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Abstract. In this report, we study the behavior of the methods svyreg_huberM and
svyreg_huberGM in package robsurvey with other implementations. We restricted attention
to studying the methods for 4 well-known datasets. For all datasets under study, our implemen-
tations are identical (in terms of floating point arithmetic) with results of the competing implemen-
tations. Although our comparisons provide only anecdotal evidence on the performance of the
methods, we believe that the comparisons shed some light on the behavior of our implementa-
tions. We are fairly confident that the methods in package robsurvey behave the way they are
supposed to.

1 Introduction

In this short report, we compare the behavior of the regression M - and GM -estimators in package
robsurvey with the methods from other implementations. To this end, we study the estimated
parameters for four well-known datasets/ cases studies. With regard to competing implementa-
tions, we consider the methods from the following R packages:

MASS, version: 7.3.57

robeth, version: 2.7.6

These packages are documented in, respectively, (Venables and Ripley, 2002) and Marazzi (2020).
The datasets are from package

robustbase, version: 0.95.0

see Mächler, Rousseeuw, Croux, Todorov, Ruckstuhl, Salibian-Barrera, Verbeke, Koller, Conce-
icao, and Anna di Palma (2022). In all comparisons, we

• study M - or GM -estimators with the MAD (normalized median absolute deviation) as esti-
mator of scale;

• use the robustness tuning constant k = 1.345 of the Huber ψ-function;

• focus on sample data that do not contain sampling weights.
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All studied methods compute the regression estimates by iteratively reweighted least squares (IR-
WLS) and the estimate of scale (more precisely, the trial value for the scale estimate) is updated
at each iteration.

Remark. Our comparisons provide only anecdotal evidence on the performance of the methods.
Nonetheless, we believe that the comparisons shed some light on the behavior of our implemen-
tations.

Let x and y denote two real-valued p-vectors. We define the absolute relative difference by

abs_rel_DIFF(x,y) = 100% · max
i=1,...,p
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The remainder of the paper is organized as follows. In Section 2, we compare several implemen-
tations of the Huber M -estimator of regression. Section 3 studies implementations of the Huber
GM -estimator of regression. In Section 4, we summarize the findings.

2 Huber M -estimators of regression

In this section, we study the Huber M -estimator of regression. The parametrizations of the algo-
rithms have been chosen to make them comparable; we use:

• MASS::rlm: method = "M", scale.est = "MAD", acc = 1e-5, test.vec =

"coef", and maxit = 50,

• robeth::rywalg: tol = 1e-5, maxit = 50, itype = 1, isigma = 2, icnv

= 1, and maxis = 1; see Marazzi (1993) for more details.

• robsurvey::svyreg_huberM: tol = 1e-5, and maxit = 50.

The methods MASS::rlm and robeth::rywalg compute the regression scale estimate by the
(normalized) median of the absolute deviations (MAD) about zero. The method svyreg_huberM
(and svyreg_tukeyM) implements two variants of the MAD:

• mad_center = FALSE: MAD centered about zero,

• mad_center = TRUE: MAD centered about the (weighted) median. (This is the default).

For ease of reference, we denote the MAD centered about zero by mad0.
In practice, the estimate of regression and scale differ whether the MAD is centered about

zero or the median because the median of the residuals is not exactly zero for empirical data. If
the residuals have a skewed distribution, the two variants of the MAD can differ by a lot.

2.1 Case 1: education data

The education data are on public education expenditures (at the level of US states), and are
from Chatterjee and Price (1977) [see Chatterjee and Hadi (2012) for a newer edition]; see also
Rousseeuw and Leroy (1987). The dataset contains 4 variables: the response variable (Y: per
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capita expenditure on public education in a state, projected for 1975) and the three explanatory
variables

• X1: Number of residents per thousand residing in urban areas in 1970,

• X2: Per capita personal income in 1973,

• X3: Number of residents per thousand under 18 years of age in 1974.

The following tabular output shows the estimated coefficients (and the estimated scale; last col-
umn) under the model Y ~ X1 + X2 + X3 for 4 different implementations/ methods.

