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Abstract

It is well known that using individual covariate information (such as body weight or
gender) to model heterogeneity in capture-recapture (CR) experiments can greatly en-
hance inferences on the size of a closed population. Since individual covariates are only
observable for captured individuals, complex conditional likelihood methods are usually
required and these do not constitute a standard generalized linear model (GLM) family.
Modern statistical techniques such as generalized additive models (GAMs), which allow
a relaxing of the linearity assumptions on the covariates, are readily available for many
standard GLM families. Fortunately, a natural statistical framework for maximizing con-
ditional likelihoods is available in the Vector GLM and Vector GAM classes of models.
We present several new R-functions (implemented within the VGAM package) specifically
developed to allow the incorporation of individual covariates in the analysis of closed pop-
ulation CR data using a GLM/GAM-like approach and the conditional likelihood. As
a result, a wide variety of practical tools are now readily available in the VGAM object
oriented framework. We discuss and demonstrate their advantages, features and flexibility
using the new VGAM CR functions on several examples.

Keywords: closed population size estimation, conditional likelihood, mark—capture-recapture,
vector generalized additive model, VGAM.

1. Introduction

Note: this vignette is essentially Yee et al. (2015).

Capture-recapture (CR) surveys are widely used in ecology and epidemiology to estimate
population sizes. In essence they are sampling schemes that allow the estimation of both n
and p in a Binomial(n, p) experiment (Huggins and Hwang 2011). The simplest CR sampling
design consists of units or individuals in some population that are captured or tagged across
several sampling occasions, e.g., trapping a nocturnal mammal species on seven consecutive
nights. In these experiments, when an individual is captured for the first time then it is
marked or tagged so that it can be identified upon subsequent recapture. On each occasion
recaptures of individuals which have been previously marked are also noted. Thus each ob-
served individual has a capture history: a vector of 1s and Os denoting capture/recapture and
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noncapture respectively. The unknown population size is then estimated using the observed
capture histories and any other additional information collected on captured individuals, such
as weight or sex, along with environmental information such as rainfall or temperature.

We consider closed populations, where there are no births, deaths, emigration or immigration
throughout the sampling period (Amstrup et al. 2005). Such an assumption is often reason-
able when the overall time period is relatively short. Otis et al. (1978) provided eight specific
closed population CR models (see also Pollock (1991)), which permit the individual capture
probabilities to depend on time and behavioural response, and be heterogeneous between indi-
viduals. The use of covariate information (or explanatory variables) to explain heterogeneous
capture probabilities in CR experiments has received considerable attention over the last 30
years (Pollock 2002). Population size estimates that ignore this heterogeneity typically result
in biased population estimates (Amstrup et al. 2005). A recent book on CR experiements as
a whole is McCrea and Morgan (2014).

Since individual covariate information (such as gender or body weight) can only be collected on
observed individuals, conditional likelihood models are employed (Pollock et al. 1984; Huggins
1989; Alho 1990; Lebreton et al. 1992). That is, one conditions on the individuals seen at least
once through-out the experiment, hence they allow for individual covariates to be considered
in the analysis. The capture probabilities are typically modelled as logistic functions of the
covariates, and parameters are estimated using maximum likelihood. Importantly, these CR
models are generalized linear models (GLMs; McCullagh and Nelder 1989; Huggins and Hwang
2011).

Here, we maximize the conditional likelihood (or more formally the positive-Bernoulli dis-
tribution) models of Huggins (1989). This approach has become standard practice to carry
out inferences when considering individual covariates, with several different software pack-
ages currently using this methodology, including: MARK (Cooch and White 2012), CARE-2
(Hwang and Chao 2003), and the R packages (R Core Team 2015): mra (McDonald 2012),
RMark (Laake 2013) and Rcapture (Baillargeon and Rivest 2014, 2007), the latter package
uses a log-linear approach, which can be shown to be equivalent to the conditional likelihood
(Cormack 1989; Huggins and Hwang 2011). These programs are quite user friendly, and
specifically, allow modelling capture probabilities as linear functions of the covariates. So an
obvious question is to ask why develop yet another implementation for closed population CR
modelling?

Firstly, nonlinearity arises quite naturally in many ecological applications, (Schluter 1988;
Yee and Mitchell 1991; Crawley 1993; Gimenez et al. 2006; Bolker 2008). In the CR context,
capture probabilities may depend nonlinearly on individual covariates, e.g., mountain pygmy
possums with lighter or heavier body weights may have lower capture probabilities compared
with those having mid-ranged body weights (e.g., Huggins and Hwang 2007; Stoklosa and
Huggins 2012). However, in our experience, the vast majority of CR software does not handle
nonlinearity well in regard to both estimation and in the plotting of the smooth functions.
Since GAMs (Hastie and Tibshirani 1990; Wood 2006) were developed in the mid-1980s they
have become a standard tool for data analysis in regression. The nonlinear relationship
between the response and covariate is flexibly modelled, and few assumptions are made on
the functional relationship. The drawback in applying these models to CR data has been the
difficult programming required to implement the approach.

