 
command!  If you want to debug other functions called by myreg, you must debug() ‘em 
first! 
 
 
Elementary Graphics 
 
Graphics in R can be quite involved as the graphics capabilities are very extensive.  For some 
examples of what is possible issue the commands demo(graphics), demo(image) and 
demo(persp). 
 
We will only cover the bare minimum necessary to function. 
 
Let’s return to our first example – a histogram of a distribution.  
 
hist(rnorm(1000),breaks=50,col=”magenta”) 
 
This creates a histogram with 50 bars and with each bar filled in the color “magenta” (type 
colors() to see the list of available colors). 
 
This plot can be improved by inclusion of plot parameters to change the x and y axis labels 
and well as the “title” of the plot.   
 
hist(rnorm(1000),breaks=30,col=”magneta”,xlab=”theta”,ylab=””,main=”Non
-parametric Estimate of Theta Distribution”) 
 
produces 
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Non-parametric Estimate of Theta Distribution
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Three other basic plots are useful: 
 
 plot(x,y)  scatterplot of x vs y 
 plot(x)  sequence plot of x 
 matplot(X)  sequence plots of columns of X 
 acf(x)  acf of time series in x 
 boxplot(data.frame(X)) boxplots of data.frame created from X array  
    each column is a plot 
 
The col, xlab, ylab, and main parameters work on all of these plots. 
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In addition, the parameters 
  
 type=“l”   connects scatterplot points with a lines 
 lwd=x    specifies the width of lines (1 is default, > 1 is thicker) 
 lty=x     specifies type of line (e.g. solid vs dashed)  
 xlim/ylim=c(z,w) specifies x/y axis runs from z to w 
 
are useful.  ?par displays all of the graphic parameters available.   
 
One useful notion is the idea to lay down the basic plot frame using a “plot” command and 
then add points and lines to it.  abline adds a line to the current plot frame, lines and 
points will add multiple lines to the current frame.  In the examples below, we use 
abline to add a line to a plot. 
 
It is often useful to display more than one plot per page.  To do this, we must change the 
global graphic parameters with the command,  par(mfrow=c(x,y)).  This specifies an 
array of plots x by y plotted row by row. 
 
par(mfrow=c(2,2)) 
X=matrix(rnorm(5000),ncol=5) 
X=t(t(X)+c(1,4,6,8,10)) 
 
hist(X[,1],main="Histogram of 1st col",col="magenta",xlab="") 
plot(X[,1],X[,2],xlab="col 1", ylab="col 2",pch=17,col="red", 

xlim=c(-4,4),ylim=c(0,8)) 
title("Scatterplot") 
abline(c(0,1),lwd=2,lty=2) 
matplot(X,type="l",ylab="",main="MATPLOT") 
acf(X[,5],ylab="",main="ACF of 5th Col") 
  
title() and abline() are examples of commands which modify the current “active” 
plot.  Other userful functions are points() and lines() to add points and points 
connected by lines to the current plot. 
 
The commands above will produce 
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Histogram of 1st col
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System Information 
 
 
 memory.limit()   current memory limit 
 memory.size()   current memory size 
 
 system.time(R expression) times execution of R expression 
 proc.time()[3]   current R session cpu usage in seconds 
 
 list.files()   list files in current wd (accepts regular exp) 

getwd()    obtain current working directory 
 setwd()    set current working directory 
 
 Rprof(file=”filename”)  turns on profiling and writes to filename 
 Rprof(“”)    turns off profiling 
 summaryRprof(file=”filename”) summarizes output in profile file 
 
 
Examples of usage are given below. 
 
> memory.size() 
[1] 191135504 
> getwd() 
[1] "C:/userdata/per/class/37904" 
> x=matrix(rnorm(1e07),ncol=1000) 
> memory.size() 
[1] 332070456 
> memory.limit() 
[1] 1992294400 
> begin=proc.time()[3] 
> z=crossprod(x) 
> end=proc.time()[3] 
> print(end-begin) 
[1] 6.59 
>test=function(n){x=matrix(rnorm(n),ncol=1000);z=crossprod(x); 
cz=chol(z)} 
> Rprof("test.out") 
> test(1e07) 
> Rprof() 
> summaryRprof("test.out") 
$by.self 
          self.time self.pct total.time total.pct 
rnorm          4.40     48.9       4.40      48.9 
crossprod      4.16     46.2       4.16      46.2 
matrix         0.22      2.4       4.72      52.4 
.Call          0.12      1.3       0.12       1.3 
as.vector      0.10      1.1       4.50      50.0 
chol           0.00      0.0       0.12       1.3 
test           0.00      0.0       9.00     100.0 
 
$by.total 
          total.time total.pct self.time self.pct 
test            9.00     100.0      0.00      0.0 
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matrix          4.72      52.4      0.22      2.4 
as.vector       4.50      50.0      0.10      1.1 
rnorm           4.40      48.9      4.40     48.9 
crossprod       4.16      46.2      4.16     46.2 
.Call           0.12       1.3      0.12      1.3 
chol            0.12       1.3      0.00      0.0 
 
$sampling.time 
[1] 9 
 
The profile shows that virtually all of the time in the test function was in the generation of 
normal random numbers and in computing cross-products.  The Cholesky root of a 1000 x 
1000 matrix is essentially free!  crossprod is undertaking 5 billion floating point multiply 
operations (1/2 of 10,000 x 1,000*1,000). 
 
More Lessons Learned from Timing 
 
If you are going to fill up an array with results, pre-allocate space in the array.  Do not 
append to an existing array.   
 
> n=1e04 
> x=NULL 
> zero=c(rep(0,5)) 
> begin=proc.time()[3] 
> for (i in 1:n) {x=rbind(x,zero) } 
> end=proc.time()[3] 
> print(end-begin) 
[1] 6.62 
> x=NULL 
> begin=proc.time()[3] 
> x=matrix(double(5*n),ncol=5) 
> end=proc.time()[3] 
> print(end-begin) 
[1] 0.07 