R> data(education, package = "robustbase")

R> M_compare(Y ~ X1 + X2 + X3, education)

(Intercept) X1 X2 X3 scale

svyreg_huberM -434.837 0.030 0.061 1.270 40.379

svyreg_huberM (mad0) -434.396 0.031 0.061 1.269 40.120

rywalg (ROBETH) -434.465 0.031 0.061 1.269 40.161

rlm (MASS) -434.395 0.031 0.061 1.269 40.120

The estimates of the 4 methods differ only slightly. We have the following findings:

• svyreg_huberM (mad0) is based on the MAD centered about zero. In methodological
terms, it is identical with the implementations rlm (MASS) and rywalg (ROBETH). The
estimates of svyreg_huberM (mad0) are virtually identical with the ones of rlm (MASS).
The estimates of rywalg (ROBETH) deviate more from the other methods.

• svyreg_huberM is based on the MAD centered about the (weighted) median. The esti-
mates differ slightly from svyreg_huberM (mad0).

The discrepancies are mainly due to the normalization constant to make the MAD an unbi-
ased estimator of the scale at the Gaussian core model. In rlm (MASS), the MAD about zero is
computed by median(abs(resid)) / 0.6745. The constant 1/0.6745 is equal to 1.482580

(with a precision of 6 decimal places), which differs slightly from 1/Φ−1(0.75) = 1.482602, where
Φ denotes the cumulative distribution function of the standard Gaussian. The implementation of
svyreg_huberM uses 1.482602 (see file src/constants.h). Now, if we replace 1/0.6745 in
the above code snippet by 1.482602 in the function body of rlm.default, then the regression co-
efficients of the so modified code and svyreg_huberM are (in terms of floating point arithmetic)
almost identical. The absolute relative difference is

R> design <- svydesign(id = ~1, weights = rep(1, nrow(education)),

+ data = education)

R> m1 <- svyreg_huberM(Y ~ X1 + X2 + X3, design, k = 1.345,

+ mad_center = FALSE, tol = 1e-5,

+ maxit = 50)
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R> rlm_mod <- MASS:::rlm.default

R> body(rlm_mod)[[22]][[4]][[3]][[3]][[2]][[3]][[3]][[3]] <-

+ substitute(median(abs(resid)) * 1.482602)

R> m2 <- rlm_mod(m1$model$x, m1$model$y, k = 1.345,

+ method = "M", scale.est = "MAD", acc = 1e-5,

+ maxit = 50, test.vec = "coef")

R> cat("\nabs_rel_DIFF: ", 100 * max(abs(coef(m1) / coef(m2) - 1)),

+ "%\n")

abs_rel_DIFF: 1.054712e-12 %

Next, we consider comparing the estimated (asymptotic) covariance matrix of the estimated re-
gression coefficients. To this end, we computed the diagonal elements of the estimated covariance
matrix for the methods svyreg_huberM (mad0) and rlm (MASS); see below. In addition, we
computed the absolute relative difference between the two methods.

R> M_compare_cov(Y ~ X1 + X2 + X3, education)

(Intercept) X1 X2 X3

1.548342e+04 2.694538e-03 1.373338e-04 1.010169e-01

(Intercept) X1 X2 X3

1.548341e+04 2.694537e-03 1.373338e-04 1.010168e-01

abs_rel_DIFF: 5.187249e-05 %

The diagonal elements of the estimated covariance matrix differ only slightly between the two meth-
ods. The discrepancies can be explained by the differences in terms of the estimated coefficients.

2.2 Case 2: stackloss data

The stackloss data consist of 21 measurements on the oxidation of ammonia to nitric acid for
an industrial process; see Brownlee (1965). The variables are:

• Air Flow: flow of cooling air,

• Water Temp: cooling water inlet temperature,

• Acid Conc.: concentration of acid [per 1000, minus 500],

• stack.loss: stack loss.

The variable stack.loss (stack loss of amonia) is regressed on the explanatory variables air
flow, water temperature and the concentration of acid. The regression coefficients and the estimate
of scale are tabulated for the 4 implementations/ methods under study.