Secondly, we have found several implementations of conditional likelihood slow, and in some
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instances unreliable and difficult to use. We believe our implementation has superior capa-
bilities, and has good speed and reliability. The results of Section ?? contrast our software
with some others. Moreover, the incorporation of these methods in a general, maintained
statistical package will result in them being updated as the package is updated.

Standard GLM and GAM methodologies are unable to cope with the CR models considered in
this article because they are largely restricted to one linear/additive predictor 7. Fortunately
however, a natural extension in the form of the vector generalized linear and additive model
(VGLM/VGAM) classes do allow for multiple ns. VGAMs and VGLMs are described in Yee
and Wild (1996) and Yee and Hastie (2003). Their implementation in the VGAM package
(Yee 2008, 2010, 2014) has become increasing popular and practical over the last few years,
due to large number of exponential families available for discrete/multinomial response data.
In addition to flexible modelling of both VGLMs and VGAMs, a wide range of useful features
are also available:

e smoothing capabilities;

e model selection using, e.g., AIC or BIC (Burnham and Anderson 1999);
e regression diagnostics and goodness—of—fit tools;

e reduced-rank regression (Yee and Hastie 2003) for dimension reduction;
e computational speed and robustness;

e choice of link functions;

e offsets and prior weights; and

(specifically) when using R: generic functions based on object oriented programming,
e.g., fitted(), coef (), vcov(), summary(), predict (), AIC(), etc.

Our goal is to provide users with an easy-to-use object-oriented VGAM structure, where four
family-type functions based on the conditional likelihood are available to fit the eight models
of Otis et al. (1978). We aim to give the user additional tools and features, such as those
listed above, to carry out a more informative and broader analysis of CR data; particularly
when considering more than one covariate. Finally, this article primarily focuses on the
technical aspects of the proposed package, and less so on the biological interpretation for CR
experiments. The latter will be presented elsewhere.

An outline of this article is as follows. In Section 2 we present the conditional likelihood for
CR models and a description of the eight Otis et al. (1978) models. Section 3 summarizes
pertinent details of VGLMs and VGAMSs. Their connection to the CR models is made in
Section 4. Software details are given in Section 5, and examples on real and simulated data
using the new software are demonstrated in Section 6. Some final remarks are given in Section
7. The two appendices give some technical details relating to the first and second derivatives
of the conditional log-likelihood, and the means.

2. Capture-recapture models
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Symbol Explanation

N (Closed) population size to be estimated

n Total number of distinct individuals caught in the trapping experiment

T Number of sampling occasions, where 7 > 2

Y; Vector of capture histories for individual i (i = 1,...,n) with observed values
1 (captured) and 0 (noncaptured). Each y, has at least one observed 1

“h” Model M subscript, for heterogeneity

“b” Model M subscript, for behavioural effects

“t” Model M subscript, for temporal effects

Dij Probability that individual ¢ is captured at sampling occasion j (j =1,...,7)

Zij =1 if individual ¢ has been captured before occasion j, else = 0

(7] Vector of regression coefficients to be estimated related to p;;

n Vector of linear predictors (see Table 3 for further details)

g Link function applied to, e.g., p;;. Logit by default

Table 1:  Short summary of the notation used for the positive-Bernoulli distribution for
capture-recapture (CR) experiments. Additional details are in the text.

In this section we give an outline for closed population CR models under the conditional
likelihood/GLM approach. For further details we recommend Huggins (1991) and Huggins
and Hwang (2011). The notation of Table 1 is used throughout this article.

2.1. Conditional likelihood

Suppose we have a closed population of N individuals, labelled ¢ = 1,..., N and 7 capture
occasions labelled j = 1,...,7. We make the usual assumptions that individuals in the
population behave independently of each other, individuals do not lose their tags, and tags
are recorded correctly. Let y;; = 1 if the ith individual was caught on the jth occasion and
be zero otherwise, and let n be the number of distinct individuals captured.

