
- R Pointers: 1 -

Some Useful R Pointers

P. Rossi 1/1/05
Revised 4/21/05

Note: these notes assume a Windows environment. All R commands and objects are the
same under Windows and LINUX but the install procedure and GUI are different.

Obtaining R

Visit http://cran.r-project.org/ or google “R language.”

CRAN is a network of mirror sites that allow you to download precompiled binary versions
of R or source.

 Look under “Precompiled Binary Distributions” and click on Windows. Click on base on
the next page and download the rwXXXX.exe file (XXXX=2010 at present) – right click
and “save target as.” Doubleclick the file name under Windows Explorer and R will install
itself in the usual fashion for Windows software.

You may also obtain the optimized BLAS version for Pentium 4 chips by visiting the
contributed link and click on the ATLAS directory. Simply download the RBLAS.dll file
for your chip (invariably Pentium 4) and replace the RBLAS.dll file in the R/bin directory
(this will be something like C:/Program Files/R/rwXXXX/bin). My experience is that this
will double the speed of many common matrix operations.

Customizing the R Shortcut

The standard R install will create a desktop shortcut to invoke R. This will start up R
pointing to the rwXXXX directory. It is more useful to modify the shortcut to start up with
R pointing to a directory which is “closer” to the directories you plan on working in. To
modify the short-cut, right click on it and choose “properties”, change the “Startin: ” value
to any valid directory on your machine. You can also copy the short-cut and make a short-
cut for each of your major “projects.”

If you have more than 500 MB of memory (I highly recommend min 1 GB memory), you
may also want to add the option to increase the memory available on the short cut. This is
accomplished by adding a parameter to the command line which invokes R. Again, right
click the short-cut and modify the command in the target line. I’ve set mine to:

"C:\Program Files\R\rw2010\bin\Rgui.exe" --max-mem-size=1900Mb
Note the closed-quote after Rgui.exe BEFORE the specification of the –max-mem-size
parm.

You may also copy this shortcut to your “taskbar” – don’t forget to “unlock” it first!

- R Pointers: 2 -

Invoking R and Using the R GUI

Click the short-cut to invoke R. Something like the screen shot below will appear.

Console Window:
this is where you
type commands

File Menu allows you
to change directories,
“source” or read in
files of commands to
execute.

Packages Menu allows you to
select contributed packages
to download and install
automatically

Help Menu allows you
access to all of the R
manuals in PDF or
HTML form.

- R Pointers: 3 -

If you create graphics, a separate graphics window will appear within the RGUI main
window. For example, if we create a histogram of 1000, normal random numbers by using
the hist command (more below in graphics section). A window will automatically open
with the plot. (It is possible to create multiple graphics windows and “paint” different
graphics in each – see commands dev.cur(), dev.list(), dev.set())

- R Pointers: 4 -

The contents of this graphics window can be “clipped” into the clipboard for pasting into
your favorite application by selecting the graph window and using Ctl-W (not Ctl-C) and the
paste or Ctl-V to paste into the app.

Obtaining Help in R

There are a number of different ways to obtain help in R. The “Help” menu allows you to
access the manuals in PDF or HTML form as well as to search for keywords. Note: the help
menu does not appear in the R GUI unless the console window is “active.” To make any
window active, click on the “button bar” or the blue bar on the top of the window.

You can also use the help and help.search commands in the R console windows. For
example, we just used two commands, hist and rnorm. help(rnorm) produces a
window with the following content (a short cut is the command ?rnorm):

- R Pointers: 5 -

Each R help window has the same sections:
 Description
 Usage
 Arguments
 Details
 Value
 References
 See Also
 Examples (note this is “cut-off” in the screen shot above)

Usage/Arguments/Examples are the most useful.

If you are not sure what command you need, help.search(“key word”) can be very
useful.

Program Editing and R

For all but the simplest tasks, it is useful to edit a file with R commands in it. R syntax is
sufficiently complex that it is difficult to write directly into the command window without
making numerous syntax errors.

Open a text editor (VIM – improved VI is recommended; this is shareware,
http://www.vim.org/); type in R commands and save the file. You can either cut the
commands from the editor window and paste into the R console window to run or use the R
command, source – also available from the File menu in the Windows GUI.

Customizing the R session

When R is invoked, R looks for a file .Rprofile in the directory that R is pointing at. If
this file is not found, R then looks for the file in the directory specified by the environmental
variable HOME or R_USER. To set HOME or R_USER environmental variable, right
click on My Computer icon on desktop, select properties, selected advanced tab,
environment variables and add new variables to the user.

Typically, the .Rprofile file is used to source various files which contain customized
function definitions of use either for a particular project or for a particular user. You can
also use it to load an installed package using the library command, as in
library(bayesm).

For more information on R startup, see help(Startup).

- R Pointers: 6 -

An Introductory Example: Reading in Data and Dataframes

R language is a functionally-oriented language. All commands are functions which act upon
objects of various types. All commands produce objects as well.

