
An Introduction to RcppEigen

Douglas Bates

RcppEigen version 0.1.3 as of October 27, 2011

Abstract

The RcppEigen package provides access from R to the Eigen C++ template library for numerical linear
algebra. Rcpp (Eddelbuettel and François, 2011b) classes and specializations of the C++ templated
functions as and wrap from Rcpp provide the “glue” for passing objects from R to C++ and back.

1 Introduction

As stated in the Rcpp (Eddelbuettel and François, 2011a) vignette, “Extending Rcpp”

Rcpp facilitates data interchange between R and C++ through the templated functions Rcpp::as
(for conversion of objects from R to C++) and Rcpp::wrap (for conversion from C++ to R).

The RcppEigen package provides the header files composing the Eigen C++ template library and imple-
mentations of Rcpp::as and Rcpp::wrap for the C++ classes defined in Eigen.

The Eigen classes themselves provide high-performance, versatile and comprehensive representations
of dense and sparse matrices and vectors, as well as decompositions and other functions to be applied to
these objects. In the next section we introduce some of these classes and show how to interface to them
from R.

2 Eigen classes

Eigen (http://eigen.tuxfamily.org) is a C++ template library providing classes for many forms of
matrices, vectors, arrays and decompositions. These classes are flexible and comprehensive allowing for
both high performance and well structured code representing high-level operations. C++ code based on
Eigen is often more like R code, working on the “whole object”, than compiled code in other languages
where operations often must be coded in loops.

As in many C++ template libraries using template meta-programming (Abrahams and Gurtovoy,
2004), the templates themselves can be very complicated. However, Eigen provides typedef’s for common
classes that correspond to R matrices and vectors, as shown in Table 1. We will use these typedef’s
throughout this document.

The C++ classes shown in Table 1 are in the Eigen namespace, which means that they must be
written as Eigen::MatrixXd. However, if we preface our use of these class names with a declaration like

using Eigen : : MatrixXd ;

we can use these names without the qualifier.

Table 1: Correspondence between R matrix and vector types and classes in the Eigen namespace.
R object type Eigen class typedef

numeric matrix MatrixXd

integer matrix MatrixXi

complex matrix MatrixXcd

numeric vector VectorXd

integer vector VectorXi

complex vector VectorXcd

Matrix::dgCMatrix SparseMatrix<double>

1

http://eigen.tuxfamily.org

2.1 Mapped matrices in Eigen

Storage for the contents of matrices from the classes shown in Table 1 is allocated and controlled by the
class constructors and destructors. Creating an instance of such a class from an R object involves copying
its contents. An alternative is to have the contents of the R matrix or vector mapped to the contents of
the object from the Eigen class. For dense matrices we use the Eigen templated class Map. For sparse
matrices we use the Eigen templated class MappedSparseMatrix.

We must, of course, be careful not to modify the contents of the R object in the C++ code. A
recommended practice is always to declare mapped objects as const.

2.2 Arrays in Eigen

For matrix and vector classes Eigen overloads the ‘*’ operator to indicate matrix multiplication. Occa-
sionally we want component-wise operations instead of matrix operations. The Array templated classes
are used in Eigen for component-wise operations. Most often we use the array() method for Matrix or
Vector objects to create the array. On those occasions when we wish to convert an array to a matrix or
vector object we use the matrix() method.

2.3 Structured matrices in Eigen

There are Eigen classes for matrices with special structure such as symmetric matrices, triangular matrices
and banded matrices. For dense matrices, these special structures are described as “views”, meaning that
the full dense matrix is stored but only part of the matrix is used in operations. For a symmetric matrix
we need to specify whether the lower triangle or the upper triangle is to be used as the contents, with
the other triangle defined by the implicit symmetry.

3 Some simple examples

C++ functions to perform simple operations on matrices or vectors can follow a pattern of:

1. Map the R objects passed as arguments into Eigen objects.

2. Create the result.

3. Return Rcpp::wrap applied to the result.

An idiom for the first step is

using Eigen : : Map;
using Eigen : : MatrixXd ;
using Rcpp : : as ;

const Map<MatrixXd> A(as<Map<MatrixXd> >(AA)) ;

where AA is the name of the R object (called an SEXP in C and C++) passed to the C++ function.
The cxxfunction from the inline (Sklyar, Murdoch, Smith, Eddelbuettel, and François, 2010) package

for R and its RcppEigen plugin provide a convenient way of developing and debugging the C++ code. For
actual production code we generally incorporate the C++ source code files in a package and include the
line LinkingTo: Rcpp, RcppEigen in the package’s DESCRIPTION file. The RcppEigen.package.skeleton
function provides a quick way of generating the skeleton of a package using RcppEigen facilities.

The cxxfunction with the "Rcpp" or "RcppEigen" plugins has the as and wrap functions already
defined as Rcpp::as and Rcpp::wrap. In the examples below we will omit these declarations. Do
remember that you will need them in C++ source code for a package.

The first few examples are simply for illustration as the operations shown could be more effectively
performed directly in R. We do compare the results from Eigen to those from the direct R results.

