Package ‘utilityFunctionTools’

August 20, 2025
Type Package
Title P-Spline Regression for Utility Functions and Derived Measures

Description Predicts a smooth and continuous (individual) utility function from util-
ity points, and computes measures of intensity for risk and higher-order risk mea-
sures (or any other measure computed with user-written function) based on this utility func-
tion and its derivatives according to the method introduced in Schnei-
der (2017) <http://hdl.handle.net/21.11130/00-1735-0000-002E-E306-0>.

Version 1.0

Maintainer Sebastian O. Schneider <sschneider@coll.mpg.de>

URL https://www.sebastianoschneider.com
License GPL-3

Imports spatstat.geom

Encoding UTF-8

RoxygenNote 7.3.2

Contents

bbase . . ... e e
compute_function . . . . ... L e e e
compute_higher_order_risk_preferences . . . . . . . ... ... oL
COMPULE_MEASUIES . « « v v v v v e v e e e e e e e e e e e e e e e e e e e
derivative . . . . . . . e e e e e e e e e
estimate_model . . . . . .. e e
evaluate _cross_validation . . . . . . . . . . ... e e
find_optimal_lambda . . . . . ... ..
TPOWEE . . o o o e e e e e e e e e

Index


http://hdl.handle.net/21.11130/00-1735-0000-002E-E306-0
https://www.sebastianoschneider.com

2 compute_function

bbase Constructs a B-spline basis of degree ’deg’ (Code by Paul Eilers, Pack-
age JOPS, http://statweb.lsu.edu/faculty/marx/JOPS_0.1.0.tar.gz).

Description

Constructs a B-spline basis of degree ’deg’ (Code by Paul Eilers, Package JOPS, http://statweb.lsu.edu/faculty/marx/JOPS

Usage
bbase(x, x1 = min(x), xr = max(x), ndx = 20, deg = 6)

Arguments
X values for the x axis.
x1 minimum value, default is the minimum value of the x-values.
Xxr maximum value, default is maximum value of the x-values.
ndx number of intervals to partition the distance between xI and xr.
deg degree of the B-spline basis.

Value

a B-spline basis of degree deg and ndx + 1 internal knots.

Examples

x_finegrid <- seq(0.001, 1.0, (1.0 - 0.001) / 1000)
bbase(x_finegrid)

compute_function Computes a continuous and smooth utility function from the given util-
ity points

Description

Computes a continuous and smooth utility function from the given utility points

Usage
compute_function(
X,
y7
ids = NULL,
mode = 1,

penalty_order = 4,
lambda_max = 10000,
current_lambda = 1,
ndx = 20,

deg = 6,

verbose = 0



compute_higher_order_risk_preferences 3

Arguments

X

ids

mode

penalty_order

lambda_max

current_lambda

ndx

deg

verbose

Value

a matrix or dataframe containing the certainty equivalents (x-values of utility
points) for a given participant in each use case.

can be a vector or a matrix representing the corresponding utility values (y-
values of utility points).

a list containing the IDs of the participants. If not given, a list with IDs from 1
to n_observations will be created.

an integer between 0, 1, 2 representing the three possible modes: multiple im-
putation, optimal classification or weak’ classification. Default is optimal clas-
sification (1).

highest dimension (i.e., derivative) to penalize. Must be lower than deg.
maximum lambda used for computing the optimal lambda. It is used only in

multiple imputation (mode = 0) and optimal (mode = 1). The default value is
10000.

lambda considered in the current iteration. Only used in multiple imputation
(mode = 0) to create the combinations and as actual lambda value in ’weak’
classification mode (mode = 2). The default value is 1.

number of intervals to partition the distance between the lowest and highest x-
values of the utility points.

degree of the B-spline basis. Determines the degree of the function to be esti-
mated. If deg = 2, the estimated utility function will consist of quadratic func-
tions.

shows some information while the program is running.

A smooth and continuous utility function.