The basic R command is of the form: object=function(object)

Functions can be composed to produce powerful (but sometimes hard-to-read) expressions.
Users can define their own functions. Writing these user functions constitutes R-
programming.

Let’s start by reading in some data. Suppose we have a file in a spreadsheet that with some
regression data on several different units. The file has a UNIT variable to identify which
unit the data comes from, a dependent variable Y, and two independent variables X1, X2.

UNIT Y X1 X2
A 1 0.23815 0.4373
A 2 0.55508 0.47938
A 3 3.03399 -2.17571
A 4 -1.49488 1.66929
B 10 -1.74019 0.35368
B 9 1.40533 -1.2612
B 8 0.15628 -0.27751
B 7 -0.93869 -0.0441
B 6 -3.06566 0.14486

We write this data out of Excel by saving it as a text (tab-delimited file), data.txt (use the
save as option on the file menu and choose text file in the file type box). Note: there is no
simple, direct way to read .XLS files in R1.

We can read this file into R using the READ.TABLE command.

> df=read.table("data.txt",header=TRUE)
> df
 UNIT Y X1 X2
1 A 1 0.23815 0.43730
2 A 2 0.55508 0.47938
3 A 3 3.03399 -2.17571
4 A 4 -1.49488 1.66929
5 B 10 -1.74019 0.35368
6 B 9 1.40533 -1.26120
7 B 8 0.15628 -0.27751
8 B 7 -0.93869 -0.04410
9 B 6 -3.06566 0.14486

1 Another option is to select a portion of a worksheet in Excel, copy this into the clipboard and use the
command, df=read.table(file=”clipboard”,header=TRUE).

- R Pointers: 7 -

The read.table function has two arguments: the name of the file, and the argument
“header.” There are many other arguments but they are optional and often have defaults.
The default for the header argument is the value FALSE.

Using the argument, header=TRUE, tells the read.table function to expect that the first line
of the file will contain (delimited by spaces or tabs) the names of each variable.

TRUE and FALSE are examples of reserved values in R indicating a logical switch for true
or false. Another useful reserved value is NULL which is often used to create an object with
nothing in it.

The command df=read.table(…) assigns the output of the read.table function to the R
object named “df.”

df is a member of a class or type of object called a data frame. A “data frame” is preferred
by R as the format for datasets. A data frame contains a set of observations on variables
with the same number of observations in each variable. In this example, each of the
variables, Y, X1, and X2, is of type numeric (R does not distinguish between integers and
floating point numbers), while the variable UNIT is character.

There are two reasons to store your data as a data frame: 1. most R statistical functions
require a data frame and 2. the data frame object allows the user to access the data either via
the variables names or by viewing the dataframe as a two-dimensional array.

> df$Y
[1] 1 2 3 4 10 9 8 7 6
> mode(df$Y)
[1] "numeric"
> df[,2]
[1] 1 2 3 4 10 9 8 7 6

We can refer to the Y variable in df by using the df$XXX notation (where XXX is the name
of the variable). The “mode” command confirms that this variable is, indeed, numeric.

We can also access the Y variable by using notation in R for subsetting a portion of an array.

The notation df[,2] means the values of the 2nd column of df. Below we will explore the
many ways we can subset an array or matrix.

- R Pointers: 8 -

Using Built-In Functions: Running a regression

Let’s now use the built-in linear model function in R to run a regression of Y on X1 and X2,
pooled across both units A and B.

> lmout=lm(Y ~ X1 + X2, data=df)
> names(lmout)
 [1] "coefficients" "residuals" "effects" "rank"
 [5] "fitted.values" "assign" "qr" "df.residual"
 [9] "xlevels" "call" "terms" "model"
> print(lmout)

Call:
lm(formula = Y ~ X1 + X2, data = df)

Coefficients:
(Intercept) X1 X2
 5.084 -1.485 -2.221
> summary(lmout)

Call:
lm(formula = Y ~ X1 + X2, data = df)

Residuals:
 Min 1Q Median 3Q Max
-3.3149 -2.4101 0.4034 2.5319 3.2022

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0839 1.0194 4.987 0.00248 **
X1 -1.4851 0.8328 -1.783 0.12481
X2 -2.2209 1.3820 -1.607 0.15919

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 2.96 on 6 degrees of freedom
Multiple R-Squared: 0.3607, Adjusted R-squared: 0.1476
F-statistic: 1.693 on 2 and 6 DF, p-value: 0.2612

lm is the function in the package (stats) which fits linear models. Note that the regression is
specified via a “formula” that tells lm which is the dependent and independent variables.

We assign the output from the lm function to the object, lmout. lmout is a special type
of object called a “list.” A list is simply an ordered collection of objects of any type.

The names command will list the names of the elements of the list. We can access any
element of the list by using the $ notation.