3.1 Transpose of an integer matrix

We create a simple matrix of integers

> (A <- matrix(1:6, ncol=2))

2

http://finzi.psych.upenn.edu/R/library/inline/html/cxxfunction.html
http://finzi.psych.upenn.edu/R/library/RcppEigen/html/RcppEigen.package.skeleton.html

Listing 1: transCpp: Transpose a matrix of integers

using Eigen : : Map;
using Eigen : : MatrixXi ;

// Map the i n t e g e r matrix AA from R
const Map<MatrixXi> A(as<Map<MatrixXi> >(AA)) ;

// eva l ua t e and re turn the t ranspose o f A
const MatrixXi At(A. t ranspose ()) ;
return wrap (At) ;

Listing 2: prodCpp: Product and cross-product of two matrices

using Eigen : : Map;
using Eigen : : MatrixXi ;
const Map<MatrixXi> B(as<Map<MatrixXi> >(BB)) ;
const Map<MatrixXi> C(as<Map<MatrixXi> >(CC)) ;
return L i s t : : c r e a t e ([”B %*% C”] = B * C,

[”c ros sprod (B, C) ”] = B. a d j o i n t () * C) ;

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> str(A)

int [1:3, 1:2] 1 2 3 4 5 6

and, in Listing 1, use the transpose() method for the Eigen::MatrixXi class to return its transpose.
The R matrix in the SEXP AA is mapped to an Eigen::MatrixXi object then the matrix At is constructed
from its transpose and returned to R. We check that it works as intended.

> ftrans <- cxxfunction(signature(AA="matrix"), transCpp, plugin="RcppEigen")

> (At <- ftrans(A))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> stopifnot(all.equal(At, t(A)))

For numeric or integer matrices the adjoint() method is equivalent to the transpose() method. For
complex matrices, the adjoint is the conjugate of the transpose. In keeping with the conventions in the
Eigen documentation we will, in what follows, use the adjoint() method to create the transpose of
numeric or integer matrices.

3.2 Products and cross-products

As mentioned in Sec. 2.2, the ‘*’ operator performs matrix multiplication on Eigen::Matrix or Eigen::Vector
objects. The C++ code in Listing 2 produces

> fprod <- cxxfunction(signature(BB = "matrix", CC = "matrix"), prodCpp, "RcppEigen")

> B <- matrix(1:4, ncol=2); C <- matrix(6:1, nrow=2)

> str(fp <- fprod(B, C))

List of 2

$ B %*% C : int [1:2, 1:3] 21 32 13 20 5 8

$ crossprod(B, C): int [1:2, 1:3] 16 38 10 24 4 10

> stopifnot(all.equal(fp[[1]], B %*% C), all.equal(fp[[2]], crossprod(B, C)))

Notice that the create method for the Rcpp class List implicitly applies Rcpp::wrap to its arguments.

3

Listing 3: crossprodCpp: Cross-product and transposed cross-product of a single matrix

using Eigen : : Map;
using Eigen : : MatrixXi ;
using Eigen : : Lower ;

const Map<MatrixXi> A(as<Map<MatrixXi> >(AA)) ;
const int m(A. rows ()) , n (A. c o l s ()) ;
MatrixXi AtA(MatrixXi (n , n) . s e tZero () .

s e l f ad j o in tV i ew<Lower >() . rankUpdate (A. a d j o i n t ())) ;
MatrixXi AAt(MatrixXi (m, m) . s e tZero () .

s e l f ad j o in tV i ew<Lower >() . rankUpdate (A)) ;

return L i s t : : c r e a t e ([”c ros sprod (A) ”] = AtA,
[” t c ro s sp rod (A) ”] = AAt) ;

3.3 Crossproduct of a single matrix

As shown in the last example, the R function crossprod calculates the product of the transpose of its
first argument with its second argument. The single argument form, crossprod(X), evaluates X ′X. We
could, of course, calculate this product as

> t(X) %*% X

but crossprod(X) is roughly twice as fast because the result is known to be symmetric and only one
triangle needs to be calculated. The function tcrossprod evaluates crossprod(t(X)) without actually
forming the transpose.

To express these calculations in Eigen we create a SelfAdjointView, which is a dense matrix of which
only one triangle is used, the other triangle being inferred from the symmetry. (“Self-adjoint” is equivalent
to symmetric for non-complex matrices.)

The Eigen class name is SelfAdjointView. The method for general matrices that produces such a
view is called selfadjointView. Both require specification of either the Lower or Upper triangle.

For triangular matrices the class is TriangularView and the method is triangularView. The triangle
can be specified as Lower, UnitLower, StrictlyLower, Upper, UnitUpper or StrictlyUpper.

For self-adjoint views the rankUpdate method adds a scalar multiple of AA′ to the current symmetric
matrix. The scalar multiple defaults to 1. The code in Listing 3 produces

> fcprd <- cxxfunction(signature(AA = "matrix"), crossprodCpp, "RcppEigen")

> str(crp <- fcprd(A))

List of 2

$ crossprod(A) : int [1:2, 1:2] 14 32 32 77

$ tcrossprod(A): int [1:3, 1:3] 17 22 27 22 29 36 27 36 45

> stopifnot(all.equal(crp[[1]], crossprod(A)), all.equal(crp[[2]], tcrossprod(A)))

To some, the expressions to construct AtA and AAt in that code fragment are compact and elegant.
To others they are hopelessly confusing. If you find yourself in the latter group, you just need to read
the expression left to right. So, for example, we construct AAt by creating a general integer matrix of
size m × m (where A is m × n), ensure that all its elements are zero, regard it as a self-adjoint (i.e.
symmetric) matrix using the elements in the lower triangle, then add AA′ to it and convert back to a
general matrix form (i.e. the strict lower triangle is copied into the strict upper triangle).

For these products we could use either the lower triangle or the upper triangle as the result will be
symmetrized before it is returned.