Examples

x <- matrix(c(24.60938,34.76074,78.75,81.86035,128.5156,
7.109375,80.4248,113.75,115.083,135.0781,
3.828125,7.211914,8.75,124.1064,131.7969,

1.640625,2.084961,8.75,36.94824,98.98438), nrow = 4, ncol = 5, byrow = TRUE)

y <- ¢(0.25, 0.375, 0.5, 0.625, 0.75)

compute_function(x, y, verbose = 1)

compute_higher_order_risk_preferences

Computes a continuous and smooth function according to the given
utility points

Description

Computes a continuous and smooth function according to the given utility points



compute_higher_order._risk_preferences

Usage
compute_higher_order_risk_preferences(
X,
Y,
ids = NULL,
mode = 1,
penalty_orders = c(4),
ndx = 20,
deg = 6,
measures = c("risk-arrow-pratt”, "crainich-eeckhoudt”, "denuit-eeckhoudt”),
root_filename = NULL,

verbose = 0

a matrix or dataframe containing the certainty equivalents (x-values of utility
can be a vector or a matrix representing the corresponding utility values (y-

a list containing the IDs of the participants. If not given, a list with IDs from 1

Arguments
X
points) for a given participant in each use case.
y
values of utility points).
ids
to n_observations will be created.
mode

penalty_orders

an integer between 0, 1, 2 representing the three possible modes: multiple im-
putation, optimal classification or weak’ classification. Default is optimal clas-
sification (1).

vector or constant that contains the derivates that will be smoothened. The val-
ues in this vector should not be larger than 4.

ndx number of intervals to partition the distance between the lowest and highest x-
values of the utility points.

deg degree of the B-spline basis. Determines the degree of the function to be esti-
mated. If deg = 2, the estimated utility function will consist of quadratic func-
tions.

measures the utility based (intensity) measures to be computed.

root_filename

verbose

Value

additional parameters for user-defined measures.
filename containing the location of where the output files are going to be saved.

shows some information while the program is running.

A smooth and continuous function.

Examples

x <- matrix(c(24.60938,34.76074,78.75,81.86035,128.5156,
7.109375,80.4248,113.75,115.083,135.0781,
3.828125,7.211914,8.75,124.1064,131.7969,

1.640625,2.084961,8.75,36.94824,98.98438), nrow = 4, ncol = 5, byrow = TRUE)

y <- c(0.25, 0.375, 0.5, 0.625, 0.75)
compute_higher_order_risk_preferences(x, y, mode = 1)



compute_measures 5

# could be used with root_filename argument:

# Linux

# outfile <- paste(dirname(getwd()), "/out”, sep="")

# Win

# outfile <- paste(dirname(getwd()), "\out”, sep="")
compute_higher_order_risk_preferences(x, y, mode = 2, verbose = 1)

compute_measures Given a set of smooth and continuous functions, computes predefined

and user-defined measures.

Description

Given a set of smooth and continuous functions, computes predefined and user-defined measures.

Usage
compute_measures(
x_grids,
coeffs,
ids = NULL,
ndx = 20,
deg = 6,
measures = c("risk-arrow-pratt”, "crainich-eeckhoudt”, "denuit-eeckhoudt”),
)
Arguments
x_grids a dataframe of vectors of x values for a smooth and continuous function.
coeffs a dataframe of coefficients for a smooth and continous function for each partic-
ipant.
ids a list containing the IDs of the participants. If not given, a list with IDs from 1
to n_observations will be created.
ndx number of intervals to partition the distance between the lowest and highest x-
values of the utility points.
deg degree of the B-spline basis. Determines the degree of the function to be esti-
mated. If deg = 2, the estimated utility function will consist of quadratic func-
tions.
measures a vector of measures to be computed.
additional parameters for user-defined measures.
Value

A set of measurements.



6 derivative

Examples

X <- rbind(seq(@.000002, 1.0, (1.0 - 0.000002) / 1000),
seq(0.001, 1.0, (1.0 - 0.001) / 1000),
seq(0.0004, 1.0, (1.0 - 0.0004) / 1000))
y <- rbind(seq(0.000002, 1.0, (1.0 - 0.000002) / 15),
seq(0.001, 1.0, (1.0 - 0.001) / 15),
seq(0.0004, 1.0, (1.0 - 0.0004) / 15))
compute_measures(x, y, ndx = 10, deg = 6)
# x_finegrid, coeff, ndx, deg are always there to be used
# The function should have additional unknown arguments (...) if the given parameters are not used
risk_arrow_pratt <- function(x_finegrid, coeff, ndx, deg){
dy_rd <- derivative(x_finegrid, coeff, 1, ndx, deg)
ddy_rd <- derivative(x_finegrid, coeff, 2, ndx, deg)
return (-mean(ddy_rd, na.rm = TRUE) / mean(dy_rd, na.rm = TRUE))
3
measures = c(”crainich-eeckhoudt”, "denuit-eeckhoudt”, risk_arrow_pratt)
compute_measures(x, y, ndx = 10, deg = 6, measures=measures)