Let p;; denote the probability of capturing individual i on occasion j. As noted in Section
1, Otis et al. (1978) describe eight models for the capture probabilities, see Section 2.2 for
further details. Label the individuals captured in the experiment by ¢ = 1,...,n and those
never captured by i =n+1,..., N. The full likelihood is given by

Ly = KHpr”l—p” —Yij

i=1j=1
— H prw 1 o pl 1 —Yij . H H pm (1)
i=1j=1 i=n+1j=1

where K is independent of the p;; but may depend on N. The RHS of (1) requires knowledge
of the uncaptured individuals and in general cannot be computed. Consequently no MLE
of N will be available unless some homogeneity assumption is made about the noncaptured
individuals. Instead, a conditional likelihood function based only on the individuals observed
at least once is

Yij s
o | | ] 1ijJ 1_pij)1 Yid (2)
L. — 1 P .
Hs 1( pzs)
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Capture Joint probability
history Mo/ My, | My My, M/ My, M/ M,
01 (L=p)p | (1 —pc)pe (1 —p1)p2 (1 = Ppe1) Pe2
10 p(1=p) | pe(1—pr) p1(1 —p2) Pe1(1 = pr2)
11 p° Pepr p1D2 Pet Pr2
00 (1-p)? | (1—=po)? | (1=p1)(L=p2) | (1= pe1)(1—pea)
(M=dm@m) || 1 | 2 | 2(=7 | 3(=2r-1 |

Table 2: Capture history sample space and corresponding probabilities for the eight models
of Otis et al. (1978), with 7 = 2 capture occasions in closed population CR experiment. Here,
Pej = capture probability for unmarked individuals at sampling period j, p,; = recapture
probability for marked individuals at sampling period j, and p = constant capture probability
across 7 = 2. Note that the “00” row is never realized in sample data.

t

is used. Here p;  are the p;; computed as if the individual had not been captured prior to
7 so that the denominator is the probability individual ¢ is captured at least once. This
conditional likelihood (2) is a modified version of the likelihood corresponding to a positive-
Bernoulli distribution (Patil 1962).

2.2. The eight models

Models which allow capture probabilities to depend on one or a combination of time, hetero-
geneity or behavioural effects are defined using appropriate subscripts, e.g., My, depends on
time and heterogeneity. These eight models have a nested structure of which My, is the most
general. The homogeneous model My is the simplest (but most unrealistic) and has equal
capture probabilities for each individual Hy : p;; = p, regardless of the sampling occasion. All
eight models are GLMs, since the conditional likelihood (2) belongs to the exponential family
(Huggins and Hwang 2011).

To illustrate the approach, we use the following toy example throughout, consider a CR
experiment with two occasions—morning and evening (i.e., 7 = 2), with capture probabilities
varying between the two occasions. Furthermore, suppose we have collected some individual
covariates—weight and gender. The joint probabilities of all the eight models are listed in
Table 2. It can be seen that all but the positive-Binomial model (My/M},) require more
than one probability and hence more than one linear predictor, so that the original Nelder
and Wedderburn (1972) GLM framework is inadequate. Further, there are two noteworthy
points from Table 2 which apply for any 7 > 2:

o first, for My-type models, as 7 increases so will the number of linear predictors and
hence the potential number of parameters;

e secondly, it is evident that there are four main categories consisting of non-heterogeneity
models (Mp, My, M; and My,), which are paired with a heterogeneity sub-model
(respectively My, My, My, and Myp,).

The four heterogeneity models allow for each individual to have their own probability of cap-
ture/recapture. In our toy example, the capture probabilities are dependent on an individual’s
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weight and gender. We discuss these models further in Section 3.1. It is natural to consider
individual covariates such as weight and gender as linear/additive predictors. Let z; denote
a covariate (either continuous or discrete) for the ith individual, which is constant across the
capture occasions j = 1,...,7, e.g., for continuous covariates one could use the first observed
value or the mean across all j. If there are d — 1 covariates, we write ©; = (21, . .. ,a:id)T
with x;; = 1 if there is an intercept. Also, let g1(n) = exp(n)/{1 + exp(n)} be the inverse
logit function. Consider model My, then the capture/recapture probabilities are given as
[notation follows Section 3.3]

pjj = g_1< B?jJrl)l + w;l[—fl] /61[,1}) 5 j=1...,7
Pig = g_l (*6?1)1 + ’82}4‘1)1 + a’z‘T[—l] 61[—1]> ) J=2,...,7,

where ﬁ(*l)l is the behavioural effect of prior capture, ﬂzkj 11 for j =1,...,7 are time effects,
and 51[71] are the remaining regression parameters associated with the covariates. Computa-
tionally, the conditional likelihood (2) is maximized with respect to all the parameters (denote

by 0) by the Fisher scoring algorithm using the derivatives given in Appendix A.