3.4 Cholesky decomposition of the crossprod

The Cholesky decomposition of the positive-definite, symmetric matrix, A, can be written in several
forms. Numerical analysts define the “LLt” form as the lower triangular matrix, L, such that A = LL′

and the “LDLt” form as a unit lower triangular matrix L and a diagonal matrix D with positive diagonal

4

Listing 4: cholCpp: Cholesky decomposition of a cross-product

using Eigen : : Map;
using Eigen : : MatrixXd ;
using Eigen : : LLT;
using Eigen : : Lower ;

const Map<MatrixXd> A(as<Map<MatrixXd> >(AA)) ;
const int n(A. c o l s ()) ;
const LLT<MatrixXd> l l t (MatrixXd (n , n) . s e tZero () .

s e l f ad j o in tV i ew<Lower >() . rankUpdate (A. a d j o i n t ())) ;

return L i s t : : c r e a t e ([”L”] = MatrixXd (l l t . matrixL ()) ,
[”R”] = MatrixXd (l l t . matrixU ())) ;

elements such that A = LDL′. Statisticians often write the decomposition as A = R′R where R is an
upper triangular matrix. Of course, this R is simply the transpose of L from the “LLt” form.

The templated Eigen classes for the LLt and LDLt forms are called LLT and LDLT. In general we would
preserve the objects from these classes so that we could use them for solutions of linear systems. For
illustration we simply return the matrix L from the “LLt” form.

Because the Cholesky decomposition involves taking square roots we switch to numeric matrices

> storage.mode(A) <- "double"

before applying the code in Listing 4.

> fchol <- cxxfunction(signature(AA = "matrix"), cholCpp, "RcppEigen")

> (ll <- fchol(A))

$L

[,1] [,2]

[1,] 3.741657 0.000000

[2,] 8.552360 1.963961

$R

[,1] [,2]

[1,] 3.741657 8.552360

[2,] 0.000000 1.963961

> stopifnot(all.equal(ll[[2]], chol(crossprod(A))))

3.5 Determinant of the cross-product matrix

The “D-optimal” criterion for experimental design chooses the design that maximizes the determinant,
|X ′X|, for the n × p model matrix (or Jacobian matrix), X. The determinant, |L|, of the p × p lower
Cholesky factor L, defined so that LL′ = X ′X, is the product of its diagonal elements, as is the case
for any triangular matrix. By the properties of determinants,

|X ′X| = |LL′| = |L| |L′| = |L|2

Alternatively, if we use the “LDLt” decomposition, LDL′ = X ′X where L is unit lower triangular
and D is diagonal then |X ′X| is the product of the diagonal elements of D. Because we know that the
diagonals of D must be non-negative, we often evaluate the logarithm of the determinant as the sum of
the logarithms of the diagonal elements of D. Several options are shown in Listing 5.

> fdet <- cxxfunction(signature(AA = "matrix"), cholDetCpp, "RcppEigen")

> unlist(ll <- fdet(A))

d1 d2 ld

54.000000 54.000000 3.988984

Note the use of the array() method in the calculation of the log-determinant. Because the log()

method applies to arrays, not to vectors or matrices, we must create an array from Dvec before applying
the log() method.

5

Listing 5: cholDetCpp: Determinant of a cross-product using the Cholesky decomposition

using Eigen : : Lower ;
using Eigen : : Map;
using Eigen : : MatrixXd ;
using Eigen : : VectorXd ;

const Map<MatrixXd> A(as<Map<MatrixXd> >(AA)) ;
const int n(A. c o l s ()) ;
const MatrixXd AtA(MatrixXd (n , n) . s e tZero () .

s e l f ad j o in tV i ew<Lower >() . rankUpdate (A. a d j o i n t ())) ;
const MatrixXd Lmat(AtA . l l t () . matrixL ()) ;
const double detL (Lmat . d iagona l () . prod ()) ;
const VectorXd Dvec (AtA . l d l t () . vectorD ()) ;

return L i s t : : c r e a t e ([”d1 ”] = detL * detL ,
[”d2 ”] = Dvec . prod () ,
[” ld ”] = Dvec . array () . l og () . sum ()) ;

4 Least squares solutions

A common operation in statistical computing is calculating a least squares solution, β̂, defined as

β̂ = arg min
β
‖y −Xβ‖2

where the model matrix, X, is n × p (n ≥ p) and y is an n-dimensional response vector. There are
several ways based on matrix decompositions, to determine such a solution. We have already seen
two forms of the Cholesky decomposition: “LLt” and “LDLt”, that can be used to solve for β̂. Other
decompositions that can be used are the QR decomposition, with or without column pivoting, the singular
value decomposition and the eigendecomposition of a symmetric matrix.

Determining a least squares solution is relatively straightforward. However, in statistical computing
we often require additional information, such as the standard errors of the coefficient estimates. Cal-
culating these involves evaluating the diagonal elements of (X ′X)

−1
and the residual sum of squares,

‖y −Xβ̂‖2.

4.1 Least squares using the “LLt” Cholesky

Listing 6 shows a calculation of the least squares coefficient estimates (betahat) and the standard errors
(se) through an “LLt” Cholesky decomposition of the crossproduct of the model matrix, X. We check
that the results from this calculation do correspond to those from the lm.fit function in R (lm.fit is
the workhorse function called by lm once the model matrix and response have been evaluated).

> lltLS <- cxxfunction(signature(XX = "matrix", yy = "numeric"), lltLSCpp, "RcppEigen")

> data(trees, package="datasets")

> str(lltFit <- with(trees, lltLS(cbind(1, log(Girth)), log(Volume))))

List of 7

$ coefficients : num [1:2] -2.35 2.2

$ fitted.values: num [1:31] 2.3 2.38 2.43 2.82 2.86 ...

$ residuals : num [1:31] 0.0298 -0.0483 -0.1087 -0.0223 0.0727 ...