> lmout$c
(Intercept) X1 X2
 5.083871 -1.485084 -2.220859

- R Pointers: 9 -

Note: that we only need to specify enough of the name of the list component to uniquely
identify it, e.g. lmout$c is the same as lmout$coefficients.

We can “print” the object lmout and get a brief summary of it’s contents. Print is a
generic command which uses a different “print method” for each type of object. Print
recognizes that lmout is a list of type lm and uses a specific routine to printout the contents
of the list.

A more useful summary of contents of lmout can be obtained with the summary
command.

Inspecting objects and the R workspace

When you start up R, R looks for a file .Rdata in the directory in which R is started from
(you can also double-click the file to start R). This file contains a copy of the R “workspace”
which is a list of R objects created by the user. For example we just created two R objects
in the example above: df (the data frame) and lmout, the lm output object.

To list all objects in the current workspace, use the command ls()2.

> ls()
[1] "df" "lmout"

This doesn’t tell us too much about the objects. If you just type the object name at the
command prompt and return, then you will invoke the default print method for this type of
object as we saw above in the data frame example.

As useful command is the structure (str for short) command.

> str(df)
`data.frame': 9 obs. of 4 variables:
 $ UNIT: Factor w/ 2 levels "A","B": 1 1 1 1 2 2 2 2 2
 $ Y : int 1 2 3 4 10 9 8 7 6
 $ X1 : num 0.238 0.555 3.034 -1.495 -1.740 ...
 $ X2 : num 0.437 0.479 -2.176 1.669 0.354 ...

Note that the str command tells us a bit about the variables in the data frame. The UNIT
variable is of type “factor” with two levels. Type “factor” is used by many of the built-in R
functions and is way to store qualitative variables. A “factor” is usually an identifier of some
sort of classification of the observation, e.g. which “UNIT” or which state or which store …
levels() gives a list of the unique values of this variable. as.factor can be used to
convert a standard numeric or character vector into a factor.

2 Note you can specify regular expressions as an argument to ls so that you can specify only object whose
names match these patterns, e.g. to list all objects whose name begins with a, ls(pat=”^a”), or all objects
whose name includes the string “gibbs,” ls(pat=”gibbs”). See ?regex for more.

- R Pointers: 10 -

To remove objects, use the rm() function. To remove a list of objects, use ls to create the
list as follows:

rm(list=ls(pat=”*”))

This will remove all objects (except the ones with names starting with .), so be careful!

The R workspace exists only in memory. You must either save the workspace when you
exist (you will be prompted for this) or you must recreate the objects again.

Vectors, Matrices and Lists

From our point of view, the power of R comes from statistical programming at a relatively
high level. To do so, we will need to organize data as vectors, arrays and lists.

Vectors are ordered collections of the same type of object. If we access one variable from
our data frame above, it will be a vector.

> df$X1
[1] 0.23815 0.55508 3.03399 -1.49488 -1.74019 1.40533 0.15628 -
0.93869 -3.06566
> length(df$X1)
[1] 9
> is.vector(df$X1)
[1] TRUE

The function is.vector returns a logical flag as to whether or not the input argument is a
vector.

We can also create a vector with the c() command.

> vec=c(1,2,3,4,5,6)
> vec
[1] 1 2 3 4 5 6
> is.vector(vec)
[1] TRUE

A matrix is a two dimensional array.

Let’s create a matrix from a vector.

> mat=matrix(c(1,2,3,4,5,6),ncol=2)
> mat
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

matrix() is a command to create a matrix from a vector. ncol is a option to create the
matrix with a specified number of columns (see also nrow). Note that the matrix is created

- R Pointers: 11 -

column by column from the input vector (first subscripts varies the fastest). We can also
create a matrix row by row.

> mat=matrix(c(1,2,3,4,5,6),byrow=TRUE,ncol=2)
> mat
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

Matrices are simply vectors with the appropriate “dim” attribute (objects in R have attributes
or other objects attached to them). We can also create the matrices by changing the dim
attribute.

> mat=c(1:6)
> dim(mat)=c(2,3)
> mat
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

We can also convert a data frame into a matrix.

> dfmat=as.matrix(df)
> dfmat
 UNIT Y X1 X2
1 "A" " 1" " 0.23815" " 0.43730"
2 "A" " 2" " 0.55508" " 0.47938"
3 "A" " 3" " 3.03399" "-2.17571"
4 "A" " 4" "-1.49488" " 1.66929"
5 "B" "10" "-1.74019" " 0.35368"
6 "B" " 9" " 1.40533" "-1.26120"
7 "B" " 8" " 0.15628" "-0.27751"
8 "B" " 7" "-0.93869" "-0.04410"
9 "B" " 6" "-3.06566" " 0.14486"
> dim(dfmat)
[1] 9 4

Note that all of the values of the results matrix are character as one of the variables in the
data frame (UNIT) is character-valued.

