
SparseM: A Sparse Matrix Package for R ∗

Roger Koenker and Pin Ng

March 5, 2005

Abstract

SparseM provides some basic R functionality for linear algebra with
sparse matrices. Use of the package is illustrated by a family of linear
model fitting functions that implement least squares methods for problems
with sparse design matrices. Significant performance improvements in
memory utilization and computational speed are possible for applications
involving large sparse matrices.

1 Introduction

Many applications in statistics involve large sparse matrices, matrices with a
high proportion of zero entries. A typical example from parametric linear re-
gression involves longitudinal data with fixed effects: many indicator variables
consisting of a few ones and a large number of zero elements. In nonparamet-
ric regression, e.g. smoothing splines design matices are extremely sparse often
with less than 1% of nonzero entries. Conventional algorithms for linear alge-
bra in such situations entail exorbitant storage requirements and many wasteful
floating point operations involving zero entries. For some specially structured
problems, e.g. banded matrices, special algorithms are available. But recent de-
velopments in sparse linear algebra have produced efficient methods for handling
unstructured sparsity in a remarkably efficient way.

Exploiting these developments, the package SparseM provides some basic
linear algebra functionality for sparse matrices stored in several standard for-
mats. The package attempts to make the use of these methods as transparent
as possible by adhering to the method-dispatch conventions of R.1 Functions
are provided for: coercion, basic unary and binary operations on matrices and
linear equation solving.

Our implementation is based on Sparskit (Saad (1994)), which provides one
of the more complete collection of subroutines for BLAS like functions and sparse

∗This package should be considered experimental. The authors would welcome comments
about any aspect of the package. This document is an R vignette prepared with the aid of
Sweave, Leisch(2002). Support from NSF SES 99-11184 is gratefully acknowledged.

1The first release of the SparseM packaged used S3 method-dispatch, the current release
has adopted the new S4 method dispatch. Our thanks to Brian Ripley and Kurt Hornik for
advice on this aspect of the package.

1

matrix utilities available in the public domain.2 Our Cholesky factorization and
backsolve routines are based on Ng and Peyton (1993), which still appears to
represent the state of the art for solving linear systems involving symmetric
positive definite matrices.3

In Section 2 we discuss in more detail the components of the package, provide
some examples on their use and explain the basic design philosopy. Section 3
discusses some refinements proposed for future implementations.

SparseM can be obtained from the Comprehensive R Archive Network, CRAN,
at http://cran.r-project.org/.

2 Design Philosophy

In this section we briefly describe some aspects of our design philosophy begin-
ning with the question of storage modes.

2.1 Storage Modes

There are currently more than twenty different storage formats used for sparse
matrices. Each of these formats is designed to exploit particular features of
the matrices that arise in various applications areas to gain efficiency in both
memory utilization and computation. Duff, Erisman and Reid (1986) and Saad
(1994) provide detailed accounts of the various storage schemes. Following
Saad (1994) we have chosen compressed sparse row (csr) format as the primary
storage mode for SparseM.4 An n by m matrix A with real elements aij , stored

2Recently, a sparse matrix version of BLAS subprograms has been provided by Duff, Heroux
and Pozo (2002). Unfortunately, it handles only sparse matrix times dense matrix multiplica-
tion at the Level 3 Sparse BLAS, but not sparse matrix times sparse matrix multiplication.
The sparse matrix utilities available in Sparskit, e.g. masking, sorting, permuting, extracting,
and filtering, which are not available in Sparse BLAS, are also extrememly valuable. Sparse
linear algebra is a rapidly developing field in numerical analysis and we would expect to see
many important new developments that could be incorportated into SparseM and related code
in the near future.

3There are also several new direct methods for solving unsymmetric sparse systems of linear
equations over the last decade. A rather comprehensive comparison of performance of some
prominent software packages for solving general sparse systems can be found in Gupta (2002).
Unfortunately, the comparisons do not include the Peyton and Ng algorithm employed here.
The top performer reported in the study is WSMP (Gupta, 2000) which requires proprietary
XLF Fortran complier, XLC C compilier and the AIX operating system, and the library is
not released under the GPL license. The runner up reported is MUMPS (Amestoy, Duff,
L’Excellent and Koster, 2002) which has a non-commerical license but is written in Fortran
90. The third best performer is UMFPACK (Davis, 2002), which is implemented in MATLAB
Version 6.0 and later, also has a non-commerical license. Since it is a general sparse solver
not written specifically for symmetric positive definite systems of linear equations, it would be
interesting to see how it compares with the Choleski factorization of Peyton and Ng adopted
here.