$ s : num 0.115

$ df.residual : int 29

$ rank : int 2

$ Std. Error : num [1:2] 0.2307 0.0898

> str(lmFit <- with(trees, lm.fit(cbind(1, log(Girth)), log(Volume))))

List of 8

$ coefficients : Named num [1:2] -2.35 2.2

6

Listing 6: lltLSCpp: Least squares using the Cholesky decomposition

using Eigen : : LLT;
using Eigen : : Lower ;
using Eigen : : Map;
using Eigen : : MatrixXd ;
using Eigen : : VectorXd ;

const Map<MatrixXd> X(as<Map<MatrixXd> >(XX)) ;
const Map<VectorXd> y (as<Map<VectorXd> >(yy)) ;
const int n(X. rows ()) , p (X. c o l s ()) ;
const LLT<MatrixXd> l l t (MatrixXd (p , p) . s e tZero () .

s e l f ad j o in tV i ew<Lower >() . rankUpdate (X. a d j o i n t ())) ;
const VectorXd betahat (l l t . s o l v e (X. a d j o i n t () * y)) ;
const VectorXd f i t t e d (X * betahat) ;
const VectorXd r e s i d (y − f i t t e d) ;
const int df (n − p) ;
const double s (r e s i d . norm () / std : : s q r t (double (df))) ;
const VectorXd se (s * l l t . matrixL () . s o l v e (MatrixXd : : I d e n t i t y (p , p)) .

c o l w i s e () . norm ()) ;
return L i s t : : c r e a t e ([” c o e f f i c i e n t s ”] = betahat ,

[” f i t t e d . va lue s ”] = f i t t e d ,
[” r e s i d u a l s ”] = re s id ,
[”s ”] = s ,
[”df . r e s i d u a l ”] = df ,
[”rank ”] = p ,
[”Std . Error ”] = se) ;

..- attr(*, "names")= chr [1:2] "x1" "x2"

$ residuals : num [1:31] 0.0298 -0.0483 -0.1087 -0.0223 0.0727 ...

$ effects : Named num [1:31] -18.2218 2.8152 -0.1029 -0.0223 0.0721 ...

..- attr(*, "names")= chr [1:31] "x1" "x2" "" "" ...

$ rank : int 2

$ fitted.values: num [1:31] 2.3 2.38 2.43 2.82 2.86 ...

$ assign : NULL

$ qr :List of 5

..$ qr : num [1:31, 1:2] -5.57 0.18 0.18 0.18 0.18 ...

..$ qraux: num [1:2] 1.18 1.26

..$ pivot: int [1:2] 1 2

..$ tol : num 1e-07

..$ rank : int 2

..- attr(*, "class")= chr "qr"

$ df.residual : int 29

> for (nm in c("coefficients", "residuals", "fitted.values", "rank"))

+ stopifnot(all.equal(lltFit[[nm]], unname(lmFit[[nm]])))

> stopifnot(all.equal(lltFit[["Std. Error"]],

+ unname(coef(summary(lm(log(Volume) ~ log(Girth), trees)))[,2])))

There are several aspects of the C++ code in Listing 6 worth mentioning. The solve method for
the LLT object evaluates, in this case, (X ′X)

−1
X ′y but without actually evaluating the inverse. The

calculation of the residuals, y − ŷ, can be written, as in R, as y - fitted. (But note that Eigen classes
do not have a “recycling rule as in R. That is, the two vector operands must have the same length.) The
norm() method evaluates the square root of the sum of squares of the elements of a vector. Although we
don’t explicitly evaluate (X ′X)

−1
we do evaluate L−1 to obtain the standard errors. Note also the use

of the colwise() method in the evaluation of the standard errors. It applies a method to the columns of
a matrix, returning a vector. The Eigen colwise() and rowwise() methods are similar in effect to the
apply function in R.

7

Listing 7: QRLSCpp: Least squares using the unpivoted QR decomposition

using Eigen : : HouseholderQR ;

const HouseholderQR<MatrixXd> QR(X) ;
const VectorXd betahat (QR. s o l v e (y)) ;
const VectorXd f i t t e d (X * betahat) ;
const int df (n − p) ;
const VectorXd se (QR. matrixQR () . topRows (p) . t r iangularView<Upper >() .

s o l v e (MatrixXd : : I d e n t i t y (p , p)) . rowwise () . norm ()) ;

In the descriptions of other methods for solving least squares problems, much of the code parallels that
shown in Listing 6. We will omit the redundant parts and show only the evaluation of the coefficients, the
rank and the standard errors. Actually, we only calculate the standard errors up to the scalar multiple
of s, the residual standard error, in these code fragments. The calculation of the residuals and s and
the scaling of the coefficient standard errors is the same for all methods. (See the files fastLm.h and
fastLm.cpp in the RcppEigen source package for details.)

4.2 Least squares using the unpivoted QR decomposition

A QR decomposition has the form
X = QR = Q1R1

where Q is an n × n orthogonal matrix, which means that Q′Q = QQ′ = In, and the n × p matrix R
is zero below the main diagonal. The n × p matrix Q1 is the first p columns of Q and the p × p upper
triangular matrix R1 is the top p rows of R. There are three Eigen classes for the QR decomposition:
HouseholderQR provides the basic QR decomposition using Householder transformations, ColPivHouse-
holderQR incorporates column pivots and FullPivHouseholderQR incorporates both row and column
pivots.

Listing 7 shows a least squares solution using the unpivoted QR decomposition. The calculations in
Listing 7 are quite similar to those in Listing 6. In fact, if we had extracted the upper triangular factor
(the matrixU() method) from the LLT object in Listing 6, the rest of the code would be nearly identical.

4.3 Handling the rank-deficient case

One important consideration when determining least squares solutions is whether rank(X) is p, a situation
we describe by saying that X has “full column rank”. When X does not have full column rank we say it
is “rank deficient”.