We can also create matrices from other matrices and vectors using the cbind (column bind)
and rbind (row bind) commands.

> mat1
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
> mat2
 [,1] [,2]
[1,] 7 10
[2,] 8 11

- R Pointers: 12 -

[3,] 9 12
> cbind(mat1,mat2)
 [,1] [,2] [,3] [,4]
[1,] 1 2 7 10
[2,] 3 4 8 11
[3,] 5 6 9 12
> rbind(mat1,mat2)
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 10
[5,] 8 11
[6,] 9 12
> rbind(mat1,c(99,99))
 [,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 99 99

R supports multi-dimensional arrays as well. Below is an example of creating a three
dimensional array from a vector.

> ar=array(c(1,2,3,4,5,6),dim=c(3,2,2))
> ar
, , 1

 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

, , 2

 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Again, the array is created by using vector for the first dimension, then the second, and then
third. A 3 x 2 x 2 array as 12 elements not the six provided as an argument. R will repeat
the input vector as necessary until the required number of elements are obtained.

A list is an ordered collection of objects of any type. It is the most flexible object in R that
can be indexed. As we have seen in the lm function output, lists can also have names.

> l=list(1,"a",c(4,4),list(FALSE,2))
> l
[[1]]
[1] 1

[[2]]

- R Pointers: 13 -

[1] "a"

[[3]]
[1] 4 4

[[4]]
[[4]][[1]]
[1] FALSE

[[4]][[2]]
[1] 2

> l=list(num=1,char="a",vec=c(4,4),list=list(FALSE,2))
> l$num
[1] 1
> l$list
[[1]]
[1] FALSE

[[2]]
[1] 2

In the example, we created a list of a numeric value, character, vector and another list. We
also can name each component and access them with the $ notation.

Accessing Elements and Subsetting Vectors, Arrays, and Lists

To access an element of a vector, simply enclose index of that element in square brackets.

> vec=c(1,2,3,2,5)
> vec[3]
[1] 3

To access a sub-set of elements, there are two approaches: 1. specify a vector of integers of
the required indices, 2. specify a logical variable which is TRUE for the desired indices.

> index=c(3:5)
> index
[1] 3 4 5
> vec[index]
[1] 3 2 5
> index=vec==2
> index
[1] FALSE TRUE FALSE TRUE FALSE
> vec[index]
[1] 2 2
> vec[vec!=2]
[1] 1 3 5

c(3:5) creates a vector from the “pattern” or sequence from 3 to 5. The seq command
can create a wide variety of different patterns.

- R Pointers: 14 -

To properly understand the example of the logical index, it should be noted that “=” is an
assignment operator while “==” is a comparison operator. Vec==2 creates a logical vector
with flags for if the elements of vec are 23. The last example uses the “not equal”
comparison operator !=.

We can also access the elements not in a specified index vector.

> vec[-c(3:5)]
[1] 1 2

To access elements of arrays, we can use the same ideas for vectors but we must specify a set
of row and column indices. If no indices are specified, we get all of the elements on that
dimension. For example, earlier we used the notation df[,2] to access the second column
of the data frame df.

We can pull off the observations corresponding to unit “A” from the matrix version of
dfmat using the commands:

> dfmat
 UNIT Y X1 X2
1 "A" " 1" " 0.23815" " 0.43730"
2 "A" " 2" " 0.55508" " 0.47938"
3 "A" " 3" " 3.03399" "-2.17571"
4 "A" " 4" "-1.49488" " 1.66929"
5 "B" "10" "-1.74019" " 0.35368"
6 "B" " 9" " 1.40533" "-1.26120"
7 "B" " 8" " 0.15628" "-0.27751"
8 "B" " 7" "-0.93869" "-0.04410"
9 "B" " 6" "-3.06566" " 0.14486"
> dfmat[dfmat[,1]=="A",2:4]
 Y X1 X2
1 " 1" " 0.23815" " 0.43730"
2 " 2" " 0.55508" " 0.47938"
3 " 3" " 3.03399" "-2.17571"
4 " 4" "-1.49488" " 1.66929"

The result is a 4 x 3 matrix. Note that we are using the values of the dfmat to index into
itself. This means that R evaluates the expression dfmat[,1] == “A” and passes the
result into the matrix subsetting operator [] which is a function that processes dfmat.

To access elements of lists, we can use the $ notation if the element has a name or we can
use a special operator [[]]. To see how this works, let’s make a list with two elements,
each corresponding to the observations for unit A and B.

3 It is sometimes desired to obtain the indices for which a logical expression is true. The function which
returns these indices, e.g. which(vec==2) will return a vector of (2,4) in the example here.

- R Pointers: 15 -

Note that the size of the matrices in correspond to each unit is different – unit A has four
obs and unit B has five! This means that we can’t use a three dimensional array to store this
data (we need would need a “ragged” array).

