
Building R Packages that call C++ Functions

Rcpp: R/C++ Interface Classes Version 5.0

Dominick Samperi∗†

September 20, 2006

Abstract

A set of C++ classes that facilitates the process of using C++ with the Open Source R statistical
software system is described. The intent is to make it easier for researchers and practitioners to share
their ideas by providing working prototypes that others can experiment with, test, and contribute to.
The powerful visualization capabilities of R adds an important dimension to the model selection and
testing process. This is particularly important in fields like applied finance where abstract formal
analysis must be complemented with clinical studies and tractability and robustness tests. The classes
described here make it easier to use existing C++ libraries (like QuantLib), or to rapidly develop
an R interface to C++ software that implements new modeling ideas. This is done with the help of
mappings between R and C++ types like vectors, matrices, dates, and R data frames. Support for
calling R functions from C++ is also included.

1 Note to Users of Previous Versions

The class RcppNamedList has been renamed to RcppNumList (because only numeric data is permitted).
There are several new classes including RcppDate, RcppFrame, and RcppFunction (the last class can be
used to call R functions from C++).

There are new package functions named RcppTemplateDemo and RcppTemplateVersion, and RcppTem-
plate now uses a NAMESPACE file. See below for details.

2 Overview

The R system is written in the C language, and it provides a C API for package developers who have
typically coded functions to be called from R in C or FORTRAN. The contribution of Rcpp is to add
C++ classes that make it relatively easy to use C++ objects and libraries from R. Conversely, functions
defined on the R side can be called from C++.

The Rcpp design strategy is to find a small set of data structures that can be easily passed between
R and C++ in a language-natural way (on both the R and the C++ side), and that is sufficient for
most problem domains. The data structures currently supported include heterogeneous parameter lists
(where you would pass in doubles, reals, strings, etc., with names attached), homogeneous parameter

∗Email: dsamperi@DecisionSynergy.com. I am grateful for helpful comments from Dirk Eddelbuettel, Hin-Tak Leung,
Uwe Ligges, Duncan Murdoch, Brian Ripley, and Paul Roebuck.
†This document, now part of a the package maintained by Dirk Eddelbuettel, has not been updated. As just one

example, RcppTemplate should generally read Rcpp now, both standalone and as a substring. Also, the package layout
has been changed so that the description in this document may no longer be current. We intend to fix this in due course.
However, the general discription is still accurate as the API has not been altered.

1

lists (where all parameter values are numeric and named), 1D vectors, 2D matrices, Dates, R-style data
frames (similar to data base tables), and R functions.

Technical details having to do with R API internals are hidden from the Rcpp user. Of course,
low-level R API features can still be used to support objects (like matrices of dimension greater than
two) that are not currently supported by the Rcpp API.

One limitation of Rcpp is that it does not address the problem of persistence, that is, having C++

objects maintain their state between function calls. When a call to a C++ function returns all objects
created during the call are destroyed. The work-around is to use R to maintain state, and recreate the
C++ objects as needed during the calls. The overhead of the latter is typically much smaller than the
overhead of doing compute-intensive work in R itself (R is an interpreted language). It is possible to
pass large arrays to C++ functions by address, thus eliminating the need to copy this data for every call,
but this should be avoided where possible since it is inconsistent with pass-by-value semantics of R.

Example R packages that currently use Rcpp include FinancePack, and RQuantLib. The Credit-
Pricer function in FinancePack illustrates how to use the underlying R API to pass arrays by address
to C++ functions.

The Rcpp class library is shipped as part of the RcppTemplate package, available from the official
R web site, http://cran.r-project.org. The official reference on writing R extensions is “Writing R
Extensions,” available from the same site. It contains some comments on how to use foreign languages
like C and FORTRAN, but says little about C++. The latter document should be consulted for details
about the R API that we omit below.

The R package RcppTemplate can be used as a template for building R packages that use C++ class
libraries. It includes a working sample function RcppExample that illustrates how to use Rcpp. To run
the sample function install the RcppTemplate package in the usual way, and use:

> library(RcppTemplate)
> example(RcppExample)

There is a documentation page for the example that can be viewed with:

> ?RcppExample

The source code and man page for the example can be found in the source archive (the .tar.gz file, not
the Windows binary .zip file). To extract the source archive change directory to a convenient location
and use the command line:

$ tar -xvzf RcppTemplate_VVV.tar.gz

Under Windows the ’tar’ command is part of the Rtools package (see Appendix A or Appendix B for
details). Here ’VVV’ stands for the package version number.

At this point you will be above the root of the package directory hierarchy (above RcppTemplate). The
C++ source code for RcppExample can be found in RcppTemplate/src, and the R code and man pages can
be found in RcppTemplate/R and RcppTemplate/man, respectively. The contents of RcppExample.cpp
will be easier to understand after reading the rest of this document.