Although the theoretical rank of a matrix is well-defined, its evaluation in practice is not. At best we
can compute an effective rank according to some tolerance. We refer to decompositions that allow us to
estimate the rank of the matrix in this way as “rank-revealing”.

Because the model.matrix function in R does a considerable amount of symbolic analysis behind the
scenes, we usually end up with full-rank model matrices. The common cases of rank-deficiency, such as
incorporating both a constant term and a full set of indicators columns for the levels of a factor, are
eliminated. Other, more subtle, situations will not be detected at this stage, however. A simple example
occurs when there is a “missing cell” in a two-way layout and the interaction of the two factors is included
in the model.

> dd <- data.frame(f1 = gl(4, 6, labels = LETTERS[1:4]),

+ f2 = gl(3, 2, labels = letters[1:3]))[-(7:8),]

> xtabs(~ f2 + f1, dd) # one missing cell

f1

f2 A B C D

a 2 0 2 2

b 2 2 2 2

c 2 2 2 2

> mm <- model.matrix(~ f1 * f2, dd)

> kappa(mm) # large condition number, indicating rank deficiency

8

[1] 4.309225e+16

> rcond(mm) # alternative evaluation, the reciprocal condition number

[1] 2.320603e-17

> (c(rank=qr(mm)$rank, p=ncol(mm))) # rank as computed in R's qr function

rank p

11 12

> set.seed(1)

> dd$y <- mm %*% seq_len(ncol(mm)) + rnorm(nrow(mm), sd = 0.1)

> # lm detects the rank deficiency

> fm1 <- lm(y ~ f1 * f2, dd)

> writeLines(capture.output(print(summary(fm1), signif.stars=FALSE))[9:22])

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.97786 0.05816 16.81 3.41e-09

f1B 12.03807 0.08226 146.35 < 2e-16

f1C 3.11722 0.08226 37.90 5.22e-13

f1D 4.06852 0.08226 49.46 2.83e-14

f2b 5.06012 0.08226 61.52 2.59e-15

f2c 5.99759 0.08226 72.91 4.01e-16

f1B:f2b -3.01476 0.11633 -25.92 3.27e-11

f1C:f2b 7.70300 0.11633 66.22 1.16e-15

f1D:f2b 8.96425 0.11633 77.06 < 2e-16

f1B:f2c NA NA NA NA

f1C:f2c 10.96133 0.11633 94.23 < 2e-16

f1D:f2c 12.04108 0.11633 103.51 < 2e-16

The lm function for fitting linear models in R uses a rank-revealing form of the QR decomposition.
When the model matrix is determined to be rank deficient, according to the threshold used in R’s QR
decomposition, the model matrix is reduced to rank (X) columns by pivoting selected columns (those
that are apparently linearly dependent on columns to their left) to the right hand side of the matrix.
A solution for this reduced model matrix is determined and the coefficients and standard errors for the
redundant columns are flagged as missing.

An alternative approach is to evaluate the“pseudo-inverse”ofX from the singular value decomposition
(SVD) of X or the eigendecomposition of X ′X. The SVD is of the form

X = UDV ′ = U1D1V
′

where U is an orthogonal n×n matrix and U1 is its leftmost p columns, D is n×p and zero off the main
diagonal so that D1 is a p× p diagonal matrix with non-decreasing non-negative diagonal elements, and
V is a p× p orthogonal matrix. The pseudo-inverse of D1, written D+

1 is a p× p diagonal matrix whose
first r = rank(X) diagonal elements are the inverses of the corresponding diagonal elements of D1 and
whose last p− r diagonal elements are zero.

The tolerance for determining if an element of the diagonal of D is considered to be (effectively) zero
is a multiple of the largest singular value (i.e. the (1, 1) element of D).

In Listing 8 we define a utility function, Dplus, to return the pseudo-inverse as a diagonal matrix,
given the singular values (the diagonal of D) and the apparent rank. To be able to use this function with
the eigendecomposition where the eigenvalues are in increasing order we include a Boolean argument rev
indicating whether the order is reversed.

4.4 Least squares using the SVD

With these definitions the code for least squares using the singular value decomposition can be written
as in Listing 9. In the rank-deficient case this code will produce a complete set of coefficients and their
standard errors. It is up to the user to note that the rank is less than p, the number of columns in X,
and hence that the estimated coefficients are just one of an infinite number of coefficient vectors that
produce the same fitted values. It happens that this solution is the minimum norm solution.

9

Listing 8: DplusCpp: Create the diagonal matrix D+ from the array of singular values d

using Eigen : : DiagonalMatrix ;
using Eigen : : Dynamic ;

inl ine DiagonalMatrix<double , Dynamic> Dplus (const ArrayXd& D,
int r , bool rev=fa l se) {

VectorXd Di (VectorXd : : Constant (D. s i z e () , 0 .)) ;
i f (rev) Di . t a i l (r) = D. t a i l (r) . i n v e r s e () ;
else Di . head (r) = D. head (r) . i n v e r s e () ;
return DiagonalMatrix<double , Dynamic>(Di) ;

}

Listing 9: SVDLSCpp: Least squares using the SVD

using Eigen : : JacobiSVD ;

const JacobiSVD<MatrixXd> UDV(X. jacobiSvd (Eigen : : ComputeThinU | Eigen : : ComputeThinV)) ;
const ArrayXd D(UDV. s ingu la rVa lue s ()) ;
const int r ((D > D[0] * th r e sho ld ()) . count ()) ;
const MatrixXd VDp(UDV. matrixV () * Dplus (D, r)) ;
const VectorXd betahat (VDp * UDV. matrixU () . a d j o i n t () * y) ;
const int df (n − r) ;
const VectorXd se (s * VDp. rowwise () . norm ()) ;

The standard errors of the coefficient estimates in the rank-deficient case must be interpreted carefully.
The solution with one or more missing coefficients, as returned by the lm.fit function in R and the
column-pivoted QR decomposition described in Section 4.6 does not provide standard errors for the
missing coefficients. That is, both the coefficient and its standard error are returned as NA because the
least squares solution is performed on a reduced model matrix. It is also true that the solution returned
by the SVD method is with respect to a reduced model matrix but the p coefficient estimates and their p
standard errors don’t show this. They are, in fact, linear combinations of a set of r coefficient estimates
and their standard errors.