> ldata=list(A=dfmat[dfmat[,1]=="A",2:4],B=dfmat[dfmat[,1]=="B",2:4])
> ldata
$A
 Y X1 X2
1 " 1" " 0.23815" " 0.43730"
2 " 2" " 0.55508" " 0.47938"
3 " 3" " 3.03399" "-2.17571"
4 " 4" "-1.49488" " 1.66929"

$B
 Y X1 X2
5 "10" "-1.74019" " 0.35368"
6 " 9" " 1.40533" "-1.26120"
7 " 8" " 0.15628" "-0.27751"
8 " 7" "-0.93869" "-0.04410"
9 " 6" "-3.06566" " 0.14486"

> ldata[1]
$A
 Y X1 X2
1 " 1" " 0.23815" " 0.43730"
2 " 2" " 0.55508" " 0.47938"
3 " 3" " 3.03399" "-2.17571"
4 " 4" "-1.49488" " 1.66929"

> is.matrix(ldata[1])
[1] FALSE
> is.list(ldata[1])
[1] TRUE
> ldata$A
 Y X1 X2
1 " 1" " 0.23815" " 0.43730"
2 " 2" " 0.55508" " 0.47938"
3 " 3" " 3.03399" "-2.17571"
4 " 4" "-1.49488" " 1.66929"
> is.matrix(ldata$A)
[1] TRUE

 If we specify ldata[1], we don’t get the contents of the list element (which is a matrix)
but we get a list! If we specify ldata$A, we obtain the matrix. If we have a long list or we
don’t wish to name each element, we can use the [[]] operator to access elements in the
list.

> is.matrix(ldata[[1]])
[1] TRUE
> ldata[[1]]
 Y X1 X2
1 " 1" " 0.23815" " 0.43730"
2 " 2" " 0.55508" " 0.47938"
3 " 3" " 3.03399" "-2.17571"
4 " 4" "-1.49488" " 1.66929"

- R Pointers: 16 -

Loops

As with all interpreted languages, loops in R are slow. That is, they typically take more time
than if implemented in a compiled language. On the other hand, matrix/vector operations
are typically faster in R than in compiled language such as C and Fortran unless the
optimized BLAS is called. Thus, wherever possible, “vectorization” or writing expressions
as only involving matrix/vector arithmetic is desirable. This is more of an art than a science,
however.

If a computation is fundamentally iterative (such as maximization or MCMC simulation), a
loop will be required.

A simple loop can be accomplished with the for structure. The syntax is of the form

for (var in range) { }

var is a numeric loop index. range is a range of values of var. Enclosed in the braces is
any valid R expression. There can be more than one R statement in the R expression.

Let’s loop over both units and create a list of lists of the regression output from each.

> ldatadf=list(A=df[df[,1]=="A",2:4],B=df[df[,1]=="B",2:4])
> lmout=NULL
> for (i in 1:2) {
+ lmout[[i]]=lm(Y ~ X1+X2,data=ldatadf[[i]])
+ print(lmout[[i]])
+ }

Call:
lm(formula = Y ~ X1 + X2, data = ldatadf[[i]])

Coefficients:
(Intercept) X1 X2
 4.494 -2.860 -3.180

Call:
lm(formula = Y ~ X1 + X2, data = ldatadf[[i]])

Coefficients:
(Intercept) X1 X2
 9.309 1.051 1.981

Here we subset the data frame directly rather than the matrix created from the data frame to
avoid the extra-step of converting character to numeric values and so that we can use the lm
function which requires data frame input. We can see that the same sub-setting command
that work on arrays will also work on data frames.

- R Pointers: 17 -

Implicit Loops

In many contexts, a loop is used to compute the results of applying a function to either the
row or column dimensions of an array. For example, if we wish to find the mean of each
variable in a data frame, we want to apply the function “mean” to each column. This can be
done with the apply() function.

> apply(df[,2:4],2,mean)
 Y X1 X2
 5.5555556 -0.2056211 -0.0748900

The first argument specifies the array, the second the dimension (1=row, 2=col), and the
third the function to be applied. In R, the apply function is simply an elegant loop so don’t
expect to speed things up with this. Of course, we could write this as a matrix operation
which would be much faster.

If you want to apply a function to a list, sapply can be used. sapply will attempt to
coerce the output of the function into a vector or array if possible. This is marginally faster
than an explicit loop over the elements of the list but it is much more elegant! sapply is a
simplified version of lapply (see also mapply for applying functions to multiply lists).

betas=sapply(regdata,myreg)
myreg=function(list) { statements to do regression here }

This is the same as

for (i in 1:regdata)
{
 betas[i,]=myreg(regdata[[i]])
}

regdata is a list of lists of regression (y, X) data. myreg is a function which takes a list of
regression data and computes the least squares betahats. betas will be a
length(betahat) x length(regdata) array.

Matrix Operations

One of the primary advantages of R is that we can write matrix/vector expressions directly
in R code. Let’s review some of these operators by computing a pooled regression using
matrix statements.

