
Rcpp Attributes

J.J. Allaire Dirk Eddelbuettel Romain François

Rcpp version 0.10.5 as of September 28, 2013

Abstract

Rcpp attributes provide a high-level syntax for declaring C++ functions as callable from
R and automatically generating the code required to invoke them. Attributes are intended
to facilitate both interactive use of C++ within R sessions as well as to support R package
development. The implementation of attributes is based on previous work in the inline
package (Sklyar, Murdoch, Smith, Eddelbuettel, and François, 2013).

1 Introduction

Attributes are a new feature of Rcpp version 0.10.0 (Eddelbuettel and François, 2013,
2011) that provide infrastructure for seamless language bindings between R and C++. The
motivation for attributes is several-fold:

1. Reduce the learning curve associated with using C++ and R together

2. Eliminate boilerplate conversion and marshaling code wherever possible

3. Seamless use of C++ within interactive R sessions

4. Unified syntax for interactive work and package development

The core concept is to add annotations to C++ source files that provide the context
required to automatically generate R bindings to C++ functions. Attributes and their
supporting functions include:

• Rcpp::export attribute to export a C++ function to R

• sourceCpp function to source exported functions from a file

• cppFunction and evalCpp functions for inline declarations and execution

• Rcpp::depends attribute for specifying additional build dependencies for sourceCpp

Attributes can also be used for package development via the compileAttributes func-
tion, which automatically generates extern "C" and .Call wrappers for C++ functions
within pacakges.

1

2 Using Attributes

Attributes are annotations that are added to C++ source files to provide additional infor-
mation to the compiler. Rcpp supports attributes to indicate that C++ functions should be
made available as R functions, as well as to optionally specify additional build dependencies
for source files.

C++11 specifies a standard syntax for attributes (Maurer and Wong, 2008). Since this
standard isn’t yet fully supported across all compilers, Rcpp attributes are included in source
files using specially formatted comments.

2.1 Exporting C++ Functions

The sourceCpp function parses a C++ file and looks for functions marked with the
Rcpp::export attribute. A shared library is then built and its exported functions are
made available as R functions in the specified environment. For example, this source file
contains an implementation of convolve (note the Rcpp::export attribute in the comment
above the function):

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
NumericVector convolveCpp(NumericVector a, NumericVector b) {

int na = a.size(), nb = b.size();

int nab = na + nb - 1;

NumericVector xab(nab);

for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)

xab[i + j] += a[i] * b[j];

return xab;

}

The addition of the export attribute allows us to do this from the R prompt:

> sourceCpp("convolve.cpp")

> convolveCpp(x, y)

We can now write C++ functions using built-in C++ types and Rcpp wrapper types and
then source them just as we would an R script.

2

The sourceCpp function performs caching based on the last modified date of the source
file so as long as the source file does not change the compilation will occur only once per R
session.

2.2 Specifying Argument Defaults

If default argument values are provided in the C++ function definition then these defaults
are also used for the exported R function. For example, the following C++ function:

DataFrame readData(

CharacterVector file,

CharacterVector cols = CharacterVector::create(),

std::string comment = "#",

bool header = true)

Will be exported to R as:

function (file, cols = character(), comment = "#", header = TRUE)

Note that C++ rules for default arguments still apply: they must occur consecutively at
the end of the function signature and (unlike R) can’t rely on the values of other arguments.

Not all C++ defualt argument values can be parsed into their R equivalents, however
the most common cases are supported, including:

• String literals delimited by quotes (e.g. "foo")

• Decimal numeric values (e.g. 10 or 4.5)

• Pre-defined constants including true, false, R_NilValue, NA_STRING, NA_INTEGER,
NA_REAL, and NA_LOGICAL.

• Selected vector types (CharacterVector, IntegerVector, and NumericVector) in-
stantiated using the ::create static member function.

• Matrix types instantiated using the rows, cols constructor.

3

2.3 Signaling Errors

Within R code the stop function is typically used to signal errors. Within R extensions
written in C the Rf_error function is typically used. However, within C++ code you cannot
safely use Rf_error because it results in a longjmp over any C++ destructors on the stack.

