
Rcpp Attributes

J.J. Allaire Dirk Eddelbuettel Romain François

Rcpp version 0.10.0 as of November 13, 2012

Abstract

Rcpp attributes provide a high-level syntax for declaring C++ functions as callable
from R and automatically generating the code required to invoke them. Attributes
are intended to facilate both interactive use of C++ within R sessions as well as to
support R package development. Attributes are built on top of Rcpp modules and
their implementation is based on previous work in the inline package (Sklyar, Murdoch,
Smith, Eddelbuettel, and François, 2012).

1 Introduction

Rcpp attributes are a new feature of Rcpp version 0.10.0 (Eddelbuettel and François,
2012, 2011) that provide infrastructure for seamless language bindings between R and
C++. The motivation for attributes is several-fold:

1. Reducing the learning curve associated with using C++ and R together

2. Eliminating boilerplate conversion and marshaling code wherever possible

3. Seamless use of C++ within interactive R sessions

4. Unified syntax for interactive work and package development

The core concept is to add declarative attributes to C++ source files that provide
the context required to automatically generate R bindings to C++ functions. Attributes
and their supporting functions include:

� Rcpp::export attribute to export a C++ function to R

� sourceCpp function to source exported functions from a file

� cppFunction and evalCpp functions for inline declarations and execution

� Rcpp::depends attribute for specifying additional build dependencies for sourceCpp

Attributes can also be used for package development via the compileAttributes

function, which generates an Rcpp module for all exported functions within a package.
Attributes derive their syntax from C++11 style attributes (Maurer and Wong,

2008) and are included in source files using specially formatted comments.

1

2 Sourcing C++ Functions

The sourceCpp function parses a C++ file and looks for functions marked with the
Rcpp::export attribute. A shared library is then built and its exported functions are
made available as R functions in the specified environment. For example, this source
file contains an implementation of convolve (note the Rcpp::export attribute in the
comment above the function):

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

NumericVector convolveCpp(NumericVector a, NumericVector b) {

int na = a.size(), nb = b.size();

int nab = na + nb - 1;

NumericVector xab(nab);

for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)

xab[i + j] += a[i] * b[j];

return xab;

}

The addition of the export attribute allows us to do this from the R prompt:

> sourceCpp("convolve.cpp")

> convolveCpp(x, y)

We can now write C++ functions using standard C++ types and then source them
just like an R script using the sourceCpp function. Any types that can be marshaled
with as and wrap can be used in the signatures of exported functions (and since as and
wrap are in turn extensible, a wide variety of custom types can be supported).

You can change the name of the exported function as it appears to R by adding a
name parameter to Rcpp::export. For example the following will export convolveCpp
as a hidden R function:

// [[Rcpp::export(".convolveCpp")]]

NumericVector convolveCpp(NumericVector a, NumericVector b)

The sourceCpp function performs caching based on the last modified date of the
source file so as long as the source file does not change the compilation will occur only
once per R session.

2

3 Importing Dependencies

It’s also possible to use the Rcpp::depends attribute to declare dependencies on other
packages. For example:

// [[Rcpp::depends(RcppArmadillo)]]

#include <RcppArmadillo.h>

using namespace Rcpp

// [[Rcpp::export]]

List fastLm(NumericVector yr, NumericMatrix Xr) {

int n = Xr.nrow(), k = Xr.ncol();

arma::mat X(Xr.begin(), n, k, false);

arma::colvec y(yr.begin(), yr.size(), false);

arma::colvec coef = arma::solve(X, y);

arma::colvec resid = y - X*coef;

double sig2 = arma::as_scalar(arma::trans(resid)*resid/(n-k));

arma::colvec stderrest = arma::sqrt(

sig2 * arma::diagvec(arma::inv(arma::trans(X)*X)));

return List::create(Named("coefficients") = coef,

Named("stderr") = stderrest);

}

The inclusion of the Rcpp::depends attribute causes sourceCpp to configure the
build environment to correctly compile and link against the RcppArmadillo package.
Source files can declare more than one dependency either by using multiple Rcpp::depends
attributes or with syntax like this:

// [[Rcpp::depends(Matrix, RcppArmadillo)]]

Dependencies are discovered both by scanning for package include directories and
by invoking inline plugins if they are available for a package.

3

4 Using C++ Inline

Maintaining C++ code in it’s own source file provides several benefits including the
ability to use C++ aware text-editing tools and straightforward mapping of compilation
errors to lines in the source file. However, it’s also possible to do inline declaration
and execution of C++ code. This is accomplished by either passing a code string to
sourceCpp or using the shorter-form cppFunction or evalCpp functions. For example:

> cppFunction('

int fibonacci(const int x) {

if (x < 2)

return x;

else

return (fibonacci(x - 1)) + fibonacci(x - 2);

}

')

> evalCpp('std::numeric_limits<double>::max()')

You can also specify a depends parameter to cppFunction or evalCpp:

> cppFunction(depends = 'RcppArmadillo', code = '...')