It should be clear now that building a package requires some familiarity with UNIX style command-
line tools. R can be viewed as a UNIX application that has been ported to Windows with the help of
a collection of tools that help to make Windows look like UNIX. A minimal UNIX-like environment is
defined for Windows by modifying your path as follows (under Windows):

$ set path=c:\Rtools\bin;%path% (modify path as needed)

2

This defines UNIX commands like tar, cp, rm, etc. For more information about Rtools and the Windows
package build process see Appendix A (GNU compiler) or Appendix B (MS Visual C++ compiler).

There are a couple of differences between UNIX and Windows that need to be kept in mind. Under
UNIX most tools expect path names to have the directory names separated by a forward slash (/),
whereas under Windows the command-line tools expect a backward slash separator (\). The tools in
Rtools have been modified to accept separator slashes in either direction.

One common problem that occurs when Rtools is used under Windows is that the wrong version of
a tool like find is found during the build process because the user’s PATH variable is not set properly
(either Windows find, or cygwin find may be found). To fix this problem make sure that all of the R
development tools appear early on the search path (see the way path was set above), or use a command
file (.bat file) that explicitly sets the path before running R commands under Windows.

Another UNIX/Windows issue has to do with blank spaces in file names. It is generally not a good
idea to build R packages in directories with names that contain spaces (like “My Documents” under
Windows). This will probably cause the build process to fail.

Note that packages must be submitted to CRAN in source format (.tar.gz file), and CRAN does not
support Visual C++, so the GNU compiler must be used for a CRAN submission. On the other hand,
Visual C++ can be used for testing and benchmarking, for example.

Having extracted the RcppTemplate source archive we next sketch how to test and build an R package
in a generic (operating system-independent) way. For more details about Windows see the appendices.

A test version of the package (with no customization) can be created by changing directory so that
you are above the package root (RcppTemplate) and using:

$ R CMD INSTALL -library RcppTemplate.test RcppTemplate

The code can then be run from the RcppTemplate.test directory as follows:

> library(RcppTemplate, lib.loc=’RcppTemplate.test’)
> example(RcppExample)

Before we begin customizing the package it will simplify things if we delete the vignette file containing
the documentation for RcppTemplate:

$ rm RcppTemplate/inst/doc/RcppAPI.Rnw

It is now possible to insert your C++ source files into RcppTemplate/src, and insert R source files
into RcppTemplate/R that make calls to your C++ code (using the .Call interface). Follow the pattern in
RcppExample.cpp and RcppExample.R. The build procedure will automatically find and compile source
files in the src directory, so you do not need to create a Makefile (this applies to UNIX, you have to
modify Makefile.win under Windows, unless you are using MSVC). To add documentation files follow
the pattern in RcppExample.Rd (see “Writing R Extensions” for more details).

After you have tested a few functions to get the general idea (without changing the package name),
you can rename the package as desired by changing: the information in DESCRIPTION, the name of
the package root directory, the string ’RcppTemplate’ to your package name in the R code, and in the
man pages.

You can link against your own C++ libraries by following the pattern used to link against the Rcpp
library, or you can link against external libraries. For an example of the latter case, look at the RQuantLib
package. It uses Rcpp and links against the QuantLib and Boost class libraries.

The configure file configure.in can be modified as desired to check for libraries that may be needed
to build your package (UNIX only). Remember to run autoconf after modifying it.

If you named your package MyPackage, then you can install it on your machine in the standard
location using (assuming you are above MyPackage, and logged in as root if on UNIX):

3

$ R CMD INSTALL MyPackage

To build a source archive that can be submitted to CRAN, first make sure that it passes check (no
need to be the root user to do this):

$ R CMD check MyPackage

If all is well, then you can make a source archive (.tar.gz file) for submission using:

$ R CMD build MyPackage

3 The Package Demo Function

The file R/zzz.R normally contains initialization code. It defines a function named .First.lib that R
calls to initialize the package and load its shared library (when one exists).

RcppTemplate has been configured to define another function in this file named RcppTemplateDemo.
There is also an associated documentation page. This function can be used to run any demos that have
been placed into the package demo subdirectory. Such demos are just files containing R code with the
extension “.R”. Each demo should have a corresponding short description in the file named 00Index in
the same directory. Look at the demo subdirectory of RcppTemplate to see how things are arranged.

To run all of the demos for the package simply type

> RcppTemplateDemo()

You will be presented with a list of demos to choose from. Entering zero will cause the contents of 00Index
to be displayed. Entering anything else besides a demo number will terminate RcppTemplateDemo.

A good way to introduce new users to your package is to provide a few demos in this way. Note that
users need no knowledge about your package to run the demos. Of course, your demo function would be
named YourPackageNameDemo.