2.3. Estimation of N

In the above linear models, to estimate N let m;(0) =1 — [[i_;(1 — pZTS) be the probability
that individual ¢ is captured at least once in the course of the study. Then, if 8 is known, the
Horvitz—Thompson (HT; Horvitz and Thompson 1952) estimator

n

N@O) = > m(e)t (3)

=1

is unbiased for the population size N and an associated estimate of the variance of N (0) is
s2(0) =Y, m(0)7? [1 —m(0)]. If 0 is estimated by 6 then one can use

A~ o~ A~ o~

VAR (N(9)) =~ $2(8) + D' VAR() D (4)

where, following from a Taylor series expansion of N (5) about N (8),

o dm(0)
_ — . 2
D= de i(6) do

3

dN(6) s

=1

T

-1 T + 8])15
e 2 | 1L (1-90)] 55

=1, t#s

I
M=

=1

3. Vector generalized linear and additive models

To extend the above linear models, we use VGLMs and VGAMs which we briefly describe
in this section. These models fit within a large statistical regression framework which will
be described in Yee (2015). The details here are purposely terse; readers are directed to Yee
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(2008, 2010) for accessible overviews and examples, and Yee and Wild (1996) and Yee and
Hastie (2003) for technical details.

3.1. Basics

Consider observations on independent pairs (x;,vy;), ¢ = 1,...,n. We use “[—1]” to delete
the first element, e.g., T;_1] = (w2, ... ,2;q) . For simplicity, we will occasionally drop the
subscript ¢ and simply write x = (z1, ... ,:cd)T. Consider a single observation where y is a

(Q-dimensional vector. For the CR models of this paper, () = 7 when the response is entered
as a matrix of Os and 1s. The only exception is for the Mg/ M}, where the aggregated counts
may be inputted, see Section 5.2. VGLMs are defined through the model for the conditional
density

flylz; B) = f(y,m, .-, mm)

for some known function f(-), where B = (8,85 --- By) is a d x M matrix of regression
coefficients to be estimated. We may also write B’ = (,8(1) B(Q) ﬁ(d)) so that 3, is the
Jth column of B and By is the kth row.

The jth linear predictor is then

d
k=1

where ;). is the kth component of 3;. In the CR context, we remind the reader that, as in
Table 2, we have M = 2 for My, M = 7 for My, and M = 27 — 1 for Myy,.

In GLMs the linear predictors are used to model the means. The 7; of VGLMs model the
parameters of a model. In general, for a parameter 0; we take

U :gj(aj),j = 1,...,M
and we say g; is a parameter link function. Write
m(xi) Bl i

N () 5&%

(6)

In practice we may wish to constrain the effect of a covariate to be the same for some of the
7n; and to have no effect for others. In our toy example, model My, with 7= M =2, d = 3,
we have

m(x:) = By + Bay iz + Bays s,
m(xi) = By + BTz + Bz Tis,

which correspond to z;2 being the individual’s weight and z;3 an indicator of gender say,
then we have the constraints f(1)2 = B(2)2 and B(1)3 = B(z)3- Then, with “*” denoting the
parameters that are estimated,

m(®) = By + Biye iz + Bz i3,
772(wz‘) 5?2)1 + 5?1)2 T2 + /82‘1)3 Zi3,
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and we may write

S (mE)Y _ Nt
U(wz)—<n;(wi)> - kglg(k)fvzk

We can also write this as (noting that x;; = 1)

) . Tl 0 1 0 6(*) Py 0 1 % ;3 0 1 %
) = (0 fﬂz’l) <0 1> <ﬂé)1> ! ( 0 fm) <1) Pz * < 0 l‘z‘3> <1> Pins

3

— Z diag(zik, zir) Hi By
k=1

In general, for VGLMs, we represent the models as
n(w;) = Bk Tik

Hy, By @ik (7)

1
M= 1= [1-

e
Il
—

where Hy, Ha, ..., Hy are known constraint matrices of full column-rank (i.e., rank ncol(Hy)),
,Bz‘k) is a vector containing a possibly reduced set of regression coefficients. Then we may write

B' = (Hi8, Ha8) - HuBj,) (8)

as an expression of (6) concentrating on columns rather than rows. Note that with no con-
straints at all, all H, = Iy and 8(;) = B(). We need both (6) and (8) since we focus on
the 7; and at other times on the variables ;. The constraint matrices for common models
are pre-programmed in VGAM and can be set up by using arguments such as parallel and
zero found in VGAM family functions. Alternatively, there is the argument constraints
where they may be explicitly inputted. Using constraints is less convenient but provides
the full generality of its power.
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3.2. Handling time-varying covariates

Often, the covariates may be time-varying, e.g., when using temperature as a covariate, then
a different value is observed and measured for each occasion j for j = 1,...,7. Again, using
our toy example with M = 2, d = 3, and 7 = 2, suppose we have time-dependent covariates
x;j, j = 1,2. We may have the model

m(@a) = Bay + Bz @ier + B(1ys Tist,
"72(932'2) = 5?2)1 + /6?1)2 T2 + /6?1)3 Xi32,

for the linear predictor on the two occasions. Here, x;;; is for the ¢th animal, kth explanatory
variable and tth time. We write this model as

N _ fmn O 1 0Y (Bin zion 0 LY o« zizr 0 LY o
awy) = (00 006 Y) (5?2)1 e O (st (502 ) (1) B