4Other sparse storage formats supported in SparseM include compressed sparse column
(csc), symmetric sparse row (ssr) and symmetric sparse column (ssc). The data structure
of csc format is the same as that of csr format except the information is stored column-
wise. The ssr and ssc formats are special cases of csr and csc, respectively, for symmetric
matrices, only the information in the lower triangle is stored. We have created new class

2

in csr format consists of three arrays:

� ra: a real array of nnz elements containing the non-zero elements of A,
stored in row order. Thus, if i < j, all elements of row i precede elements
from row j. The order of elements within the rows is immaterial.

� ja: an integer array of nnz elements containing the column indices of the
elements stored in ra.

� ia: an integer array of n+1 elements containing pointers to the beginning
of each row in the arrays ra and ja. Thus ia[i] indicates the position in
the arrays ra and ja where the ith row begins. The last (n+1)st element
of ia indicates where the n + 1 row would start, if it existed.

The following commands illustrate typical coercion operations.

> library(SparseM)

[1] "SparseM library loaded"

> a <- rnorm(5 * 4)

> a[abs(a) < 0.7] <- 0

> A <- matrix(a, 5, 4)

> A

[,1] [,2] [,3] [,4]
[1,] -2.031573 0.000000 1.818886 0.000000
[2,] 1.090416 1.012365 0.000000 -1.811949
[3,] 1.024781 2.632895 0.000000 0.000000
[4,] 0.000000 1.277027 0.000000 0.000000
[5,] -2.475810 0.000000 0.000000 0.000000

> A.csr <- as.matrix.csr(A)

> A.csr

An object of class "matrix.csr"
Slot "ra":
[1] -2.031573 1.818886 1.090416 1.012365 -1.811949 1.024781 2.632895
[8] 1.277027 -2.475810

Slot "ja":
[1] 1 3 1 2 4 1 2 2 1

Slot "ia":
[1] 1 3 6 8 9 10

Slot "dimension":
[1] 5 4

objects, matrix.csr, matrix.csc, matrix.ssr, matrix.ssc, for each of these four formats.

3

> as.matrix(A.csr)

[,1] [,2] [,3] [,4]
[1,] -2.031573 0.000000 1.818886 0.000000
[2,] 1.090416 1.012365 0.000000 -1.811949
[3,] 1.024781 2.632895 0.000000 0.000000
[4,] 0.000000 1.277027 0.000000 0.000000
[5,] -2.475810 0.000000 0.000000 0.000000

To facilitate testing we have included read.matrix.hb and write.matrix.hb
to deal with matrices in the Harwell-Boeing storage format. A list of sites
with extensive collections of sparse matrices in this format can be found at
http://math.nist.gov/MatrixMarket/. Details on the Harwell-Boeing for-
mat can be found in the help files for read.matrix.hb and write.matrix.hb
as well as in the User’s Guide for Harwell-Boeing Sparse Matrix Collection at
ftp://ftp.cerfacs.fr/pub/harwell_boeing/.

2.2 Visualization

The image function allows users to explore the structure of the sparsity in
matrices stored in csr format. In the next example we illustrate the design
matrix for a bivariate spline smoothing problem illustrated in Koenker and
Mizera (2002). The upper 100 rows of the matrix are an identity matrix, the
lower 275 rows represent the penalty component of the design matrix. In this
example X has 1200 nonzero entries, roughly 3.2 percent of the number of
floating point numbers needed to represent the matrix in dense form. The X ′X
form of the matrix has 1162 nonzero elements or 11.62 percent of the entries in
the full matrix.

4

column

ro
w

20 40 60 80

30
0

20
0

10
0

X

column

ro
w

20 40 60 80

10
0

80
60

40
20

X’X

2.3 Indexing and Binding

Indexing and the functions cbind and rbind for the matrix.csr class work just
like they do on dense matrices. Objects returned by cbind and rbind operating
on objects of the matrix.csr class retain their matrix.csr class attribute.

2.4 Linear Algebra

SparseM provides a reasonably complete set of commonly used linear algebra
operations for the matrix.csr class. The general design philosophy for this set
of functions is that operations on matrix.csr class will yield an object also in
matrix.csr class with a few exceptions mentioned below.

The functions t, and %*% for transposition, and multiplication of csr ma-
trices work just like their dense matrix counterparts and the returned objects
retain their matrix.csr class. The diag and diag<- functions for extracting
and assigning the diagonal elements of csr matrices also work like their dense
matrix counterparts except that the returned objects from diag are dense vec-
tors with appropriate zeros reintroduced. The unary and binary functions in
the group generic functions Ops return objects of matrix.csr class.