4 The Package Version Function

The RcppTemplate package includes a function named RcppTemplateVersion that displays the version
number of the package that is currently installed, along with the version number of Rcpp that was used
to build the package. When configuring your own package this function (and its man page) should be
modified by replacing all instances of the string ’RcppTemplate’ with ’YourPackageName’. In particular,
the function should be named YourPackageNameVersion.

Note that the version number shown is for the installed package, not a test version that you might be
using from a local directory. If the package has not been installed into the standard place running this
function will result in an error message about the package not being installed.

During the installation process the Rcpp library libRcpp.a is built in RcppTemplate/RcppSrc (where
the source code for the library is located), and object files created in RcppTemplate/src are linked against
this library in order to create the package shared library RcppTemplate.so (DLL under Windows). The
RcppSrc directory is not part of the installed package (you will only find it in the source archive).

The only visible trace of Rcpp that is left behind after the package is installed (or after a Windows
binary .zip file is created) is the Rcpp license file LICENSE-Rcpp.txt. This file describes terms of use,
and also keeps track of the version number of Rcpp that was used to build your package. It is used by
YourPackageNameVersion to display version information.

In the process of customizing RcppTemplate for your use the part of the build procedure that saves
the license file LICENSE-Rcpp.txt to the package root directory should be retained. Alternatively, you

4

can simply copy this file manually from the RcppSrc directory to the inst directory of your source archive
(R places files in inst into the root directory of the installed package as part of the install process).

5 Package Namespaces

Package namespaces are used to prevent conflicts when two or more packages use the same name for a
function. Maintaining a package NAMESPACE file is also a good way to keep track of all of the functions
that are available. There are other uses for the NAMESPACE file—see Writing R Extensions for more
information.

The RcppTemplate package includes a simple NAMESPACE file that declares that it will be using the
RcppTemplate shared library. It also exports all of the function names that will be visible to the package
user: RcppExample, RcppTemplateDemo, RcppTemplateVersion, and print.RcppExample. Look at the
NAMESPACE file (in the package root directory) to see how this is done.

When two packages export a function of the same name, the one that is selected is the one that was
defined most recently (in the package that was attached last). To override this behavior it is possible to
specify which version should be used as follows

> pkg::name()

This says to use the version defined in package pkg.
When the second package is attached (using the library command) R will issue a warning that the

name defined in this package is masking the one that was previously defined (the masked name is still
accessible, as we have just seen).

6 Controlling R’s Output

The R language supports a rich collection of object-oriented features like inheritance and polymorphism.
For our purposes we will use one very simple feature in order to control what gets printed when a variable
name assigned to is entered on a line by itself. By default this invokes a generic print function that
displays every value, even in deeply nested lists. If you are returning a large matrix this is probably not
the desired behavior.

The file RcppExample.R illustrates how to work around this problem by writing a customized print
function for the returned value. The code first assigns the value returned by .Call to the variable val.
Then it assigns a class name to this variable, and writes a specialized print function for this class. This
means if you enter this variable name on a line by itself the function print.Classname is called instead
of print. What is used for Classname must not conflict with class names already in use, and in the
present case RcppExample is used.

Incidentally, R supports multiple inheritance since a vector of class names can be assigned to objects
in this way.

7 Important Note

It is important to remember that there is a potential for conflicts when two R packages use the same
C++ library (whether or not this is done with the help of Rcpp). For example, if two R packages use
QuantLib, and if both packages are used at the same time, then the static (singleton) classes of QuantLib
may not be manipulated properly: what singleton object gets modified will depend on the order in which
the packages are loaded.

5

8 Assumptions

We assume that the following kinds of objects will be passed between R and C++ (the C++ class used to
manage each object type is shown in parentheses):

1. A heterogeneous list of named values of possibly different types (RcppParams),

2. A homogeneous list of named values of numeric type (RcppNumList)

3. A numeric 1D vector (RcppVector<type>)

4. A numeric 2D matrix (RcppMatrix<type>)

5. A Date (RcppDate)

6. A data frame (RcppFrame)

7. A vector of Dates (RcppDateVector)

8. A vector of strings (RcppStringVector)

9. An R function (RcppFunction)

An example of the first kind of object would be constructed using the R code

params <- list(method = "BFGS", tol=1.0e-8, maxiter=1000)

The allowed types are character, real, integer, and Date.
The latter is R’s date class (does not include time of day). On the C++ side a Date is represented

by an RcppDate, a basic date class that keeps track of month/day/year and Julian day number, and
supports a few basic operations like subtraction, incrementing, and comparing dates.1

An example of the second kind of object is

prices <- list(ibm = 80.50, hp = 53.64, c = 45.41)