4.5 Least squares using the eigendecomposition

The eigendecomposition of X ′X is defined as

X ′X = V ΛV ′

where V , the matrix of eigenvectors, is a p× p orthogonal matrix and Λ is a p× p diagonal matrix with
non-increasing, non-negative diagonal elements, called the eigenvalues of X ′X. When the eigenvalues
are distinct this V is the same as that in the SVD. Also the eigenvalues of X ′X are the squares of the
singular values of X.

With these definitions we can adapt much of the code from the SVD method for the eigendecompo-
sition, as shown in Listing 10.

4.6 Least squares using the column-pivoted QR decomposition

The column-pivoted QR decomposition provides results similar to those from R in both the full-rank and
the rank-deficient cases. The decomposition is of the form

XP = QR = Q1R1

where, as before, Q is n× n and orthogonal and R is n× p and upper triangular. The p× p matrix P is
a permutation matrix. That is, its columns are a permutation of the columns of Ip. It serves to reorder
the columns of X so that the diagonal elements of R are non-increasing in magnitude.

10

Listing 10: SymmEigLSCpp: Least squares using the eigendecomposition

using Eigen : : S e l fAd jo in tE igenSo lv e r ;

const Se l fAd jo in tE igenSo lve r<MatrixXd>
VLV(MatrixXd (p , p) . s e tZero () . s e l f ad j o in tV i ew<Lower>. rankUpdate (X. ad j o i n t ())) ;

const ArrayXd D(e i g . e i g e nv a l u e s ()) ;
const int r ((D > D[p − 1] * th r e sho ld ()) . count ()) ;
const MatrixXd VDp(VLV. e i g e n v e c t o r s () * Dplus (D. s q r t () , r , true)) ;
const VectorXd betahat (VDp * VDp. a d j o i n t () * X. a d j o i n t () * y) ;
const VectorXd se (s * VDp. rowwise () . norm ()) ;

An instance of the class Eigen::ColPivHouseholderQR has a rank() method returning the compu-
tational rank of the matrix. When X is of full rank we can use essentially the same code as in the
unpivoted decomposition except that we must reorder the standard errors. When X is rank-deficient we
evaluate the coefficients and standard errors for the leading r columns of XP only.

In the rank-deficient case the straightforward calculation of the fitted values, as Xβ̂, cannot be used.
We could do some complicated rearrangement of the columns of X and the coefficient estimates but it is
conceptually (and computationally) easier to employ the relationship

ŷ = Q1Q
′
1y = Q

[
Ir 0
0 0

]
Q′y

The vector Q′y is called the “effects” vector in R.
Just to check that the code in Listing 11 does indeed provide the desired answer

> print(summary(fmPQR <- fastLm(y ~ f1 * f2, dd)), signif.stars=FALSE)

Call:

fastLm.formula(formula = y ~ f1 * f2, data = dd)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.977859 0.058165 16.812 3.413e-09

f1B 12.038068 0.082258 146.346 < 2.2e-16

f1C 3.117222 0.082258 37.896 5.221e-13

f1D 4.068523 0.082258 49.461 2.833e-14

f2b 5.060123 0.082258 61.516 2.593e-15

f2c 5.997592 0.082258 72.912 4.015e-16

f1B:f2b -3.014763 0.116330 -25.916 3.266e-11

f1C:f2b 7.702999 0.116330 66.217 1.156e-15

f1D:f2b 8.964251 0.116330 77.059 < 2.2e-16

f1B:f2c NA NA NA NA

f1C:f2c 10.961326 0.116330 94.226 < 2.2e-16

f1D:f2c 12.041081 0.116330 103.508 < 2.2e-16

Residual standard error: 0.2868 on 11 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

> all.equal(coef(fm1), coef(fmPQR))

[1] TRUE

> all.equal(unname(fitted(fm1)), fitted(fmPQR))

[1] TRUE

> all.equal(unname(residuals(fm1)), residuals(fmPQR))

[1] TRUE

The rank-revealing SVD method produces the same fitted values but not the same coefficients.

> print(summary(fmSVD <- fastLm(y ~ f1 * f2, dd, method=4L)), signif.stars=FALSE)

11

Listing 11: ColPivQRLSCpp: Least squares using the pivoted QR decomposition

using Eigen : : ColPivHouseholderQR ;
typedef ColPivHouseholderQR<MatrixXd > : : PermutationType Permutation ;

const ColPivHouseholderQR<MatrixXd> PQR(X) ;
const Permutation Pmat(PQR. co l sPermutat ion ()) ;
const int r (PQR. rank ()) ;
VectorXd betahat , f i t t e d , se ;
i f (r == X. c o l s ()) { // f u l l rank case

betahat = PQR. s o l v e (y) ;
f i t t e d = X * betahat ;
se = Pmat * PQR. matrixQR () . topRows (p) . t r iangularView<Upper >() .

s o l v e (MatrixXd : : I d e n t i t y (p , p)) . rowwise () . norm () ;
} else {

MatrixXd Rinv (PQR. matrixQR () . topLeftCorner (r , r) .
t r iangularView<Upper >() .
s o l v e (MatrixXd : : I d e n t i t y (r , r))) ;