5

2.5 Linear Equation Solving

Research on solutions to sparse symmetric positive definite systems of linear
equations has focused primarily on methods based on the Cholesky factorization,
and we have followed this approach. There are three functions chol, backsolve
and solve to handle a symmetric positive definite system of linear equations.
chol performs Cholesky factorization using the block sparse Cholesky algo-
rithms of Ng and Peyton (1993). The result can then be passed on to backsolve
with a right-hand-side to obtain the solutions. For systems of linear equations
that only vary on the right-hand-side, the result from chol can be reused, sav-
ing considerable computing time. The function solve, which combines the
use of chol and backsolve, will compute the inverse of a matrix by default, if
the right-hand-side is missing.The data structure of the chol.matrix.csr ob-
ject produced by the sparse Cholesky method is comewhat complicated. Users
interested in recovering the Cholesky factor in some more conventional form
should recognize that the original matrix has undergone a permutation of its
rows and columns before Cholesky factorization; this permutation is given by
the perm component of the structure. Currently no coercion methods are sup-
plied for the class chol.matrix.csr, but the computation of the determinant
by extracting the diagonal of the Cholesky factor offers some clues for how such
coercion could be done. This determinant is provided as a component of the
chol.matrix.csr structure because it can be of some value in certain maximum
likelihood applications.

2.6 Least Squares Problems

To illustrate the functionality of the package we include an application to least
squares regression. The group of functions slm, slm.fit, slm.fit.csr, sum-
mary.slm and print.summary.slm provide analogues of the familiar lm family.
In the current implementation slm processes a formula object in essentially the
same way as lm, and calls an intermediate function slm.fit, which in turn calls
slm.fit.csr where the actual fitting occurs. Rather than the usual QR decom-
position, slm.fit.csr proceeds by backsolving the triangular system resulting
from a Cholesky decomposition of the X ′X matrix. The sparsity of the resulting
structure is usually well preserved by this strategy. The use of sparse methods is
quite transparent in the present slm implementation and summary.slm with the
associated print.summary.slm should produce identical output to their cousins
in the lm family. However, the speed and memory utilization can be quite dram-
matically improved. In the following problem, which involves a design matrix
that is 1850 by 712 there is a nearly three hundred fold improvement in speed
(on a Sun Ultra 2) when we compare lm.fit and slm.fit. The comparison is
somewhat less compelling between lm and slm since there is a substantial com-
mon fixed cost to the setup of the problems. In addition to the computational
time saved there is also a significant reduction in the memory required for large
sparse problems. In extreme cases memory becomes a binding constraint on
the feasibility of large problems and sparse storage is critical in expanding the

6

range of problem sizes. This is particularly true of applications in smoothing
and related image processing contexts.

> data(lsq)

> X <- model.matrix(lsq)

> y <- model.response(lsq)

> X1 <- as.matrix(X)

> slm.time <- unix.time(slm.o <- slm(y ~ X1 - 1))

> lm.time <- unix.time(lm.o <- lm(y ~ X1 - 1))

> slm.fit.time <- unix.time(slm.fit(X, y))

> lm.fit.time <- unix.time(lm.fit(X1, y))

> cat("slm time =", slm.time, "\n")

slm time = 1.78 0.85 2.63 0 0

> cat("lm time =", lm.time, "\n")

lm time = 3.41 1.14 4.56 0 0

> cat("slm.fit time =", slm.fit.time, "\n")

slm.fit time = 0.15 0.06 0.22 0 0

> cat("lm.fit time =", lm.fit.time, "\n")

lm.fit time = 2.56 0.21 2.77 0 0

> cat("slm Results: Reported Coefficients Truncated to 5 ", "\n")

slm Results: Reported Coefficients Truncated to 5

> sum.slm <- summary(slm.o)

> sum.slm$coef <- sum.slm$coef[1:5,]

> sum.slm

Call:
slm(formula = y ~ X1 - 1)

Residuals:
Min 1Q Median 3Q Max

-0.19522 -0.01400 0.00000 0.01442 0.17833

Coefficients:
Estimate Std. Error t value Pr(>|t|)

[1,] 823.3613 0.1274 6460.4 <2e-16 ***
[2,] 340.1156 0.1711 1987.3 <2e-16 ***
[3,] 472.9760 0.1379 3429.6 <2e-16 ***
[4,] 349.3175 0.1743 2004.0 <2e-16 ***