Here all values must be numeric.
Examples of vector and matrix are:

vec <- c(1, 2, 3, 4, 5)
mat <- matrix(seq(1,20),4,5)

R style Date’s can be passed as one of the parameters in a heterogeneous list, or they can be passed
as a vector of dates created like this, for example:

dateStrings <- c(’2006-7-1’, ’2010-2-3’, ’2015-7-1’)
dates <- as.Date(dateStrings, ’%Y-%m-%d’)

See RcppExample.cpp for an example.
An example data frame is:

1When the compiler flag USING_QUANTLIB is set an implicit cast from RcppDate to QuantLib Date is defined, and these
operations are disabled because they confuse the compiler. They can also be disabled by unsetting the flag RCPP_DATE_OPS

(see Rcpp.hpp). The internal date representation used by RcppDate is the number of days since Monday, January 1, 4713BC
(the so-called Julian day number), while the internal representation used by R is the number of days since January 1, 1970.

6

df <- data.frame(id=c(1,2,3),fac=c(’weak’,’strong’,’moderate’),
answer=c(TRUE,FALSE,TRUE))

Vector and matrix objects are managed by the template classes RcppVector<type> and RcppMa-
trix<type>, where type can be double or int.

R functions can be called from C++ with the help of the RcppFunction class. This is done by
subclassing and using utility functions defined in the superclass to build lists or vectors to be passed to
the R function. The function can return any kind of R object, in theory, but in most applications it will
return a SEXP represenation for a real number or a vector.2 The use of RcppFunction is an advanced
topic. Examples of its use are contained in RcppExample.cpp.

See RcppExample.cpp for sample code using these classes. See the Rcpp Quick Reference (Appendix
C) for a complete list of classes and methods.

9 User Guide

To call a C++ function named MyFunc, say, the R code would look like:

.Call("MyFunc", p1, p2, p3)

where the parameters (can be more or less than three, of course) can be objects of the kind discussed in
the previous section. Usually this call is made from an intermediate R function so the interactive call
would look like

> MyFunc(p1, p2, p3)

Now let us consider the following code designed to make a call to a C++ function named RcppSample

params <- list(method = "BFGS", tolerance = 1.0e-8, startVal = 10)
a <- matrix(seq(1,20), 4, 5)
.Call("RcppSample", params, a)

The corresponding C++ source code for the function RcppSample using the Rcpp interface and pro-
tocol might look like the code in Figure 1.

Here RcppExtern ensures that the function is callable from R. The SEXP type is an internal type
used by R to represent everything (in particular, our parameter values and the return value). It can be
quite tricky to work with SEXP’s directly, and thanks to Rcpp this is not necessary.

Note that all of the work is done inside of a try/catch block. Exception messages generated by the
C++ code are propagated back to the R user naturally (even though R is not written in C++).

The first object created is of type RcppParams and it encapsulates the params SEXP. Values are
extracted from this object naturally as illustrated here. There are getTypeValue(name) methods for
Type equal to Double, Int, Bool, String, and Date.

Rcpp checks that the named value is present and that it has the correct type, and returns an error
message to the R user otherwise. Similarly, the other encapsulation classes described below check that
the underlying R data structures have the correct type (this eliminates the need for a great deal of
checking in the R code that ultimately calls the C++ function).

2It is not a good idea for the function to hold onto PROTECT-ed R storage, even though it will automatically UNPRO-
TECT this storage when it is destroyed (on return to R), because repeated calls to the function may overflow R’s protection
stack. To avoid this problem copy any PROTECTED R objects to C++ objects to be returned, and UNPROTECT the R
objects.

7

#include "Rcpp.hpp"
RcppExtern SEXP RcppSample(SEXP params, SEXP a) {

SEXP rl=R_NilValue; // Return this when there is nothing to return.
char* exceptionMesg=NULL;
try {

RcppParams rp(params);
string name = rp.getStringValue("method");
double tolerance = rp.getDoubleValue("tolerance");
...
RcppMatrix<double> mat(a);
// Use 2D matrix via mat(i,j) in the usual way
...
RcppResultSet rs;
rs.add("name1", result1);
rs.add("name2", result2);
...
rs.add("params", params, false);
rl = rs.getResultList();

} catch(std::exception& ex) {
exceptionMesg = copyMessageToR(ex.what());

}
catch(...) {

exceptionMesg = copyMessageToR("unknown reason");
}
if(exceptionMesg != NULL)

error(exceptionMesg);
return rl;

}

Figure 1: Use pattern for Rcpp.