Note that using sourceCpp, cppFunction, and evalCpp require that C++ develop-
ment tools be available to build the code. If you want to distribute Rcpp code to users
that don’t have these tools installed you can bundle your code into an R package. The
next section describes how you can use Rcpp attributes for package development.

5 Package Development

5.1 Exporting R Functions

C++ source code that uses attributes to export R functions can also be included in
an R package. In this case rather than calling sourceCpp on individual files you call a
single utility function for the whole package. The compileAttributes function scans
the source files within a package for export attributes and generates code as required.

For example, executing this from within the package working directory:

> compileAttributes()

Results in the generation of the following two source files:

� src/RcppExports.cpp – An Rcpp module that exports the functions

� R/RcppExports.R – The R code required to load the Rcpp module

4

The generated code deals only with interface of functions rather than the implemen-
tation, so compileAttributes needs to be run only when functions are added, removed,
or have their signatures changed.

5.2 Providing a C++ Interface

You can use the Rcpp::interfaces attribute to expose the underlying C++ functions
directly to users of your package. For example, the following specifies that both R and
C++ interfaces should be generated:

// [[Rcpp::interfaces(r, cpp)]]

The Rcpp::interfaces attribute is specified on a per-source file basis. If you request
a cpp interface for a source file then compileAttributes does the following:

1. Bindings are generated into a header file located in the inst/include directory
of the package using the naming convention PackageName.h

2. The generated header file enables calling the exported C++functions without any
linking dependency on the package. This is based on using the R_RegisterCCallable
and R_GetCCallable functions described in ‘Writing R Extensions’ (R Develop-
ment Core Team, 2012).

3. The exported functions are defined within a C++ namespace that matches the
name of the package.

For example, an exported C++ function bar could be called from package MyPackage
as follows:

// [[Rcpp::depends(MyPackage)]]

#include <MyPackage.h>

void foo() {

MyPackage::bar();

}

Note that the default behavior if an Rcpp::interfaces attribute is not included in
a source file is to generate an R interface only.

5

5.3 Using Roxygen

The roxygen2 package (Wickham, Danenberg, and Eugster, 2011) provides a facility for
automatically generating R documentation files based on specially formatted comments
in R source code.

If you include roxygen comments in your C++ source file with a //' prefix then com-

pileAttributes will transpose them into R roxygen comments within R/RcppExports.R.
For example the following code in a C++ source file:

//' The length of a string (in characters).

//'

//' @param str input character vector

//' @return characters in each element of the vector

// [[Rcpp::export]]

NumericVector strLength(CharacterVector str)

Results in the following code in the generated R source file:

#' The length of a string (in characters).

#'

#' @param str input character vector

#' @return characters in each element of the vector

strLength <- function(str)

5.4 Packages and sourceCpp

One of the goals of Rcpp attributes is to simultaneously facilitate ad-hoc and interactive
work with C++ while also making it very easy to migrate that work into an R package.
Two major benefits of moving code from a standalone C++ source file to a package are:

1. Users without C++ development tools available can use your code.

2. Multiple source files and their dependencies are handled automatically by the R
package build system.

Once you’ve migrated C++ code into a package it’s still possible use sourceCpp with
it for iterative development. The main thing to keep in mind is that the dependencies
for source files within a package are derived from the Depends and LinkingTo fields in
the package DESCRIPTION file rather than the Rcpp::depends attribute.

6

References

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration.
Journal of Statistical Software, 40(8):1–18, 2011. URL http://www.jstatsoft.org/

v40/i08/.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ Integration, 2012.
URL http://CRAN.R-Project.org/package=Rcpp. R package version 0.9.13.

Jens Maurer and Michael Wong. Towards support for attributes in C++ (revision 6).
In JTC1/SC22/WG21 - The C++ Standards Committee, 2008. URL http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf. N2761=08-0271.

R Development Core Team. Writing R extensions. R Foundation for Statistical Com-
puting, Vienna, Austria, 2012. URL http://CRAN.R-Project.org/doc/manuals/

R-exts.html. ISBN 3-900051-11-9.

Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain François.
inline: Inline C, C++, Fortran function calls from R, 2012. URL http://CRAN.

R-Project.org/package=inline. R package version 0.3.10.

Hadley Wickham, Peter Danenberg, and Manuel Eugster. roxygen2: In-source docu-
mentation for R, 2011. URL http://CRAN.R-Project.org/package=roxygen2. R
package version 2.2.12.

7

http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=Rcpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/package=inline
http://CRAN.R-Project.org/package=inline
http://CRAN.R-Project.org/package=roxygen2

	Introduction
	Sourcing C++ Functions
	Importing Dependencies
	Using C++ Inline
	Package Development
	Exporting R Functions
	Providing a C++ Interface
	Using Roxygen
	Packages and sourceCpp

