
Writing a package that uses Rcpp

Dirk Eddelbuettel Romain François

Rcpp version 0.8.6 as of October 6, 2010

Abstract

This document provides a short overview of how to use Rcpp (Eddelbuettel and François, 2010a) when
writing an R package. It shows how usage of the function Rcpp.package.skeleton which creates a com-
plete and self-sufficient example package using Rcpp. All components of the directory tree created by
Rcpp.package.skeleton are discussed in detail. This document thereby complements the Writing R Ex-
tensions manual (R Development Core Team, 2010) which is the authoritative source on how to extend R in
general.

1 Introduction

Rcpp (Eddelbuettel and François, 2010a) is an extension package for R which offers an easy-to-use yet featureful
interface between C++ and R. However, it is somewhat different from a traditional R package because its key
component is a C++ library. A client package that wants to make use of the Rcpp features must link against
the library provided by Rcpp.

It should be noted that R has only limited support for C(++)-level dependencies between packages (R
Development Core Team, 2010). The LinkingTo declaration in the package DESCRIPTION file allows the client
package to retrieve the headers of the target package (here Rcpp), but support for linking against a library is
not provided by R and has to be added manually.

This document follows the steps of the Rcpp.package.skeleton function to illustrate a recommended way
of using Rcpp from a client package. We illustrate this using a simple C++ function which will be called by
an R function.

We strongly encourage the reader to become familiar with the material in the Writing R Extensions
manual (R Development Core Team, 2010), as well as with other documents on R package creation such as
Leisch (2008). Given a basic understanding of how to create R package, the present document aims to provide
the additional information on how to use Rcpp in such add-on packages.

2 Using Rcpp.package.skeleton

2.1 Overview

Rcpp provides a function Rcpp.package.skeleton, modeled after the base R function package.skeleton,
which facilitates creation of a skeleton package using Rcpp.

Rcpp.package.skeleton has a number of arguments documented on its help page (and similar to those of
package.skeleton). The main argument is the first one which provides the name of the package one aims to
create by invoking the function. An illustration of a call using an argument mypackage is provided below.

1

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/utils/html/package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/utils/html/package.skeleton.html

> Rcpp.package.skeleton("mypackage")

> writeLines(system("tree", intern = TRUE))

.

`- mypackage

|- DESCRIPTION

|- NAMESPACE

|- R

| `- rcpp_hello_world.R
|- Read-and-delete-me

|- man

| |- mypackage-package.Rd

| `- rcpp_hello_world.Rd
`- src

|- Makevars

|- Makevars.win

|- rcpp_hello_world.cpp
`- rcpp_hello_world.h

4 directories, 10 files

Using Rcpp.package.skeleton is by far the simplest approach as it fulfills two roles. It creates the complete
set of files needed for a package, and it also includes the different components needed for using Rcpp that we
discuss in the following sections.

2.2 R code

The skeleton contains an example R function rcpp_hello_world that uses the .Call interface to invoke the
C++ function rcpp_hello_world from the package mypackage.

rcpp_hello_world <- function(){
.Call("rcpp_hello_world", PACKAGE = "mypackage")

}

Rcpp uses the .Call calling convention as it allows transport of actual R objects back and forth between the
R side and the C++ side. R objects (SEXP) can be conveniently manipulated using the Rcpp API.

Note that in this example, no arguments were passed from R down to the C++ layer. Doing so is
straightforward (and one of the key features of Rcpp) but not central to our discussion of the package creation
mechanics.

2.3 C++ code

The C++ function is declared in the rcpp_hello_world.h header file:

2

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/base/html/Foreign.html
http://finzi.psych.upenn.edu/R/library/base/html/Foreign.html

#ifndef _mypackage_RCPP_HELLO_WORLD_H

#define _mypackage_RCPP_HELLO_WORLD_H

#include <Rcpp.h>

/*
* note : RcppExport is an alias to ‘extern ”C”‘ defined by Rcpp.
*
* It gives C calling convention to the rcpp hello world function so that
* it can be called from .Call in R. Otherwise, the C++ compiler mangles the
* name of the function and .Call can’t find it.
*
* It is only useful to use RcppExport when the function is intended to be called
* by .Call. See the thread http://thread.gmane.org/gmane.comp.lang.r.rcpp/649/focus=672
* on Rcpp-devel for a misuse of RcppExport
*/
RcppExport SEXP rcpp_hello_world() ;

#endif

The header includes the Rcpp.h file, which is the only file that needs to be included to use Rcpp. The function
is then implemented in the rcpp_hello_world.cpp file

#include "rcpp_hello_world.h"

SEXP rcpp_hello_world(){
using namespace Rcpp ;