derivative Computes the derivative of a function

Description

Computes the derivative of a function

Usage

derivative(x, coeffs, degree = 1, ndx = 20, deg = 6)

Arguments
X the x values for which the derivative should be computed.
coeffs the coefficient.
degree the degree of the derivative.
ndx number of intervals to partition the distance between the lowest and highest x-
values of the utility points.
deg degree of the B-spline basis. Determines the degree of the function to be esti-
mated. If deg = 2, the estimated utility function will consist of quadratic func-
tions.
Value

the derivative of the specified degree.

Examples

coeffs <- seq(0.000002, 1.0, (1.0 - 0.000002) / 25)
X <- seq(@.01, 1.0, (1.0 - 0.01) / 5)
derivative(x, coeffs)



estimate_model

estimate_model

Estimates the model

Description

Estimates the model

Usage
estimate_model(
Xi,
yi,
lambda = 1,

n_penalty_dimensions = 1,
penalty_order

ndx = 20,
deg = 6,

:4,

cross_validation_mode = 0,
return_estimate = 0,

left_out_xi
left_out_yi

Arguments

xi

yi

lambda

cQ,
cO

a vector containing the certainty equivalents (x-values of utility points) for a
given participant in each use case.

can be a vector or a matrix representing the corresponding utility values (y-
values of utility points).

lambda is the penalization weight used to compute the initial estimate. The
default value is 1.

n_penalty_dimensions

penalty_order
ndx

deg

number of dimensions (i.e., derivatives) to penalize. Possible values are 1 or 2.
The default value is 1.

highest dimension (i.e., derivative) to penalize. Must be lower than deg.
number of intervals to partition the distance between the lowest and highest x-
values of the utility points.

degree of the B-spline basis. Determines the degree of the function to be esti-
mated. If deg = 2, the estimated utility function will consist of quadratic func-
tions.

cross_validation_mode

return_estimate

left_out_xi

left_out_yi

determines which cross validation mode should be used. If O, then the cross
validation method is leave-one-third-out. If 1, then the cross validation method
is a theoretical leave-one-out, i.e., based on a formula. The default value is 1.

parameter that indicates whether or not to return the (initially) estimated coeffi-
cients. Default is false.

needed for cross validation: the x-values of the points that are left out for fitting
the model, so that they can be predicted

needed for cross validation: the y-values of the points that are left out for fitting
the model, so that they can be predicted



Value

evaluate_cross_validation

Returns the sum of residuals of the prediction of the left-out points using cross validation. If speci-
fied, additionally returns the estimated coefficients of the utility function (in the B-spline basis).

Examples

x <- c(0.0000000, 0.2819824, 0.3007812, 0.4375000, 0.5231934, 0.7784882, 0.8945312, 1.0000000)

y <- c(0.0000, 0.1250, 0.2500, 0.5000, 0.6250, 0.6875, 0.7500, 1.0000)
estimate_model(x, y, .5)

evaluate_cross_validation

Evaluates the cross validation function.

Description

Evaluates the cross validation function.