The basic functions needed are:

 %*% matrix multiplication e.g. (X %*% Y)

note: X or Y or both can be vectors
 chol(X) compute “square” or Cholesky root of square, pd matrix
 X=U’U where U=chol(X); U is upper triangular
 chol2inv(chol(X)) compute inverse of square pd matrix using its Cholesky root

- R Pointers: 18 -

 crossprod(X,Y) t(X) %*% Y -- very efficient
 diag extract diagonal of matrix or create diagonal matrix

from a vector or create an identity matrix from an integer

Less frequently used are:
 %x% Kronecker product

(to be used carefully as Kronecker products can create very large
arrays)

 backsolve() used to compute inverse of a triangular array
 qr compute QR decomposition (set LAPACK=TRUE for speed)
 qr.coef(q,Y) Least Squares coefficients on Y using QR object q
 q is output of qr (i.e. q=qr(X))

The R statements to compute the regression are:

y=as.numeric(dfmat[,2])
X=matrix(as.numeric(dfmat[,3:4]),ncol=2)
X=cbind(rep(1,nrow(X)),X)
XpXinv=chol2inv(chol(crossprod(X)))
bhat=XpXinv%*%crossprod(X,y)
res=as.vector(y-X%*%bhat)
ssq=as.numeric(res%*%res/(nrow(X)-ncol(X)))
se=sqrt(diag(ssq*XpXinv))

Note: you can also do this by first computing the root of X’X and then inverting this using
backsolve. This will leave you a root of () 1X ' X − which can then be used not only to
compute regression coefficients but if you need to simulate from various distributions like
the posterior distribution of beta or the sampling distribution of betahat. See BSM website
for examples.

The first two statements create y and X. Then we add a column of ones for the intercept
and compute the regression using Cholesky roots.

To create the vector of ones we use the rep() function.

Note that we must convert res to a vector to use the statement res %*% res. We also must
convert ssq to a scalar from a 1 x 1 matrix to compute the standard errors in the last
statement.

Note: the method above is very stable numerically but some would prefer the QR
decomposition. This would be simpler but our experience has shown that the method
above is actually faster in R.

Other Useful Built-In R Functions

R has thousands of built-in function and thousands more than can be added from
contributed packages. Some functions that I use regularly (aside from the matrix operations
above) include

- R Pointers: 19 -

 rnorm draw univariate normal random variates
 pnorm/qnorm/dnorm (cdf, inverse cdf, density)
 runif draw uniform random variates
 rchisq draw chi-sq random variates

 mean compute mean of a vector
 var compute Covariance matrix given matrix input
 quantile computes quantiles of a vector

optim general purpose optimizer

 sort sort a vector

 seq create a sequence, e.g. seq(1,100,by=.1)

 unlist attempts to coerce a list into a vector
 as.integer
 as.double
 as.numeric
 is.[list,integer,double,matrix,list,dataframe]

 if standard if statement (includes else clause)
 ifelse vectorized if else statement
 while while loop

 scan read from a file to a vector
 write write a matrix to a file
 cat write expression to console,

e.g. cat(“this is a test; i =”,i,fill=TRUE)
 print use default print method to print out object
 paste paste together two strings,

 e.g. paste(“A =”,a,sep=” ”)

 sqrt square root
 log natural log
 %% modulo (e.g. 100%%10 = 0)
 round round to a specified number of sign digits
 floor greatest integer < argument

dyn.load load a library for dynamic linking (more on this in a
separate document)

 getLoadedDLLs find out current loaded DLLS
 is.loaded check if a symbol is loaded from a DLL
 .C interface to C and C++ code (more later)

- R Pointers: 20 -

User-defined Functions

The regression example above is a perfect situation for which a user-defined function would
be useful.

To create a function object in R, simply enclose the R statements in braces as assign this to a
function variable.

myreg=function(y,X){

purpose: compute lsq regression

arguments:
y -- vector of dep var
X -- array of indep vars

output:
list containing lsq coef and std errors

XpXinv=chol2inv(chol(crossprod(X)))
bhat=XpXinv%*%crossprod(X,y)
res=as.vector(y-X%*%bhat)
ssq=as.numeric(res%*%res/(nrow(X)-ncol(X)))
se=sqrt(diag(ssq*XpXinv))
list(b=bhat,std_errors=se)
}

The code above should be executed either by cutting and pasting into R or by sourcing a file
containing this code. This will define an object called “myreg”

ls()
 [1] "ar" "bhat" "df" "dfmat" "i" "index"
 [7] "l" "last.warning" "ldata" "ldatadf" "ldataidf" "lmout"
[13] "mat" "mat1" "mat2" "myreg" "names" "res"
[19] "se" "ssq" "vec" "X" "XpXinv" "y"

To execute the function, we simply type it in with arguments at the command prompt or in
another source file.