CharacterVector x = CharacterVector::create("foo", "bar") ;

NumericVector y = NumericVector::create(0.0, 1.0) ;

List z = List::create(x, y) ;

return z ;

}

The function creates an R list that contains a character vector and a numeric vector using Rcpp classes. At
the R level, we will therefore receive a list of length two containing these two vectors:

> rcpp_hello_world()

[[1]]

[1] "foo" "bar"

[[2]]

[1] 0 1

2.4 DESCRIPTION

The skeleton generates an appropriate DESCRIPTION file, using both Depends: and LinkingTo for Rcpp:

3

http://finzi.psych.upenn.edu/R/library/base/html/character.html
http://finzi.psych.upenn.edu/R/library/base/html/numeric.html

Package: mypackage

Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2010-10-06

Author: Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)

License: What license is it under?

LazyLoad: yes

Depends: Rcpp (>= 0.8.6)

LinkingTo: Rcpp

SystemRequirements: GNU make

Rcpp.package.skeleton adds the three last lines to the DESCRIPTION file generated by package.skeleton.
The Depends declaration indicates R-level dependency between the client package and Rcpp. The Link-

ingTo declaration indicates that the client package needs to use header files exposed by Rcpp.
The SystemRequirements declaration indicates that the package depends on GNU Make which is needed

when compiling the client package on platforms such as Solaris.

2.5 Makevars and Makevars.win

Unfortunately, the LinkingTo declaration in itself is not enough to link to the user C++ library of Rcpp. Until
more explicit support for libraries is added to R, we need to manually add the Rcpp library to the PKG_LIBS

variable in the Makevars and Makevars.win files. Rcpp provides the unexported function Rcpp:::LdFlags()

to ease the process:

Use the R HOME indirection to support installations of multiple R version
PKG_LIBS = $(shell $(R_HOME)/bin/Rscript -e "Rcpp:::LdFlags()")

As an alternative, one can also add this code in a file ’configure’
##
PKG LIBS=‘${R HOME}/bin/Rscript -e ”Rcpp:::LdFlags()”‘
##
sed -e ”s|@PKG LIBS@|${PKG LIBS}|” \
src/Makevars.in > src/Makevars
##
which together with the following file ’src/Makevars.in’
##
PKG LIBS = @PKG LIBS@
##
can be used to create src/Makevars dynamically. This scheme is more
powerful and can be expanded to also check for and link with other
libraries. It should be complemented by a file ’cleanup’
##
rm src/Makevars
##
which removes the autogenerated file src/Makevars.
##
Of course, autoconf can also be used to write configure files. This is
done by a number of packages, but recommended only for more advanced users
comfortable with autoconf and its related tools.

The Makevars.win is the equivalent, targeting windows.

4

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/utils/html/package.skeleton.html

Use the R HOME indirection to support installations of multiple R version
PKG_LIBS = $(shell "${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe" -e "Rcpp:::LdFlags()")

The use of $(shell) to execute a sub-command is a GNU Make extension to the standard Make language which
we have found to be more reliable than using backticks.

2.6 NAMESPACE

The Rcpp.package.skeleton function also creates a file NAMESPACE.

useDynLib(mypackage)

exportPattern("^[[:alpha:]]+")

This file serves two purposes. First, it ensure that the dynamic library contained in the package we are cre-
ating via Rcpp.package.skeleton will be loaded and thereby made available to the newly created R package.
Second, it declares which functions should be globally visible from the namespace of this package. As a
reasonable default, we export all functions.

2.7 Help files

Also created is a directory man containing two help files. One is for the package itself, the other for the (single)
R function being provided and exported.

The Writing R Extensions manual (R Development Core Team, 2010) provides the complete documentation
on how to create suitable content for help files.

2.7.1 mypackage-package.Rd

The help file mypackage-package.Rd can be used to describe the new package.

5

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html

\name{mypackage-package}
\alias{mypackage-package}
\alias{mypackage}
\docType{package}
\title{
What the package does (short line)

~~ package title ~~
}
\description{
More about what it does (maybe more than one line)

~~ A concise (1-5 lines) description of the package ~~
}
\details{
\tabular{ll}{
Package: \tab mypackage\cr
Type: \tab Package\cr
Version: \tab 1.0\cr
Date: \tab 2010-10-06\cr
License: \tab What license is it under?\cr
LazyLoad: \tab yes\cr
}

~~ An overview of how to use the package, including the most important functions ~~
}
\author{
Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>

~~ The author and/or maintainer of the package ~~
}
\references{
~~ Literature or other references for background information ~~
}

~~ Optionally other standard keywords, one per line, from file KEYWORDS in the R documenta-

tion directory ~~
\keyword{ package }
\seealso{
~~ Optional links to other man pages, e.g. ~~

~~ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ~~
}
\examples{
%% ~~ simple examples of the most important functions ~~
}

2.7.2 rcpp_hello_world.Rd

The help file rcpp_hello_world.Rd serves as documentation for the example R function.