3
= Z diag(zik1, zik2) Hy By
k=1

Thus to handle time-varying covariates one needs the xij facility of VGAM (e.g., see Section
6.3), which allows a covariate to have different values for different 7; through the general
formula

d

d
n(ay) = D diag(@i, .. zan) Hy By = Y X{ Hy B 9)
k=1 k=1

where x;1; is the value of variable xj for unit i for n;. The derivation of (9), followed by
some examples are given in Yee (2010). Implementing this model requires specification of the
diagonal elements of the matrices X, and we see its use in Section 6.3. Clearly, a model
may include a mix of time-dependent and time-independent covariates. The model is then
specified through the constraint matrices Hy and the covariate matrices X?:k). Typically
in CR experiments, the time-varying covariates will be environmental effects. Fitting time-
varying individual covariates requires some interpolation when an individual is not captured
and is beyond the scope of the present work.

3.3. VGAMs

VGAMs replace the linear functions in (7) by smoothers such as splines. Hence, the central
formula is

d
m, = Hi filwi) (10)
k=1
where f7(x) = (f,:(l)(xk), e f;;k(Mk)(wk))T is a vector of M} smooth functions of xj, where

M}, = ncol(Hy) is the rank of the constraint matrix for xx. Note that standard error bands are
available upon plotting the estimated component functions (details at Yee and Wild (1996)),
e.g., see Figure 1.
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4. VGLMs and VGAMs applied to CR data

In this section we merge the results of Sections 2 and 3 to show how the eight models of Otis
et al. (1978) can be fitted naturally within the VGLM/VGAM framework.

4.1. Linear predictors and constraint matrices

As in Section 3.1, we now write y, as the capture history vector for individual i. Written
technically, y; € ({0,1})7\{0,} so that there is at least one 1 (capture). For simplicity let p.
and p, be the capture and recapture probabilities. Recall that the value for M will depend
on the CR model type and the number of capture occasions considered in the experiment,
for example, consider model M, as in Table 2, then (n1,72) = (9(pc), 9(pr)) for some link
function g, thus M = 2. The upper half of Table 3 gives these for the eight Otis et al. (1978)
models. The lower half of Table 3 gives the names of the VGAM family function that fits
those models. They work very similarly to the family argument of glm(), e.g.,

R> vglm(cbind(y1, y2, y3, y4, y5, y6) ~ weight + sex + age,
+ family = posbernoulli.t, data = pdata)

is a simple call to fit a My, model. The response is a matrix containing 0 and 1 values
only, and three individual covariates are used here. The argument name family was chosen
for not necessitating glm() users learning a new argument name; and the concept of error
distributions as for the GLM class does not carry over for VGLMs. Indeed, family denotes
some full-likelihood specified statistical model worth fitting in its own right regardless of an
‘error distribution’ which may not make sense. Each family function has logit () as their
default link, however, alternatives such as probit() and cloglog() are also permissible.
Section 5 discusses the software side of VGAM in detail, and Section 6 gives more examples.

As noted above, constraint matrices are used to simplify complex models, e.g., model My,
into model Myy,. The default constraint matrices for the My, (7) model are given in Table 4.
These are easily constructed using the drop.b, parallel.b and parallel.t arguments in the
family function. More generally, the H; may be inputted using the constraints argument—
see Yee (2008) and Yee (2010) for examples. It can be seen that the building blocks of the
H; are 1, 0, I and O. This is because one wishes to constrain the effect of z; to be the same
for capture and recapture probabilities. In general, we believe the Hy in conjunction with (9)
can accommodate all linear constraints between the estimated regression coefficients ;.

For time-varying covariates models, the M diagonal elements x;;; in (9) correspond to the
value of covariate xj at time j for individual . These are inputted successively in order using
the xij argument, e.g., as in Section 6.3.
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Model n'
Mo/ Mp 9(p)
M/ Mo (9(pe), 9(pr))
M/ M (9(p1),-- -, 9(pr))
M/ Muwn— (9(pc1), - -, 9(Per) 9(Pr2), - -, 9 (prr))
Model family =
Mo/ My, posbinomial (omit.constant = TRUE)
posbernoulli.b(drop.b = FALSE ~ 0)
posbernoulli.t(parallel.t = FALSE ~ 0)
posbernoulli.tb(drop.b = FALSE ~ 0, parallel.t = FALSE ~ 0)
My Mpn posbernoulli.b()
posbernoulli.tb(drop.b = FALSE ~ 1, parallel.t = FALSE ~ 0)
M/ My posbernoulli.t()
posbernoulli.tb(drop.b = FALSE ~ 0, parallel.t = FALSE ~ 1)
M/ Mpn posbernoulli.tb()

Table 3: Upper table gives the n for the eight Otis et al. (1978) models. Lower table gives the
relationships between the eight models and function calls. See Table 2 for definitions. The
g = logit link is default for all.