VectorXd e f f e c t s (PQR. householderQ () . a d j o i n t () * y) ;
betahat . head (r) = Rinv * e f f e c t s . head (r) ;
betahat = Pmat * betahat ;

// c rea t e f i t t e d va l u e s from e f f e c t s
// (cannot use X * be t aha t when X i s rank−d e f i c i e n t)

e f f e c t s . t a i l (X. rows () − r) . s e tZero () ;
f i t t e d = PQR. householderQ () * e f f e c t s ;
se . head (r) = Rinv . rowwise () . norm () ;
se = Pmat * se ;

}

Call:

fastLm.formula(formula = y ~ f1 * f2, data = dd, method = 4L)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.977859 0.058165 16.812 3.413e-09

f1B 7.020458 0.038777 181.049 < 2.2e-16

f1C 3.117222 0.082258 37.896 5.221e-13

f1D 4.068523 0.082258 49.461 2.833e-14

f2b 5.060123 0.082258 61.516 2.593e-15

f2c 5.997592 0.082258 72.912 4.015e-16

f1B:f2b 2.002847 0.061311 32.667 2.638e-12

f1C:f2b 7.702999 0.116330 66.217 1.156e-15

f1D:f2b 8.964251 0.116330 77.059 < 2.2e-16

f1B:f2c 5.017610 0.061311 81.838 < 2.2e-16

f1C:f2c 10.961326 0.116330 94.226 < 2.2e-16

f1D:f2c 12.041081 0.116330 103.508 < 2.2e-16

Residual standard error: 0.2868 on 11 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

> all.equal(coef(fm1), coef(fmSVD))

[1] "'is.NA' value mismatch: 0 in current 1 in target"

> all.equal(unname(fitted(fm1)), fitted(fmSVD))

[1] TRUE

> all.equal(unname(residuals(fm1)), residuals(fmSVD))

[1] TRUE

12

The coefficients from the symmetric eigendecomposition method are the same as those from the SVD

> print(summary(fmVLV <- fastLm(y ~ f1 * f2, dd, method=5L)), signif.stars=FALSE)

Call:

fastLm.formula(formula = y ~ f1 * f2, data = dd, method = 5L)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.977859 0.058165 16.812 3.413e-09

f1B 7.020458 0.038777 181.049 < 2.2e-16

f1C 3.117222 0.082258 37.896 5.221e-13

f1D 4.068523 0.082258 49.461 2.833e-14

f2b 5.060123 0.082258 61.516 2.593e-15

f2c 5.997592 0.082258 72.912 4.015e-16

f1B:f2b 2.002847 0.061311 32.667 2.638e-12

f1C:f2b 7.702999 0.116330 66.217 1.156e-15

f1D:f2b 8.964251 0.116330 77.059 < 2.2e-16

f1B:f2c 5.017610 0.061311 81.838 < 2.2e-16

f1C:f2c 10.961326 0.116330 94.226 < 2.2e-16

f1D:f2c 12.041081 0.116330 103.508 < 2.2e-16

Residual standard error: 0.2868 on 11 degrees of freedom

Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999

> all.equal(coef(fmSVD), coef(fmVLV))

[1] TRUE

> all.equal(unname(fitted(fm1)), fitted(fmSVD))

[1] TRUE

> all.equal(unname(residuals(fm1)), residuals(fmSVD))

[1] TRUE

4.7 Comparative speed

In the RcppEigen package the R function to fit linear models using the methods described above is called
fastLm. The natural question to ask is, “Is it indeed fast to use these methods based on Eigen?”. We have
provided benchmarking code for these methods, R’s lm.fit function and the fastLm implementations in
the RcppArmadillo (François, Eddelbuettel, and Bates, 2011) and RcppGSL (François and Eddelbuettel,
2011) packages, if they are installed. The benchmark code, which uses the rbenchmark (Kusnierczyk,
2010) package, is in a file named lmBenchmark.R in the examples subdirectory of the installed RcppEigen
package.

It can be run as

> source(system.file("examples", "lmBenchmark.R", package="RcppEigen"))

Results will vary according to the speed of the processor, the number of cores and the implementation of
the BLAS (Basic Linear Algebra Subroutines) used. (Eigen methods do not use the BLAS but the other
methods do.)

Results obtained on a desktop computer, circa 2010, are shown in Table 2
These results indicate that methods based on forming and decomposing X ′X, (i.e. LDLt, LLt

and SymmEig) are considerably faster than the others. The SymmEig method, using a rank-revealing
decomposition, would be preferred, although the LDLt method could probably be modified to be rank-
revealing. Do bear in mind that the dimensions of the problem will influence the comparative results.
Because there are 100,000 rows in X, methods that decompose the whole X matrix (all the methods
except those named above) will be at a disadvantage.

The pivoted QR method is 1.6 times faster than R’s lm.fit on this test and provides nearly the same
information as lm.fit. Methods based on the singular value decomposition (SVD and GSL) are much
slower but, as mentioned above, this is caused in part by X having many more rows than columns. The
GSL method from the GNU Scientific Library uses an older algorithm for the SVD and is clearly out of
contention.

13

http://finzi.psych.upenn.edu/R/library/stats/html/lmfit.html
http://finzi.psych.upenn.edu/R/library/stats/html/lmfit.html

Table 2: lmBenchmark results on a desktop computer for the default size, 100, 000 × 40, full-rank model
matrix running 20 repetitions for each method. Times (Elapsed, User and Sys) are in seconds. The BLAS
in use is a single-threaded version of Atlas (Automatically Tuned Linear Algebra System).