The matrix parameter a is encapsulated by the mat object of type RcppMatrix<double> (matrix
of double’s). It could also have been encapsulated inside of a matrix of int’s type, in which case non-
integer values would be truncated toward zero. Note that SEXP parameters are read-only, but that these
encapsulating classes work on a copy of the original, so they can be modified in the usual way:

mat(i,j) = whatever

The RcppVector<type> classes work similarly.
In these matrix/vector representations subscripting is range checked. It is possible to get a C/C++

style (unchecked) array copy of an RcppMatrix and RcppVector object by using the methods cMatrix()
and cVector(), respectively. The first method returns a pointer of type type **, and the second returns
a pointer of type type * (where type can be double or int). These pointer-based representations might
be useful when matrices/vectors need to be passed to software that does not know about the Rcpp
classes. No attempt should be made to free the memory pointed to by these pointers as it is managed
by R (it will be freed automatically after .Call returns).

An STL vector copy of an RcppVector object can be obtained by using the stlVector method of the
RcppVector class. An STL matrix, or vector<vector<type> >, copy of an RcppMatrix object can be

8

obtained by using the stlMatrix method of the RcppMatrix class. See RcppExample.cpp for examples.
Returning to the example, we see that the mat and vec parameters are used to construct RcppVector

and RcppMatrix objects, respectively. These would typically be used to do some computations (not
shown here). When the computations are finished an object of type RcppResultSet is constructed that
contains the data values to be returned to R. Results to be returned are added to the list using the add
method where the first parameter is the name that will be seen by the R user. The second parameter
is the corresponding value—it can be of type double, int, string, vector<double>, vector<string>
vector<vector<double> >, RcppMatrix<double>, RcppFrame, etc.

The last call to add here is used to return the input SEXP parameter params as the last output result
(named ”params”). The boolean flag false here means that the SEXP has not been protected. This will
be the case unless the SEXP has been allocated by the user (not an input parameter).

For examples employing QuantLib see the files discount.cpp and bermudan.cpp from the RQuantLib
package.

To use data frames, simply pass the data frame like we passed a vector or matrix R object above. If
the SEXP parameter corresponding to the data frame is named df, then a C++ code fragment that uses
it might look like Figure 2.

RcppFrame frame(df);
vector<vector<ColDatum> > table = frame.getTableData();
int nrow = table.size();
int ncol = table[0].size(); // Get ncols from first row.
for(int row=0; row < nrow; row++) {

for(int col=0; col < ncol; col++) {
if(table[row][col].getType() == COLTYPE_FACTOR) {

level = table[row][col].getFactorLevel();
string name = table[row][col].getFactorLevelName();

}
}

}

Figure 2: Using data frames with Rcpp.

Here an R data frame is represented in C++ as a vector of rows, each of which is a vector of columns of
type ColDatum, and the data that each ColDatum contains can be one of the following supported column
types:

COLTYPE_DOUBLE, COLTYPE_INT, COLTYPE_STRING,
COLTYPE_FACTOR, COLTYPE_LOGICAL, and COLTYPE_DATE.

There are associated methods getType(), getDoubleValue(), getIntValue(), etc.
Setter methods are also available for use when you are creating an RcppFrame object to be returned

to R. These include setDoubleValue(double x), setFactorValue(string *names, int numLevels, int level),
etc. It is the user’s responsibility to ensure that columns added in this way have consistent types from
one row to the next—Rcpp will throw an exception if an inconsistency is detected.

In the current implementation the vector of level names provided to setFactorValue() is stored with
every factor value, and these name vectors must be consistent across rows (each factor in the same row
must have the same vector of level names—see RcppExample.cpp). The problem of optimizing this design
by factoring out the level names is left for a future release.

9

For an example of how to construct a new RcppFrame object to be returned to R see RcppExam-
ple.cpp. The object that is returned is actually a “pre-data frame,” because it is not recognized by R
as a data frame, but it is a simple matter to turn it into a data frame. For example, RcppExample.cpp
returns an RcppFrame object in result$PreDF. It can be turned into a data frame using:

df <- data.frame(result$PreDF)

10 Appendix A: Using GNU MinGW under Windows

In this section we explain how to use the GNU C++ compiler under Windows to build a dynamic link
library, and how to build a binary R package that uses it. The GNU C++ compiler can be downloaded
in the form of the MinGW package for Windows, or the Dev-Cpp front-end (a graphical user interface
built on top of GNU C++). Section 2 is a prerequisite for this appendix.

In the following the package name will be RcppTemplate. You can simply use this package name
and add source files and R functions as needed. Later when you see how everything fits together you
can change the package name everywhere. This will involve changes to DESCRIPTION, package root
directory, the R files, and the man pages. The procedure as as follows.

1. (Download and Install) Download and install the necessary tools. This includes

� the UNIX tools for R from http://www.murdoch-sutherland.com/Rtools,

� the MinGW GNU compiler (or Dev-Cpp),

� ActivePerl from http://www.activestate.com,

� MikTeX (TeX for Windows),

� Microsoft’s HTML help tool.