> myreg(X=X,y=y)
$b
 [,1]
[1,] 5.083871
[2,] -1.485084
[3,] -2.220859

$std_errors
[1] 1.0193862 0.8327965 1.3820287

myreg results a list with b and the standard errors.

- R Pointers: 21 -

Objects are passed by copy in R rather than by reference. This means that if I give the
command myreg(Z,d) a copy of Z will be assigned to the “local” variable X in the
function myreg and a copy of d to y. In addition, variables created in the function (e.g.
XpXinv and res in myreg) are created only during the execution of the function and then
erased when the function returns to the calling environment.

The arguments are passed and copied in the order supplied at the time of the call so that you
must be careful! myreg(d,Z) will bomb.

If I explicitly name the arguments as in myreg(X=Z,y=d) then I can give the arguments in
any order I desire.

Many functions have default arguments and R has what is called “lazy” function evaluation
which means that if an argument is not needed it is not checked. See Introduction to R for a
more discussion on default and other types of arguments.

If a local variable cannot be found while executing a function, R will look in the
environment or workspace that the function was called from. This can be convenient but it
can also be dangerous!

Many functions are dependent on other functions. If a function called within a function is
only used by that calling function and has no other use, it can be useful to define these utility
functions in the calling function definition. This means that they will not be visible to the
user of the function.

Example:

Myfun= function(X,y) {

define utilty function needed

Util=function(X) { … }

main body of myfun

…
}

Debugging Functions

It is a good practice to define your functions in a file and “source” them into R. This will
allow you to recreate your set of function objects for a given project without having to save
the workspace.

To debug a function, you can use the brute force method of placing print statements in the
function. cat() can be useful here. For example, we can define a “debugging” version of
myreg which prints out the value of se in the function. The cat command prints out a
statement reminding us of where the “print” output comes from (note the use of
fill=TRUE which insures that a new line will be generated on the console).

- R Pointers: 22 -

myreg=function(y,X){

purpose: compute lsq regression

arguments:
y -- vector of dep var
X -- array of indep vars

output:
list containing lsq coef and std errors

XpXinv=chol2inv(chol(crossprod(X)))
bhat=XpXinv%*%crossprod(X,y)
res=as.vector(y-X%*%bhat)
ssq=as.numeric(res%*%res/(nrow(X)-ncol(X)))
se=sqrt(diag(ssq*XpXinv))
cat("in myreg, se = ",fill=TRUE)
print(se)
list(b=bhat,std_errors=se)
}

When run, this new function will produce the output:

> myregout=myreg(y,X)
in myreg, se =
[1] 1.0193862 0.8327965 1.3820287

R also features a simple debugger. If you “debug” a function, you can step through the
function and inspect the contents of local variables. One can also modify their contents.

> debug(myreg)
> myreg(X,y)
debugging in: myreg(X, y)
debug: {
 XpXinv = chol2inv(chol(crossprod(X)))
 bhat = XpXinv %*% crossprod(X, y)
 res = as.vector(y - X %*% bhat)
 ssq = as.numeric(res %*% res/(nrow(X) - ncol(X)))
 se = sqrt(diag(ssq * XpXinv))
 cat("in myreg, se = ", fill = TRUE)
 print(se)
 list(b = bhat, std_errors = se)
}
Browse[1]>
debug: XpXinv = chol2inv(chol(crossprod(X)))
Browse[1]> X
[1] 1 2 3 4 10 9 8 7 6
Browse[1]> #OOPS!
debug: bhat = XpXinv %*% crossprod(X, y)
Browse[1]> XpXinv
 [,1]
[1,] 0.002777778
Browse[1]> Q
> undebug(myreg)

- R Pointers: 23 -

If there are loops in the function, the debugging command “c” can be used to allow the loop
to finish. “Q” quits the debugger. You must turn off the debugger with the undebug
command! If you want to debug other functions called by myreg, you must debug() ‘em
first!

Elementary Graphics

Graphics in R can be quite involved as the graphics capabilities are very extensive. For some
examples of what is possible issue the commands demo(graphics), demo(image) and
demo(persp).

We will only cover the bare minimum necessary to function.

Let’s return to our first example – a histogram of a distribution.

hist(rnorm(1000),breaks=50,col=”magenta”)

This creates a histogram with 50 bars and with each bar filled in the color “magenta” (type
colors() to see the list of available colors).

This plot can be improved by inclusion of plot parameters to change the x and y axis labels
and well as the “title” of the plot.

hist(rnorm(1000),breaks=30,col=”magneta”,xlab=”theta”,ylab=””,main=”Non
-parametric Estimate of Theta Distribution”)

produces

- R Pointers: 24 -

Non-parametric Estimate of Theta Distribution

theta

-3 -2 -1 0 1 2 3

0
20

40
60

80
10

0

Three other basic plots are useful:

 plot(x,y) scatterplot of x vs y
 plot(x) sequence plot of x
 matplot(X) sequence plots of columns of X
 acf(x) acf of time series in x
 boxplot(data.frame(X)) boxplots of data.frame created from X array
 each column is a plot

The col, xlab, ylab, and main parameters work on all of these plots.