4.2. Penalized likelihood and smoothing parameters

For each covariate zj, the smoothness of each component function f(*]) ;, in (10) can be con-

trolled by the non-negative smoothing parameters A(;;. Yee and Wild (1994) show that,
when vector splines are used as the smoother, the penalized conditional log-likelihood

/ "
ay

is maximized. Here, ¢, is the logarithm of the conditional likelihood function (2). The
penalized conditional likelihood (11) is a natural extension of the penalty approach described
in Green and Silverman (1994) to models with multiple 7;.

d ncol(Hyg)

1
52 2 Auw
k

=1 j=1

ly=log L,="{.— (11)

An important practical issue is to control for overfitting and smoothness in the model. The
s function used within vgam() signifies the smooth functions f(*]  estimated by vector
splines, and there is an argument spar for the smoothing parameters, and a relatively small
(positive) value will mean much flexibility and wiggliness. As spar increases the solution
converges to the least squares estimate. More commonly, the argument df is used, and this
is known as the equivalent degrees of freedom (EDF). A value of unity means a linear fit, and
the default is the value 4 which affords a reasonable amount of flexibility.

11
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parallel.t lparallel.t

0, 1, 1, 0, IT ) ( IT )
arallel.b , ,
P < 1.1 1,4 ) ( 1.4 ) < 1.1 L) L1

OTX(T—I) 1; 1; OTX(T*l) I I
|
‘parallel.b < | P} 1,1 )7\ 1 I Loy )7\ Loy

Table 4: For the general My, (7) family posbernoulli.tb(), the constraint matrices cor-
responding to the arguments parallel.t, parallel.b and drop.b. In each cell the LHS
matrix is Hi when drop.b is FALSE for zp. The RHS matrix is when drop.b is TRUE for
xk; it simply deletes the left submatrix of Hy. These Hy should be seen in light of Table 3.
Notes: (i) the default for posbernoulli.tb() is H; = the LHS matrix of the top-right cell
and Hy = the RHS matrix of the top-left cell; and (ii) L1} = (0r—1]Tr—1).

5. Software details for CR models in VGAM

Having presented the conditional likelihood (2) and VGLMs/VGAMs for CR models, we
further discuss the fitting in VGAM. It is assumed that users are somewhat familiar with
modelling in R and using glm() class objects. VGAM, authored by TWY, uses S4 classes. In
order to present the new family functions developed for vglm() and vgam(), some additional
preliminaries for VGAM are given below. Version 0.9-4 or later is assumed, and the latest
prerelease version is available at http://www.stat.auckland.ac.nz/yee/VGAM/prerelease.

In vglm(Q) /vgam(), both M, and M, are serviced by family = posbinomial(), i.e., the
positive-binomial family. For models My, M; and My, each of these are serviced by their
corresponding family = posbernoulli.-type functions as in Table 3. Formulas of the form
~ 1 correspond to Mg, My, M; and My,; otherwise they are My, My, My, and Myy,.

Below we describe each of the eight models with their VGAM representation and their default
values, we also give additional remarks. All eight models can be fit using posbernoulli.tb(),
it is generally not recommended as it is less efficient in terms of memory requirements and
speed.

5.1. Basic software details

All family functions except posbinomial() should have a n x 7 capture history matrix as
the response, preferably with column names. Indicators of the past capture of individual i,
defined as z;;, are stored on VGAM objects as the cap.histl component in the extra slot.
Also, there is a component called capl which indicates on which sampling occasion the first
capture occurred.

As will be illustrated in Section 6.3, a fitted CR object stores the point estimate for the
population size estimator (3), in the extra slot with component name N.hat. Likewise,
its standard error (4) has component name SE.N.hat. By default all the family functions
return fitted values corresponding to the probabilities in the conditional likelihood function
(2), however, Appendix B describes an alternative type of fitted value; the choice is made
by the argument type.fitted, and the fitted values are returned by the fitted () methods


http://www.stat.auckland.ac.nz/ yee/VGAM/prerelease

Thomas W. Yee, Jakub Stoklosa, Richard M. Huggins

function.

Notice that in Table 3, the VGAM family functions have arguments such as parallel.b
which may be assigned a logical or else a formula with a logical as the response. If it is a
single logical then the function may or may not apply that constraint to the intercept. The
formula is the most general and some care must be taken with the intercept term. Here are
some examples of the syntax:

e parallel.b = TRUE ~ x2 means a parallelism assumption is applied to variables g
and the intercept, since formulas include the intercept by default.

e parallel.b = TRUE ~ x2-1 means a parallelism assumption is applied to variable z2

only.

e parallel.b = FALSE ~ 0 means a parallelism assumption is applied to every variable
including the intercept.