The HTML help tool can be downloaded from Microsoft—see the murdoch-sutherland site for more
information. Under Windows NT4 (and some versions of Windows 2000) you will need to install a
patched version of ld.exe, available at http://www.murdoch-sutherland.com/Rtools.

As explained in Section 2, make sure that the Rtools UNIX-like tools are in your search path:

$ set path=c:\Rtools\bin;%path% (modify as needed)

2. (Prepare package source)
Extract the RcppTemplate source archive (the .tar.gz file) into some convenient location (in your

private space, not in the R installation directory). Use the tar command that comes with Rtools (here
’VVV’ stands for the version number):

$ cd <some convenient place>
$ tar -xvzf RcppTemplate_VVV.tar.gz

After issuing this command you will be located in a directory directly above the package root directory
(RcppTemplate).

3. (Build the binary R package) Check the Windows batch file (or command file)

10

RcppTemplate\inst\doc\MakeWinBin.bat

to make sure that it points to the correct places (where the tools like Rtools and R have been installed).
Then change directory so that you are above the package root directory (RcppTemplate), copy the batch
file to the same location, and run the batch file:

$ MakeWinBin RcppTemplate

If everything was installed properly this should compile everything, make the DLL, and create the
package binary (.zip file).

4. (Prepare source for customization) So far we have simply built the binary version of RcppTem-
plate that can be downloaded from CRAN. To customize the package it will be helpful to delete the
vignette file (this simplifies the build process):

$ rm RcppTemplate\inst\doc\RcppAPI.Rnw

5. (Customizing) As we explained in Section 2 it is now possible to add source files to RcppTemplate\src,
and R files to RcppTemplate\R. The file RcppTemplate\src\Makefile.win must be updated to include
any new source files that you create. Unlike the generic case, it is convenient to use Windows command
files (.bat files) to drive the testing, build, and release process, like we did in Step 3 above. Note that
under Windows commands like ’R CMD build’ can be replaced with ’Rcmd build’. When you are familiar
with the way packages are structured you can rename the package by making the appropriate changes
as described previously.

11 Appendix B: Using Microsoft Visual C++

In this section we explain how to build a dynamic link library (DLL) using the Microsoft Visual C++

Express IDE (part of Visual Studio 2005). It is also called MSVC, or MSVC 8.0. We also explain how
to build a binary R package that uses this DLL. Note that this package can be used for internal testing
and benchmarking only (cannot be uploaded to CRAN) because CRAN does not support Visual C++,
and will not accept binary submissions. Section 2 is a prerequisite for this appendix.

1. (Download and Install) Download and install the necessary tools. This includes

� the UNIX tools for R from http://www.murdoch-sutherland.com/Rtools,

� the MinGW-utils tools from http://www.mingw.org,

� ActivePerl from http://www.activestate.com,

� MikTeX (TeX for Windows),

� Microsoft’s HTML help tool.

It is not necessary to download the entire MinGW compiler, only the binary version of the tools is
needed. Of course, you must also have installed R and MS Visual C++. The HTML help tool can be
downloaded from Microsoft—see the murdoch-sutherland site for more information.

Make sure that the UNIX tools from Rtools and the GNU C++ MinGW utilities are in your path:

11

$ set path=c:\Rtools\bin;%path% (modify as needed)
$ set path=c:\MinGW\bin;%path% (modify as needed)

Also be sure that the MSVC command-line tools are in your environment by working from the terminal
window that is provided by MSVC (this is a separate application, not part of the IDE).

2. (Build interface library) Export symbols from the R.dll file and make a library interface file that
Visual C++ can use. This is done where R is installed as follows:

$ cd C:\Program Files\R\R-2.3.1\bin (modify as required)
$ pexports R.dll > R.exp
$ lib /def:R.exp /out:Rdll.lib

Here lib is the library command that comes with Visual C++, and pexports is part of the MinGW-
utils package.

3. (Prepare package source) Extract the RcppTemplate source archive (the .tar.gz file) into some
convenient location (in your private space, not in the R installation directory). Use the tar command
that comes with Rtools (here ’VVV’ stands for the version number):

$ cd <some convenient place>
$ tar -xvzf RcppTemplate_VVV.tar.gz

After issuing this command you will be located in a directory directly above the package root directory
(RcppTemplate).