Usage

evaluate_cross_validation(

Xi,
yi,
lambda = 1,

n_penalty_dimensions = 1,
penalty_order = 4,

cross_validation_mode = @

ndx = 20,
deg = 6,
)
Arguments
xi
yi
lambda

a vector containing the certainty equivalents (x-values of utility points) for a
given participant in each use case.

can be a vector or a matrix representing the corresponding utility values (y-
values of utility points).

lambda is the penalization weight used to compute the initial estimate. The
default value is 1.

n_penalty_dimensions

penalty_order
ndx

deg

number of dimensions (i.e., derivatives) to penalize. Possible values are 1 or 2.
The default value is 1.

highest dimension (i.e., derivative) to penalize. Must be lower than deg.
number of intervals to partition the distance between the lowest and highest x-
values of the utility points.

degree of the B-spline basis. Determines the degree of the function to be esti-
mated. If deg = 2, the estimated utility function will consist of quadratic func-
tions.

cross_validation_mode

determines which cross validation mode should be used. If O, then the cross
validation method is leave-one-third-out. If 1, then the cross validation method
is a theoretical leave-one-out, i.e., based on a formula. The default value is 1.



find_optimal_lambda 9

Value

Returns, for the given utility points and (possibly default) settings, the predictive quality of the
estimated utility function according to cross validation as a function of a specified penalty weight
lambda.

Examples

X <- c(0.0000000, 0.2819824, 0.3007812, 0.4375000, ©.5231934, 0.7784882, 0.8945312, 1.0000000)
y <- c(0.0000, 0.1250, 0.2500, 0.5000, 0.6250, 0.6875, 0.7500, 1.0000)
evaluate_cross_validation(x, y, .5)

find_optimal_lambda Finds an optimal penalty weight lambda given the parameters

Description

Finds an optimal penalty weight lambda given the parameters

Usage

find_optimal_lambda(
Xi,
yi,
lambda_max = 10000,
n_penalty_dimensions = 1,
penalty_order = 4,

ndx = 20,
deg = 6,
cross_validation_mode = 0,
grid_dim = 5
)
Arguments
xi a vector containing the certainty equivalents (x-values of utility points) for a
given participant in each use case.
yi can be a vector or a matrix representing the corresponding utility values (y-
values of utility points).
lambda_max maximum lambda used for computing the optimal lambda. The default value is

10000.

n_penalty_dimensions
number of dimensions (i.e., derivatives) to penalize. Possible values are 1 or 2.
The default value is 1.

penalty_order highest dimension (i.e., derivative) to penalize. Must be lower than deg.

ndx number of intervals to partition the distance between the lowest and highest x-
values of the utility points.

deg degree of the B-spline basis. Determines the degree of the function to be esti-
mated. If deg = 2, the estimated utility function will consist of quadratic func-
tions.



10 tpower

cross_validation_mode
determines which cross validation mode should be used. If O, then the cross
validation method is leave-one-third-out. If 1, then the cross validation method
is a theoretical leave-one-out, i.e., based on a formula. The default value is 1.

grid_dim dimension of the search grid for the initial grid search before the actual opti-
mization. Default value is 5.

Value

the optimal lambda for the given set of utility points and (possibly default) settings according to the
specified cross validation method.

Examples

X <- c(0.0000000, 0.2819824, 0.3007812, 0.4375000, ©.5231934, 0.7784882, 0.8945312, 1.0000000)
y <- c(0.0000, 0.1250, 0.2500, 0.5000, 0.6250, 0.6875, 0.7500, 1.0000)
find_optimal_lambda(x, y)

tpower Truncated p-th power function. Helper function for creat-
ing the B-Spline basis (Code by Paul Eilers, Package JOPS,
http://statweb.lsu.edu/faculty/marx/JOPS_0.1.0.tar.gz)

Description

Truncated p-th power function. Helper function for creating the B-Spline basis (Code by Paul Eilers,
Package JOPS, http://statweb.lsu.edu/faculty/marx/JOPS_0.1.0.tar.gz)

Usage

tpower(x, t, p)

Arguments

X Function value.

t Point of truncation.

p degree of the truncated polynomial function.
Value

Returns a piece-wise defined basis functions for x > t.

Examples

tpower (1, 2, 3)



Index

bbase, 2

compute_function, 2

compute_higher_order_risk_preferences,
3

compute_measures, 5

derivative, 6

estimate_model, 7
evaluate_cross_validation, 8

find_optimal_lambda, 9

tpower, 10

11



	bbase
	compute_function
	compute_higher_order_risk_preferences
	compute_measures
	derivative
	estimate_model
	evaluate_cross_validation
	find_optimal_lambda
	tpower
	Index