The correct way to signal errors within C++ functions is to throw an
Rcpp::exception. For example:

if (unexpectedCondition)
throw Rcpp::exception("Unexpected condition occurred");

There is also an Rcpp::stop function that is shorthand for throwing an
Rcpp::exception. For example:

if (unexpectedCondition)
Rcpp::stop("Unexpected condition occurred");

In both cases the C++ exception will be caught by Rcpp prior to returning control to
R and converted into the correct signal to R that execution should stop with the specified
message.

2.4 Embedding R Code

Typically C++ and R code are kept in their own source files. However, it’s often convenient
to bundle code from both languages into a common source file that can be executed using
single call to sourceCpp.

To embed chunks of R code within a C++ source file you include the R code within a
block comment that has the prefix of /*** R. For example:

/*** R

Call the fibonacci function defined in C++
fibonacci(10)

*/

Multiple R code chunks can be included in a C++ file. The sourceCpp function will first
compile the C++ code into a shared library and then source the embedded R code.

4

2.5 Modifying Function Names

You can change the name of an exported function as it appears to R by adding a name
parameter to Rcpp::export. For example:

// [[Rcpp::export(".convolveCpp")]]
NumericVector convolveCpp(NumericVector a, NumericVector b)

Note that in this case since the specified name is prefaced by a . the exported R function
will be hidden.

2.6 Function Requirements

Functions marked with the Rcpp::export attribute must meet several requirements to be
correctly handled:

• Be defined in the global namespace (i.e. not within a C++ namespace declaration)

• Have a return type that is either void or compatible with Rcpp::wrap and parameter
types that are compatible with Rcpp::as (see sections 3.1 and 3.2 of the ‘Rcpp-
introduction’ vignette for more details).

• Use fully qualified type names for the return value and all parameters. Rcpp types
may however appear without a namespace qualifier (i.e. DataFrame is okay as a type
name but std::string must be specified fully).

2.7 Random Number Generation

R functions implemented in C or C++ need to be careful to surround use of internal
random number geneneration routines (e.g. unif_rand) with calls to GetRNGstate and
PutRNGstate.

Within Rcpp, this is typically done using the RNGScope class. However, this is not
necessary for C++ functions exported using attributes because an RNGScope is established
for them automatically. Note that Rcpp implements RNGScope using a counter, so it’s still
safe to execute code that may establish it’s own RNGScope (such as the Rcpp sugar functions
that deal with random number generation).

5

2.8 Importing Dependencies

It’s also possible to use the Rcpp::depends attribute to declare dependencies on other
packages. For example:

// [[Rcpp::depends(RcppArmadillo)]]

#include <RcppArmadillo.h>

using namespace Rcpp

// [[Rcpp::export]]
List fastLm(NumericVector yr, NumericMatrix Xr) {

int n = Xr.nrow(), k = Xr.ncol();

arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);

arma::colvec coef = arma::solve(X, y);

arma::colvec resid = y - X*coef;

double sig2 = arma::as_scalar(arma::trans(resid)*resid/(n-k));

arma::colvec stderrest = arma::sqrt(

sig2 * arma::diagvec(arma::inv(arma::trans(X)*X)));

return List::create(Named("coefficients") = coef,

Named("stderr") = stderrest);

}

The inclusion of the Rcpp::depends attribute causes sourceCpp to configure the build
environment to correctly compile and link against the RcppArmadillo package. Source files
can declare more than one dependency either by using multiple Rcpp::depends attributes
or with syntax like this:

// [[Rcpp::depends(Matrix, RcppArmadillo)]]

Dependencies are discovered both by scanning for package include directories and by
invoking inline plugins if they are available for a package.

Note that while the Rcpp::depends attribute establishes dependencies for sourceCpp,
it’s important to note that if you include the same source file in an R package these
dependencies must still be listed in the Depends and LinkingTo fields of the package
DESCRIPTION file.

6

2.9 Including C++ Inline

Maintaining C++ code in it’s own source file provides several benefits including the ability
to use C++ aware text-editing tools and straightforward mapping of compilation errors to
lines in the source file. However, it’s also possible to do inline declaration and execution of
C++ code.