5.2. Models Mg/ M,,
For Mo/ My, the defaults are given as

R> args(posbinomial)

function (link = "logit", multiple.responses = FALSE, parallel = FALSE,
omit.constant = FALSE, p.small = 1le-04, no.warning = FALSE,
zero = NULL)

NULL

Both models can alternatively be fitted using posbernoulli.t(), posbernoulli.b() and
posbernoulli.tb() by setting the appropriate constrains/arguments (Table 3). For example,
setting posbernoulli.t(parallel.t = FALSE ~ 0) constrains all the p; to be equal.

If comparing all eight models using AIC() or BIC() then setting omit.constant = TRUE
will allow for comparisons to be made with the positive-Bernoulli functions given below.
The reason is that this omits the log-normalizing constant log (T;ﬁ) from its conditional log-
likelihood so that it is comparable with the logarithm of (2). l

An extreme case for My is where p;; = p; with p; being parameters in their own right
(Otis et al. 1978). While this could possibly be fitted by creating a covariate of the form
factor(1:n) there would be far too many parameters for comfort. Such an extreme case is

not recommended to avoid over-parameterization.
5.3. Models M,/ M,

R> args(posbernoulli.t)

function (link = "logit", parallel.t = FALSE ~ 1, iprob = NULL,
p-small = le-04, no.warning = FALSE)
NULL
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Note that for M, capture probabilities are the same for each individual but may vary with
time, i.e., Ho : p;; = pj. One might wish to constrain the probabilities of a subset of sampling
occasions to be equal by forming the appropriate constraint matrices.

Argument iprob is for an optional initial value for the probability, however all VGAM family
functions are self-starting and usually do not need such input.

5.4. Models M,/ M,

R> args(posbernoulli.b)

function (link = "logit", drop.b = FALSE ~ 1, type.fitted = c("likelihood.cond",
"mean.uncond"), I2 = FALSE, ipcapture = NULL, iprecapture = NULL,
p-small = le-04, no.warning = FALSE)

NULL

Setting drop.b = FALSE ~ 0 assumes there is no behavioural effect and this reduces to
Mo/ M;,. The default constraint matrices are

0 1 1
(1) meone (1)

so that the first coefficient 5?1)1 corresponds to the behavioural effect. Section 6.4 illustrates
how the VGLM/VGAM framework can handle short-term and long-term behavioural effects.

5.5. Models M,/ My,

There are three arguments which determine whether there are behavioural effects and /or time
effects: parallel.b, parallel.t and drop.b. The last two are as above. The defaults are

R> args(posbernoulli.tb)

function (link = "logit", parallel.t = FALSE ~ 1, parallel.b = FALSE ~
0, drop.b = FALSE ~ 1, type.fitted = c("likelihood.cond",
"mean.uncond"), imethod = 1, iprob NULL, p.small = 1le-04,
no.warning = FALSE, ridge.constant = 0.01, ridge.power = -4)

NULL

One would usually want to keep the behavioural effect to be equal over different sampling
occasions, therefore parallel.b should be normally left to its default. Allowing it to be FALSE
for a covariate xj means an additional 7 — 1 parameters, something that is not warranted
unless the data set is very large and/or the behavioural effect varies greatly over time.

Arguments ridge.constant and ridge.power concern the working weight matrices and are
explained in Appendix A.

Finally, we note that using

R> vglm(..., family = posbernoulli.tb(parallel.b = TRUE ~ 0, parallel.t = TRUE ~ 0,
+ drop.b = TRUE ~ 0))

fits the most general model. Its formula is effectively (5) for M = 27 — 1, hence there are
(27 — 1)d regression coefficients in total—far too many for most data sets.
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6. Examples

We present several examples using VGAM on both real-life and simulated CR data.

6.1. Deer mice

Our first example uses a well-known data set analyzed in both Huggins (1991) and Amstrup
et al. (2005). The CR data was collected on the deer mouse (Peromyscus maniculatus), a
small rodent native to North America, and about 8 to 10 cm long, not counting the length of
the tail. There were n = 38 individual mice caught over 7 = 6 trapping occasions. Individual
body weight, sex and age (young or adult) were also recorded, which we used as covariates to
model heterogeneity. The data are given in the following data frame deermice:

R> head(deermice, 4)

yL yey

S W N -
e
= = O = N

O OO, W

y=y

1

= O = =D

5
1
1 1
1 1
1 1

0

1
0
0

y

y
y
y

y6 sex age weight

12
15
15
15

Each row represents the capture history followed by the corresponding covariate values for

each observed individual.

We compared our results with those given in Huggins (1991),

who reported an analysis which involved fitting all eight model variations. Prior to this we
relabelled the age and sex covariates to match those given in Huggins (1991).