6

\name{rcpp_hello_world}
\alias{rcpp_hello_world}
\docType{package}
\title{
Simple function using Rcpp

}
\description{
Simple function using Rcpp

}
\usage{
rcpp_hello_world()

}
\examples{
\dontrun{
rcpp_hello_world()

}
}

3 Further examples

The canonical example of a package that uses Rcpp is the RcppExamples (Eddelbuettel and François, 2010b)
package. RcppExamples contains various examples of using Rcpp using both the extended (“new”) API and
the older (“classic”) API. Hence, the RcppExamples package is provided as a template for employing Rcpp in
packages.

Other CRAN packages using the Rcpp package are RcppArmadillo (François, Eddelbuettel, and Bates,
2010), highlight (François, 2010), and minqa (Bates, Mullen, Nash, and Varadhan, 2010) all of which follow
precisely the guidelines of this document. Several other packages follow older (but still supported and appro-
priate) instructions. They can serve examples on how to get data to and from C++ routines, but should not
be considered templates for how to connect to Rcpp. The full list of packages using Rcpp can be found at the
CRAN page of Rcpp.

4 Other compilers

Less experienced R users on the Windows platform frequently ask about using Rcpp with the Visual Studio
toolchain. That is simply not possible as R is built with the gcc compiler. Different compilers have different
linking conventions. These conventions are particularly hairy when it comes to using C++. In short, it is not
possible to simply drop sources (or header files) from Rcpp into a C++ project built with Visual Studio, and
this note makes no attempt at claiming otherwise.

Rcpp is fully usable on Windows provided the standard Windows toolchain for R is used. See the Writing
R Extensions manual (R Development Core Team, 2010) for details.

5 Summary

This document described how to use the Rcpp package for R and C++ integration when writing an R extension
package. The use of the Rcpp.package.skeleton was shown in detail, and references to further examples were
provided.

References

Douglas Bates, Katharine M. Mullen, John C. Nash, and Ravi Varadhan. minqa: Derivative-free optimiza-
tion algorithms by quadratic approximation, 2010. URL http://CRAN.R-Project.org//package=minqa. R
package version 1.1.5.

Dirk Eddelbuettel and Romain François. Rcpp R/C++ interface package, 2010a. URL http://CRAN.

R-Project.org//package=Rcpp. R package version 0.8.6.

7

http://CRAN.R-project.org/package=Rcpp
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://CRAN.R-Project.org//package=minqa
http://CRAN.R-Project.org//package=Rcpp
http://CRAN.R-Project.org//package=Rcpp

Dirk Eddelbuettel and Romain François. RcppExamples: Examples using Rcpp to interface R and C++,
2010b. URL http://CRAN.R-Project.org//package=RcppExamples. R package version 0.1.1.

Romain François. highlight: Syntax highlighter, 2010. URL http://CRAN.R-Project.org//package=

highlight. R package version 0.2-1.

Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo
templated linear algebra library, 2010. URL http://CRAN.R-Project.org//package=RcppArmadillo. R
package version 0.2.7.

Friedrich Leisch. Tutorial on Creating R Packages. In Paula Brito, editor, COMPSTAT 2008 – Proceedings
in Computational Statistics, Heidelberg, Germany, 2008. Physica Verlag. URL http://CRAN.R-Project.

org//doc/contrib/Leisch-CreatingPackages.pdf.

R Development Core Team. Writing R extensions. R Foundation for Statistical Computing, Vienna, Austria,
2010. URL http://CRAN.R-Project.org/doc/manuals/R-exts.html.

8

http://CRAN.R-Project.org//package=RcppExamples
http://CRAN.R-Project.org//package=highlight
http://CRAN.R-Project.org//package=highlight
http://CRAN.R-Project.org//package=RcppArmadillo
http://CRAN.R-Project.org//doc/contrib/Leisch-CreatingPackages.pdf
http://CRAN.R-Project.org//doc/contrib/Leisch-CreatingPackages.pdf
http://CRAN.R-Project.org/doc/manuals/R-exts.html

	Introduction
	Using Rcpp.package.skeleton
	Overview
	R code
	C++ code
	DESCRIPTION
	Makevars and Makevars.win
	NAMESPACE
	Help files
	mypackage-package.Rd
	rcpp_hello_world.Rd

	Further examples
	Other compilers
	Summary