7

[5,] 187.5595 0.2100 893.3 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.03789 on 1138 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: 1
F-statistic: 4.504e+07 on 712 and 1138 DF, p-value: 0

> cat("lm Results: Reported Coefficients Truncated to 5 ", "\n")

lm Results: Reported Coefficients Truncated to 5

> sum.lm <- summary(lm.o)

> sum.lm$coefficients <- sum.lm$coefficients[1:5,]

> sum.lm

Call:
lm(formula = y ~ X1 - 1)

Residuals:
Min 1Q Median 3Q Max

-1.952e-01 -1.400e-02 1.859e-19 1.442e-02 1.783e-01

Coefficients:
Estimate Std. Error t value Pr(>|t|)

X11 823.3613 0.1274 6460.4 <2e-16 ***
X12 340.1156 0.1711 1987.3 <2e-16 ***
X13 472.9760 0.1379 3429.6 <2e-16 ***
X14 349.3175 0.1743 2004.0 <2e-16 ***
X15 187.5595 0.2100 893.3 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.03789 on 1138 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: 1
F-statistic: 4.504e+07 on 712 and 1138 DF, p-value: < 2.2e-16

3 Some Potential Refinements

There are still many features that could be usefully added to the package.
Among these we would especially like to see: crossprod, row, col, code for
eigen, svd would also be desirable, but seems somewhat more problematic.
Support for other storage formats might be eventually useful, although csr, csc,
ssr, ssc formats seem quite sufficient for most purposes. A major improvement
in the slm implementation would be to replace the line

X <- as.matrix.csr(model.matrix(Terms, m, contrasts))

8

which coerces the dense form of the regression design matrix produced by
model.matrix into the sparse form. Ideally, this would be done with a spe-
cial .csr form of model.matrix, thus obviating the need to construct the dense
form of the matrix. We have not looked carefully at the question of implement-
ing this suggestion, but we (still) hope that someone else might be inspired to
do so.

Our primary motivation for R sparse linear algebra comes from our expe-
rience, see e.g. Koenker, Ng and Portnoy (1994) and He and Ng (1999), with
interior point algorithms for quantile regression smoothing problems. We plan
to report on this experience elsewhere.

References

Amestoy, P. R., I. S. Duff, J. -Y. L’Excellent and J. Koster.
(2002). MUltifrontal Massively Parallel Solver (MUMPS Version 4.2 beta)
Users’ Guide, http://www.enseeiht.fr/lima/apo/MUMPS/

Davis, T. A. (2002). UMFPACK Version 4.0 User Guide,
http://www.cise.ufl.edu/research/sparse/umfpack.

Duff, I.S., A. M. Erisman and J. K. Reid. (1986). Direct Methods for
Sparse Matrices, Clarendon Press, Oxford.

Duff, I. S., M. A. Heroux, and R. Pozo. (2002). “An Overview of the
Sparse Basic Linear Algebra Subroutines: The New Standard from the BLAS
Technical Forum,” ACM Transactions on Mathematical Software, 28, 239-267.

Gupta, A. (2000). WSMP: Watson Sparse Matrix Package (Part-II: direct
solution of general sparse systems). Technical Report RC 21888 (98472), IBM
T.J. Watson Research Center, Yorktown Heights, N.Y., http://www.cs.umn.edu/
∼agupta/doc/wssmp-paper.ps

Gupta, A. (2002). “Recent Advances in Direct Methods for Solving Un-
symmetric Sparse Systems of Linear Equations,” ACM Transactions on Mathe-
matical Software, 28, 301-324.

He, X., and P. Ng (1999): “COBS: Qualitatively Constrained Smoothing
Via Linear Programming,” Computational Statistics, 14, 315–337.

Koenker, R., P. Ng, and S. Portnoy (1994): “Quantile smoothing
splines,” Biometrika, 81, 673–680.

Leisch, F. (2002). Sweave: Dynamic Generation of Statistical Reports
Using Literate Data Analysis, http://www.wu-wien.ac.at/am.

Koenker, R. and Mizera, I (2002). Penalized Triograms: Total Variation
Regularization for Bivariate Smoothing, preprint.

Ng, E. G. and B. W. Peyton. (1993) Block sparse Cholesky algorithms
on advanced uniprocessor computers”, SIAM J. Sci. Comput., 14, 1034-1056.

Saad, Y. (1994) Sparskit: A basic tool kit for sparse matrix computations;
Version 2, http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html

9