- R Pointers: 25 -

In addition, the parameters

 type=“l” connects scatterplot points with a lines
 lwd=x specifies the width of lines (1 is default, > 1 is thicker)
 lty=x specifies type of line (e.g. solid vs dashed)
 xlim/ylim=c(z,w) specifies x/y axis runs from z to w

are useful. ?par displays all of the graphic parameters available.

One useful notion is the idea to lay down the basic plot frame using a “plot” command and
then add points and lines to it. abline adds a line to the current plot frame, lines and
points will add multiple lines to the current frame. In the examples below, we use
abline to add a line to a plot.

It is often useful to display more than one plot per page. To do this, we must change the
global graphic parameters with the command, par(mfrow=c(x,y)). This specifies an
array of plots x by y plotted row by row.

par(mfrow=c(2,2))
X=matrix(rnorm(5000),ncol=5)
X=t(t(X)+c(1,4,6,8,10))

hist(X[,1],main="Histogram of 1st col",col="magenta",xlab="")
plot(X[,1],X[,2],xlab="col 1", ylab="col 2",pch=17,col="red",

xlim=c(-4,4),ylim=c(0,8))
title("Scatterplot")
abline(c(0,1),lwd=2,lty=2)
matplot(X,type="l",ylab="",main="MATPLOT")
acf(X[,5],ylab="",main="ACF of 5th Col")

title() and abline() are examples of commands which modify the current “active”
plot. Other userful functions are points() and lines() to add points and points
connected by lines to the current plot.

The commands above will produce

- R Pointers: 26 -

Histogram of 1st col

Fr
eq

ue
nc

y

-2 -1 0 1 2 3 4

0
50

10
0

15
0

20
0

-4 -2 0 2 4
0

2
4

6
8

col 1

co
l 2

Scatterplot

0 200 400 600 800 1000

0
5

10

MATPLOT

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

ACF of 5th Col

- R Pointers: 27 -

System Information

 memory.limit() current memory limit
 memory.size() current memory size

 system.time(R expression) times execution of R expression
 proc.time()[3] current R session cpu usage in seconds

 list.files() list files in current wd (accepts regular exp)

getwd() obtain current working directory
 setwd() set current working directory

 Rprof(file=”filename”) turns on profiling and writes to filename
 Rprof(“”) turns off profiling
 summaryRprof(file=”filename”) summarizes output in profile file

Examples of usage are given below.

> memory.size()
[1] 191135504
> getwd()
[1] "C:/userdata/per/class/37904"
> x=matrix(rnorm(1e07),ncol=1000)
> memory.size()
[1] 332070456
> memory.limit()
[1] 1992294400
> begin=proc.time()[3]
> z=crossprod(x)
> end=proc.time()[3]
> print(end-begin)
[1] 6.59
>test=function(n){x=matrix(rnorm(n),ncol=1000);z=crossprod(x);
cz=chol(z)}
> Rprof("test.out")
> test(1e07)
> Rprof()
> summaryRprof("test.out")
$by.self
 self.time self.pct total.time total.pct
rnorm 4.40 48.9 4.40 48.9
crossprod 4.16 46.2 4.16 46.2
matrix 0.22 2.4 4.72 52.4
.Call 0.12 1.3 0.12 1.3
as.vector 0.10 1.1 4.50 50.0
chol 0.00 0.0 0.12 1.3
test 0.00 0.0 9.00 100.0

$by.total
 total.time total.pct self.time self.pct
test 9.00 100.0 0.00 0.0

- R Pointers: 28 -

matrix 4.72 52.4 0.22 2.4
as.vector 4.50 50.0 0.10 1.1
rnorm 4.40 48.9 4.40 48.9
crossprod 4.16 46.2 4.16 46.2
.Call 0.12 1.3 0.12 1.3
chol 0.12 1.3 0.00 0.0

$sampling.time
[1] 9

The profile shows that virtually all of the time in the test function was in the generation of
normal random numbers and in computing cross-products. The Cholesky root of a 1000 x
1000 matrix is essentially free! crossprod is undertaking 5 billion floating point multiply
operations (1/2 of 10,000 x 1,000*1,000).

More Lessons Learned from Timing

If you are going to fill up an array with results, pre-allocate space in the array. Do not
append to an existing array.

> n=1e04
> x=NULL
> zero=c(rep(0,5))
> begin=proc.time()[3]
> for (i in 1:n) {x=rbind(x,zero) }
> end=proc.time()[3]
> print(end-begin)
[1] 6.62
> x=NULL
> begin=proc.time()[3]
> x=matrix(double(5*n),ncol=5)
> end=proc.time()[3]
> print(end-begin)
[1] 0.07