R> deermice <- within(deermice, {

+ age <- 2 - as.numeric(age)
+ sex <- 1 - as.numeric(sex)

+})

Below we demonstrate model fitting for each model in VGAM:

R> M.0O <-
+

R> M.b <-
+

R> M.t <-
+
R> M.h <-
+
+
+

+

+

vglm(cbind(y1, y2, y3, y4, y5, y6) "~ 1,
posbernoulli.t(parallel = TRUE ~ 1), data = deermice)

vglm(cbind(y1, y2,
posbernoulli.b,
vglm(cbind(y1, y2,
posbernoulli.t,
vglm(cbind(y1, y2,

y3, y4, y5, y6) ~ 1,

data = deermice)

y3, y4, y5, y6) ~ 1,

data = deermice)

y3, y4, y5, y6) ~ weight + sex + age,

posbernoulli.t(parallel = TRUE ~ weight + sex + age), data = deermice)
R> M.th <- vglm(cbind(y1l, y2, y3, y4, y5, y6) ~ weight + sex + age,

posbernoulli.t, data = deermice)

R> M.tb <- vglm(cbind(yl, y2, y3, y4, y5, y6) ~ 1,

posbernoulli.tb, data = deermice)

R> M.bh <- vglm(cbind(yl, y2, y3, y4, y5, y6) ~ weight + sex + age,

posbernoulli.b, data = deermice)

R> M.tbh <- vglm(cbind(yl, y2, y3, y4, y5, y6) ~ weight + sex + age,
posbernoulli.tb, data = deermice)
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Notice that parallel = TRUE was used for models Mg/ Mj. Population size estimates with
standard errors (SE), log-likelihood and AIC values, can all be easily obtained using the
following, for example, consider model Myy:

R> c(M.bh@extra$N.hat, M.bh@extra$SE.N.hat)

[1] 47.144 7.322

R> c(logLik(M.bh), AIC(M.bh))

[1] -139.5 289.1

We did this for each model, and obtained the following:
R> Table

M.tbh M.bh M.tb M.th M.h M.b M.t M.0
N.hat 47.14 47.14 46.48 39.66 39.85 42.26 38.40 38.47

SE 9.70 7.32 12.64 1.61 1.72 3.75 0.66 0.72
-21n(L) 274.66 279.08 296.36 279.10 289.74 300.86 304.84 314.54
AIC 294.66 289.09 310.36 297.10 297.75 304.87 316.84 316.54

Based on the AIC, it was concluded that My, was superior (although other criteria can also
be considered), yielding the following coefficients (as well as their SEs):

R> round(coef (M.bh), 2)

(Intercept):1 (Intercept):2 weight sex age
1.18 -2.91 0.16 0.92 -1.88

R> round(sqrt(diag(vcov(M.bh))), 2)

(Intercept):1 (Intercept):2 weight sex age
0.41 0.90 0.06 0.35 0.63

which, along with the estimates for the population size, agree with the results of Huggins
(1991). The first coefficient, 1.18, is positive and hence implies a trap-happy effect.

Now to illustrate the utility of fitting VGAMs, we performed some model checking on My, by
confirming that the component function of weight is indeed linear. To do this, we smoothed
this covariate but did not allow it to be too flexible due to the size of the data set.

R> fit.bh <- vgam(cbind(y1l, y2, y3, y4, y5, y6) ~ s(weight, df = 3) + sex + age,
+ posbernoulli.b, data = deermice)

R> plot(fit.bh, se = TRUE, las = 1, lcol = "blue", scol = "orange",

+ rcol = "purple", scale = 5)
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Notice that the s () function was used to smooth over the weight covariate with the equivalent
degrees of freedom set to 3. Plots of the estimated component functions against each covariate
are given in Figure 1. In general, weight does seem to have a (positive) linear effect on the
logit scale. Young deer mice appear more easily caught compared to adults, and gender seems
to have a smaller effect than weight. A more formal test of linearity is

R> summary(fit.bh)

Call:

vgam(formula = cbind(yl, y2, y3, y4, y5, y6) ~ s(weight, df = 3) +
sex + age, family = posbernoulli.b, data = deermice)

Number of linear predictors: 2

Names of linear predictors: logit(pcapture), logit(precapture)

Dispersion Parameter for posbernoulli.b family: 1

Log-likelihood: -137.9 on 69.04 degrees of freedom

Number of iterations: 12

DF for Terms and Approximate Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept):1 1

(Intercept):2

s(weight, df = 3)

sex
age

1
1 2 3.2 0.194
1
1

and not surprisingly, this suggests there is no significant nonlinearity. This is in agreement
with Section 6.1 of Hwang and Huggins (2011) who used kernel smoothing.

Section 6.4 reports a further analysis of the deermice 