There are several ways to accomplish this, including passing a code string to sourceCpp

or using the shorter-form cppFunction or evalCpp functions. For example:

> cppFunction('

int fibonacci(const int x) {

if (x < 2)

return x;

else

return (fibonacci(x - 1)) + fibonacci(x - 2);

}

')

> evalCpp('std::numeric_limits<double>::max()')

You can also specify a depends parameter to cppFunction or evalCpp:

> cppFunction(depends = 'RcppArmadillo', code = '...')

3 Package Development

One of the goals of Rcpp attributes is to simultaneously facilitate ad-hoc and interactive
work with C++ while also making it very easy to migrate that work into an R package.
There are several benefits of moving code from a standalone C++ source file to a package:

1. Your code can be made available to users without C++ development tools (at least on
Windows or Mac OS X where binary packages are common)

2. Multiple source files and their dependencies are handled automatically by the R
package build system

3. Packages provide additional infrastructure for testing, documentation and consistency

3.1 Package Creation

To create a package that is based on Rcpp you should follow the guidelines in the ‘Rcpp-
package’ vignette. For a new package this is most conveniently done using the Rcpp.package.skeleton
function.

To generate a new package with a simple hello, world function that uses attributes you
can do the following:

7

> Rcpp.package.skeleton("NewPackage", attributes = TRUE)

To generate a package based on C++ files that you’ve been using with sourceCpp you
can use the cpp_files parameter:

> Rcpp.package.skeleton("NewPackage", example_code = FALSE,

cpp_files = c("convolve.cpp"))

3.2 Specifying Dependencies

Once you’ve migrated C++ code into a package, the dependencies for source files are
derived from the Depends and LinkingTo fields in the package DESCRIPTION file rather
than the Rcpp::depends attribute. For every package you import C++ code from (including
Rcpp) you need to add these entries.

For example, if your package depends on Rcpp and RcppArmadillo you would have the
following in your DESCRIPTION file:

Depends: Rcpp (>= 0.10.0), RcppArmadillo (>= 0.3.4.4)

LinkingTo: Rcpp, RcppArmadillo

3.3 Exporting R Functions

Within interactive sessions you call the sourceCpp function on individual files to export
C++ functions into the global environment. However, for packages you call a single utility
function to export all C++ functions within the package.

The compileAttributes function scans the source files within a package for export
attributes and generates code as required. For example, executing this from within the
package working directory:

> compileAttributes()

Results in the generation of the following two source files:

• src/RcppExports.cpp – The extern "C" wrappers required to call exported C++
functions within the package.

• R/RcppExports.R – The .Call wrappers required to call the extern "C" functions
defined in RcppExports.cpp.

You should re-run compileAttributes whenever functions are added, removed, or
have their signatures changed.

The compileAttributes function deals only with exporting C++ functions to R. If you
want the functions to additionally be publicly available from your package’s namespace
another step may be required. Specifically, if your package NAMESPACE file does not use a
pattern to export functions then you should add an explicit entry to NAMESPACE for each R
function you want publicly available.

8

3.4 Roxygen Comments

The roxygen2 package (Wickham, Danenberg, and Eugster, 2011) provides a facility for
automatically generating R documentation files based on specially formatted comments in R
source code.

If you include roxygen comments in your C++ source file with a //' prefix then com-

pileAttributes will transpose them into R roxygen comments within R/RcppExports.R.
For example the following code in a C++ source file:

//' The length of a string (in characters).
//' @param str input character vector
//' @return characters in each element of the vector
// [[Rcpp::export]]
NumericVector strLength(CharacterVector str)

Results in the following code in the generated R source file:

#' The length of a string (in characters).
#' @param str input character vector
#' @return characters in each element of the vector
strLength <- function(str)

3.5 Providing a C++ Interface

The interface exposed from R packages is most typically a set of R functions. However,
the R package system also provides a mechanism to allow the exporting of C and C++
interfaces using package header files. This is based on the R_RegisterCCallable and
R_GetCCallable functions described in ‘Writing R Extensions’ (R Development Core Team,
2012).