Method Relative Elapsed User Sys
LLt 1.000000 1.227 1.228 0.000

LDLt 1.037490 1.273 1.272 0.000
SymmEig 2.895681 3.553 2.972 0.572

QR 7.828036 9.605 8.968 0.620
PivQR 7.953545 9.759 9.120 0.624

arma 8.383048 10.286 10.277 0.000
lm.fit 13.782396 16.911 15.521 1.368
SVD 54.829666 67.276 66.321 0.912
GSL 157.531377 193.291 192.568 0.640

Listing 12: badtransCpp: Transpose producing incorrect results

using Eigen : : Map;
using Eigen : : MatrixXi ;
const Map<MatrixXi> A(as<Map<MatrixXi> >(AA)) ;
return wrap (A. t ranspose ()) ;

An SVD method using the Lapack SVD subroutine, dgesv, may be faster than the native Eigen
implementation of the SVD, which is not a particularly fast method.

5 Delayed evaluation

A form of delayed evaluation is used in Eigen. That is, many operators and methods do not force the
evaluation of the object but instead return an “expression object” that is evaluated when needed. As an
example, even though we write the X ′X evaluation using .rankUpdate(X.adjoint()) the X.adjoint()

part is not evaluated immediately. The rankUpdate method detects that it has been passed a matrix
that is to be used in its transposed form and evaluates the update by taking inner products of columns
of X instead of rows of X ′.

Occasionally the method for Rcpp::wrap will not force an evaluation when it should. This is at least
what Bill Venables calls an “infelicity” in the code, if not an outright bug. In the code for the transpose
of an integer matrix shown in Listing 1 we assigned the transpose as a MatrixXi before returning it with
wrap. The assignment forces the evaluation. If we skip this step, as in Listing 12 we get an answer with
the correct shape but incorrect contents.

> Ai <- matrix(1:6, ncol=2L)

> ftrans2 <- cxxfunction(signature(AA = "matrix"), badtransCpp, "RcppEigen")

> (At <- ftrans2(Ai))

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> all.equal(At, t(Ai))

[1] "Mean relative difference: 0.4285714"

Another recommended practice is to assign objects before wrapping them for return to R.

6 Sparse matrices

Eigen provides sparse matrix classes. An R object of class dgCMatrix (from the Matrix (Bates and
Maechler, 2011) package) can be mapped as in Listing 13.

14

http://finzi.psych.upenn.edu/R/library/Matrix/html/dgCMatrix-class.html

Listing 13: sparseProdCpp: Transpose and product with sparse matrices

using Eigen : : Map;
using Eigen : : MappedSparseMatrix ;
using Eigen : : SparseMatrix ;
using Eigen : : VectorXd ;

const MappedSparseMatrix<double> A(as<MappedSparseMatrix<double> >(AA)) ;
const Map<VectorXd> y (as<Map<VectorXd> >(yy)) ;
const SparseMatrix<double> At(A. a d j o i n t ()) ;
return L i s t : : c r e a t e ([”At”] = At ,

[”Aty ”] = At * y) ;

> sparse1 <- cxxfunction(signature(AA = "dgCMatrix", yy = "numeric"),

+ sparseProdCpp, "RcppEigen")

> data(KNex, package="Matrix")

> rr <- sparse1(KNex$mm, KNex$y)

> stopifnot(all.equal(rr$At, t(KNex$mm)),

+ all.equal(rr$Aty, as.vector(crossprod(KNex$mm, KNex$y))))

A sparse Cholesky decomposition is provided in Eigen as the SimplicialCholesky class. There are
also linkages to the CHOLMOD code from the Matrix package. At present, both of these are regarded
as experimental.

References

David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools and Tech-
niques from Boost and Beyond. Addison-Wesley, Boston, 2004.

Douglas Bates and Martin Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2011. URL
http://CRAN.R-Project.org/package=Matrix. R package version 1.0-2.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ Integration, 2011a. URL http:

//CRAN.R-Project.org/package=Rcpp. R package version 0.9.4.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical
Software, 40(8):1–18, 2011b. URL http://www.jstatsoft.org/v40/i08/.

Romain François and Dirk Eddelbuettel. RcppGSL: Rcpp integration for GNU GSL vectors and matrices,
2011. URL http://CRAN.R-Project.org/package=RcppGSL. R package version 0.1.1.

Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo
templated linear algebra library, 2011. URL http://CRAN.R-Project.org/package=RcppArmadillo. R
package version 0.2.18.

Wacek Kusnierczyk. rbenchmark: Benchmarking routine for R, 2010. URL http://CRAN.R-Project.

org/package=rbenchmark. R package version 0.3.

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain François. inline: Inline C,
C++, Fortran function calls from R, 2010. URL http://CRAN.R-Project.org/package=inline. R
package version 0.3.8.

15

http://CRAN.R-Project.org/package=Matrix
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=RcppGSL
http://CRAN.R-Project.org/package=RcppArmadillo
http://CRAN.R-Project.org/package=rbenchmark
http://CRAN.R-Project.org/package=rbenchmark
http://CRAN.R-Project.org/package=inline

	Introduction
	Eigen classes
	Mapped matrices in Eigen
	Arrays in Eigen
	Structured matrices in Eigen

	Some simple examples
	Transpose of an integer matrix
	Products and cross-products
	Crossproduct of a single matrix
	Cholesky decomposition of the crossprod
	Determinant of the cross-product matrix

	Least squares solutions
	Least squares using the ``LLt'' Cholesky
	Least squares using the unpivoted QR decomposition
	Handling the rank-deficient case
	Least squares using the SVD
	Least squares using the eigendecomposition
	Least squares using the column-pivoted QR decomposition
	Comparative speed

	Delayed evaluation
	Sparse matrices