By default RcppTemplate is designed to be compiled with MinGW (GNU compiler). In order to build
with Visual C++, we make a package subdirectory named RcppTemplate\MSVC\RcppTemplate, and we
copy the source files from RcppTemplate\src to this directory. We also have to delete the original source
directory, along with the GNU configuration file. Finally, we need to make a directory that will hold the
DLL file that we are about to build:

$ mkdir RcppTemplate\MSVC
$ mkdir RcppTemplate\MSVC\RcppTemplate
$ cp RcppTemplate\src\RcppExample.cpp RcppTemplate\MSVC\RcppTemplate
$ rm -rf RcppTemplate\src RcppTemplate\configure.win
$ mkdir RcppTemplate\inst\libs

To simplify the build process it will also be useful to delete the vignette file for RcppTemplate:

$ rm RcppTemplate\inst\doc\RcppAPI.Rnw

4. (Build DLL using MSVC) Start the Visual C++ IDE, and select File / New Project. In the
New Project dialog box set the project name to RcppTemplate, and the location to

C:\RcppTemplate\MSVC (modify as needed)

12

Make sure the ’create directory for solution’ box is not checked, and select the Win32 Console Application
template. Under Application Settings, turn precompiled headers off. When you make a new project like
this the following files are created: stdafx.cpp, stdafx.h, RcppTemplate.cpp. All three of them should be
deleted because they will not be used (and they can cause problems if present).

Next we add source files to the project. Select Project / Add Existing Item, and add RcppExam-
ple.cpp. Then use the same command and navigate to the directory containing the Rcpp source files
(RcppSrc) and add the files Rcpp.cpp and Rcpp.hpp in turn. Later you can add files of your own design
in the same way.

Set global options as follows (indentation corresponds to MSVC menu levels):

Tools
Options

Projects and Solutions
VC++ Directories

Include dirs: C:\Program Files\R\R-2.3.1\include
Library dirs: C:\Program Files\R\R-2.3.1\bin

Modify the paths here as needed.
Next we set project-specific options. These need to be set separately for Debug and Release (opti-

mized) builds. Let’s set the mode to Release, and cover the options for this case.

Project
Properties

General
Configuration type: Dynamic library (.dll)
Use of MFC: Use MFC in a static library

C/C++
General

Additional include dirs: ..\..\RcppSrc (add others if neeeded)
Preprocessor

Preprocessor Defs: BUILDING_DLL (add to options already present)
Linker

Input
Additional dependencies: Rdll.lib (add others if needed)

Now that everything is configured we can build the dynamic link library (DLL) by selecting: Build /
Build Solution. If everything goes well this will create:

RcppTemplate\MSVC\RcppTemplate\Release\RcppTemplate.dll

Be sure to exit the IDE before moving on to the next step (otherwise the R build process may try to
delete files that the IDE has locked).

5. (Create a binary R package) Move the DLL file from the place where MSVC puts it to

RcppTemplate\inst\libs\RcppTemplate.dll

Check the Windows batch file RcppTemplate\inst\doc\MakeWinBin.bat to make sure that it points
to the correct places (where the tools like Rtools and R have been installed). Then change directory so
that you are above your working package root directory (RcppTemplate), copy the batch file to the same
location, and run the batch file:

13

$ MakeWinBin RcppTemplate

This should create RcppTemplate VVV.zip, a binary R package file that can be installed under
Windows in the usual way.

6. (Customizing) Unlike the standard situation discussed in Section 2, here customized source files
should be placed into

RcppTemplate\MSVC\RcppTemplate

and added to the project using Project / Add Existing Item, as explained above. There is of course no
need to work with a Makefile when using MSVC. It is convenient to use Windows command files (.bat
files) to drive the testing, build, and release process, like we did in the previous step. Note that under
Windows commands like ’R CMD build’ can be replaced with ’Rcmd build’. When you are familiar
with the way packages are structured you can rename the package by making the appropriate changes
as described previously.

14

12 Appendix C: Rcpp Quick Reference

In this quick reference “type” can be double or int.

RcppParams constructor and methods
RcppParams::RcppParams(SEXP)
double RcppParams::getDoubleValue(string)
int RcppParams::getIntValue(string)
string RcppParams::getStringValue(string)
bool RcppParams::getBoolValue(string)
RcppDate RcppParams::getDateValue(string)

RcppNumList constructor and methods
RcppNumList::RcppNumList(SEXP)
int RcppNumList::size()
string RcppNumList::getName(int)
double RcppNumList::getValue(int)

RcppDate constructors, methods, and friends
RcppDate::RcppDate() [defaults to 1/1/1970]
RcppDate::RcppDate(int month, int day, int year)
RcppDate::RcppDate(int Rjdn) [Rjdn = 0 for 1/1/1970]
int RcppDate::getMonth()
int RcppDate::getDay()
int RcppDate::getYear()
int RcppDate::getJDN()
friend RcppDate operator+(const RcppDate&, int offset)
friend int operator-(const RcppDate&, const RcppDate&)
friend bool operator<(const RcppDate&, const RcppDate&)
friend bool operator>(const RcppDate&, const RcppDate&)
friend bool operator<=(const RcppDate&, const RcppDate&)
friend bool operator>=(const RcppDate&, const RcppDate&)
friend bool operator==(const RcppDate&, const RcppDate&)
RcppDate::RcppDate(Date date) [requires QuantLib]
Date RcppDate::operator Date() [requires QuantLib]