C++ interfaces to a package are published within the top level include directory of the
package (which within the package source directory is located at inst/include). The R
build system automatically adds the required include directories for all packages specified
in the LinkingTo field of the package DESCRIPTION file.

3.5.1 Interfaces Attribute

The Rcpp::interfaces attribute can be used to automatically generate a header-only
interface to your C++ functions within the include directory of your package.

The Rcpp::interfaces attribute is specified on a per-source file basis, and indicates
which interfaces (R, C++, or both) should be provided for exported functions within the
file.

For example, the following specifies that both R and C++ interfaces should be generated
for a source file:

9

// [[Rcpp::interfaces(r, cpp)]]

Note that the default behavior if an Rcpp::interfaces attribute is not included in a
source file is to generate an R interface only.

3.5.2 Generated Code

If you request a cpp interface for a source file then compileAttributes generates the
following header files (substituting Package with the name of the package code is being
generated for):

inst/include/Package.h

inst/include/Package_RcppExports.h

The Package_RcppExports.h file has inline definitions for all exported C++ functions
that enable calling them using the R_GetCCallable mechanism.

The Package.h file does nothing other than include the Package_RcppExports.h

header. This is done so that package authors can replace the Package.h header with a
custom one and still be able to include the automatically generated exports (details on doing
this are provided in the next section).

The exported functions are defined within a C++ namespace that matches the name
of the package. For example, an exported C++ function bar could be called from package
MyPackage as follows:

// [[Rcpp::depends(MyPackage)]]

#include <MyPackage.h>

void foo() {

MyPackage::bar();

}

3.5.3 Including Additional Code

You might wish to use the Rcpp::interfaces attribute to generate a part of your package’s
C++ interface but also provide additional custom C++ code. In this case you should replace
the generated Package.h file with one of your own.

Note that the way Rcpp distinguishes user verses generated files is by checking for the
presence a special token in the file (if it’s present then it’s known to be generated and thus
safe to overwrite). You’ll see this token at the top of the generated Package.h file, be sure
to remove it if you want to provide a custom header.

Once you’ve established a custom package header file, you need only include the Pack-

age_RcppExports.h file within your header to make available the automatically generated
code alongside your own.

10

If you need to include code from your custom header files within the compilation of
your package source files, you will also need to add the following entry to Makevars and
Makevars.win (both are in the src directory of your package):

PKG_CPPFLAGS += -I../inst/include/

Note that the R package build system does not automatically force a rebuild when
headers in inst/include change, so you should be sure to perform a full rebuild of the
package after making changes to these headers.

References

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of
Statistical Software, 40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/i08/.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ Integration, 2013. URL
http://CRAN.R-Project.org/package=Rcpp. R package version 0.10.4.

Jens Maurer and Michael Wong. Towards support for attributes in C++ (revision 6). In
JTC1/SC22/WG21 - The C++ Standards Committee, 2008. URL http://www.open-std.

org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf. N2761=08-0271.

R Development Core Team. Writing R extensions. R Foundation for Statistical Computing, Vi-
enna, Austria, 2012. URL http://CRAN.R-Project.org/doc/manuals/R-exts.html.
ISBN 3-900051-11-9.

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain François. inline:
Inline C, C++, Fortran function calls from R, 2013. URL http://CRAN.R-Project.org/

package=inline. R package version 0.3.12.

Hadley Wickham, Peter Danenberg, and Manuel Eugster. roxygen2: In-source documentation
for R, 2011. URL http://CRAN.R-Project.org/package=roxygen2. R package version
2.2.2.

11

http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=Rcpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/package=inline
http://CRAN.R-Project.org/package=inline
http://CRAN.R-Project.org/package=roxygen2

	Introduction
	Using Attributes
	Exporting C++ Functions
	Specifying Argument Defaults
	Signaling Errors
	Embedding R Code
	Modifying Function Names
	Function Requirements
	Random Number Generation
	Importing Dependencies
	Including C++ Inline

	Package Development
	Package Creation
	Specifying Dependencies
	Exporting R Functions
	Roxygen Comments
	Providing a C++ Interface
	Interfaces Attribute
	Generated Code
	Including Additional Code