Matrix and vector constructors
RcppMatrix<type>(SEXP a)
RcppMatrix<type>(int nrow, int ncol)
RcppVector<type>(SEXP a)
RcppVector<type>(int len)
RcppStringVector(SEXP sv)
RcppDateVector(SEXP dv)

Matrix and vector methods

15

int RcppVector<type>::size()
int RcppStringVector::size()
int RcppDateVector::size()
string& RcppStringVector::operator()(int i)
RcppDate& RcppDateVector::operator()(int i)
type& RcppMatrix<type>::operator()(int i, int j)
type& RcppVector<type>::operator()(int i)
vector<type> RcppVector<type>::stlVector()
vector<vector<type> > RcppMatrix<type>::stlMatrix()
type* RcppVector<type>::cVector()
type** RcppMatrix<type>::cMatrix()

RcppFrame constructors and methods
RcppFrame::RcppFrame(SEXP df) [input from R]
RcppFrame::RcppFrame(vector<string> colNames) [user created]
vector<string>& RcppFrame::getColNames()
vector<vector<ColDatum> >& RcppFrame::getTableData()
void RcppFrame::addRow(vector<ColDatum> rowData)

ColDatum constructor and methods
ColDatum::ColDatum()
ColType ColDatum::getType()
int ColDatum::getIntValue()
double ColDatum::getDoubleValue()
int ColDatum::getLogicalValue()
string ColDatum::getStringValue()
RcppDate ColDatum::getDateValue()
int ColDatum::getFactorLevel()
string ColDatum::getFactorLevelName() [name for this level]
string *ColDatum::getFactorLevelNames() [all level names]
int ColDatum::getFactorNumLevels()
double ColDatum::getDateRCode()
void ColDatum::setIntValue(int val)
void ColDatum::setDoubleValue(double val)
void ColDatum::setLogicalValue(int val)
void ColDatum::setStringValue(string val)
void ColDatum::setDateValue(RcppDate date)
void ColDatum::setFactorValue(string *names, int numNames, int level)

ColType values
COLTYPE_DOUBLE
COLTYPE_INT
COLTYPE_LOGICAL
COLTYPE_STRING
COLTYPE_FACTOR
COLTYPE_DATE

RcppResultSet constructor and methods

16

RcppResultSet::RcppResultSet()
void RcppResultSet::add(string,double)
void RcppResultSet::add(string,int)
void RcppResultSet::add(string,string)
void RcppResultSet::add(string,double*,int)
void RcppResultSet::add(string,double**,int,int)
void RcppResultSet::add(string,int*,int)
void RcppResultSet::add(string,int**,int,int)
void RcppResultSet::add(string,RcppDate&)
void RcppResultSet::add(string,RcppDateVector&)
void RcppResultSet::add(string,RcppStringVector&)
void RcppResultSet::add(string,vector<type>&)
void RcppResultSet::add(string,vector<vector<type> >&)
void RcppResultSet::add(string,vector<string>&)
void RcppResultSet::add(string,RcppVector<type>&)
void RcppResultSet::add(string,RcppMatrix<type>&)
void RcppResultSet::add(string,RcppFrame&)
void RcppResultSet::add(string,SEXP,bool)

RcppFunction constructors and methods
RcppFunction::RcppFunction(SEXP fn) [input from R]
void RcppFunction::setRVector(vector<double>& v)
void RcppFunction::setRListSize(int size)
void RcppFunction::appendToRList(string name, double val)
void RcppFunction::appendToRList(string name, int val)
void RcppFunction::appendToRList(string name, string val)
void RcppFunction::appendToRList(string name, RcppDate& val)
void RcppFunction::clearProtectionStack()
SEXP RcppFunction::vectorCall()
SEXP RcppFunction::listCall()

The last method in RcppResultSet is provided for users who want to work with SEXP’s directly, or
when the user wants to pass one of the input SEXP’s back as a return value, as we did in the example
above. The boolean flag tells Rcpp whether or not the SEXP provided has been protected.

A SEXP that is allocated by the user may be garbage collected by R at any time so it needs to be
protected using the PROTECT function to prevent this. A SEXP that is passed to a C++ function by
R does not need to be protected because R knows that it is in use.

The last class RcppFunction provides an interface for calling functions defined on the R side. The
user must subclass and define adapter interfaces that use utility functions in the superclass to make
calls to R functions. The functions can be called with list or vector parameters (using listCall() and
vectorCall(), respectively). See RcppExample.cpp and RcppExample.Rd for examples.

17