R> data(stackloss, package = "datasets")

R> M_compare(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.,

+ stackloss)
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(Intercept) Air.Flow Water.Temp Acid.Conc. scale

svyreg_huberM -41.051 0.827 0.939 -0.129 2.530

svyreg_huberM (mad0) -41.027 0.829 0.926 -0.128 2.441

rywalg (ROBETH) -41.027 0.829 0.926 -0.128 2.442

rlm (MASS) -41.027 0.829 0.926 -0.128 2.441

The estimates of the regression M -estimator which is based on the MAD centered about zero are
virtually identical (see rows 2–4). The estimates of svyreg_huberM deviate slightly from the
latter because it is based on the MAD centered about the (weighted) median.
We did not repeat the analysis on differences in the estimated covariance matrices because the
results are qualitatively the same as in Case 1.

3 Huber GM -estimators of regression

In this section, we consider regression GM -estimators with Huber ψ-function (tuning constant
fixed at k = 1.345). The scale is estimated by MAD. With regard to the MAD, we distinguish two
cases: svyreg_huberGM and svyreg_huberGM (mad0), where mad0 refers to the MAD
about zero.

We computed the weights to downweight leverage observations (xwgt) with the help of the
methods in package robeth. The so computed weights were then stored to be utilized in all
implementations ofGM -estimators of regression. This approach ensures that the implementations
do not differ in terms of the xgwt’s.

3.1 Case 3: delivery data

The delivery data consist of observations on servicing 25 soft drink vending machines. The
data are from Montgomery and Peck (2006); see also Rousseeuw and Leroy (1987). The variables
are:

• n.prod: number of products stocked in the vending machine,

• distance: distance walked by the route driver (ft),

• delTime: delivery time (minutes).

The goal is to model/ predict the amount of time required by the route driver to service the vending
machines. The variable delTime is regressed on the variables n.prod and distance.

Mallows GM -estimator

The regression coefficients and the estimate of scale are tabulated for the 3 implementations/
methods under study.

R> data(delivery, package = "robustbase")

R> GM_mallows_compare(delTime ~ n.prod + distance, delivery)
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(Intercept) n.prod distance scale

svyreg_huberGM (Mallows) 4.468 1.514 0.01 2.446

svyreg_huberGM (Mallows, mad0) 4.476 1.509 0.01 2.255

rywalg (ROBETH, Mallows) 4.476 1.509 0.01 2.256

The estimates of svyreg_huberGM (Mallows, mad0) are almost identical with results of
rywalg (ROBETH, Mallows); see rows 2 and 3. The estimates of svyreg_huberGM (Mallows)
(i.e., based on the MAD centered about the weighted median differ slightly as is to be expected.

Schweppe GM -estimator

R> GM_schweppe_compare(delTime ~ n.prod + distance, delivery)

(Intercept) n.prod distance scale

svyreg_huberGM (Schweppe) 4.011 1.429 0.014 1.398

svyreg_huberGM (Schweppe, mad0) 4.012 1.429 0.014 1.392

rywalg (ROBETH, Schweppe) 3.964 1.430 0.014 1.434

The estimates of svyreg_huberGM (Schweppe, mad0) and rywalg (ROBETH, Schweppe)
(see rows 2 and 3) are slightly different. We could not figure out the reasons for this discrepancy.

3.2 Case 4: salinity data

The salinity data are a set of measurements of water salinity and river discharge taken in
North Carolina’s Pamlico Sound; Ruppert and Carroll (1980); see also Rousseeuw and Leroy
(1987). The variables are

• Y: salinity,

• X1: salinity lagged two weeks,

• X2: linear time trend,

• X3: river discharge.

There a 28 observations. We consider fitting the model Y ~ X1 + X2 + X3 by several imple-
mentations of the regression GM -estimators.

Mallows GM -estimator

R> data(salinity, package = "robustbase")

R> GM_mallows_compare(Y ~ X1 + X2 + X3, salinity)

(Intercept) X1 X2 X3 scale

svyreg_huberGM (Mallows) 18.884 0.721 -0.174 -0.655 0.763

svyreg_huberGM (Mallows, mad0) 18.877 0.721 -0.174 -0.654 0.768

rywalg (ROBETH, Mallows) 18.869 0.721 -0.174 -0.654 0.774
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The differences between the estimates of svyreg_huberGM (Mallows, mad0) and rywalg
(ROBETH, Mallows) are larger (see rows 2 and 3) than in Case 3. Still, the estimates are very
similar.

Schweppe GM -estimator

R> GM_schweppe_compare(Y ~ X1 + X2 + X3, salinity)

(Intercept) X1 X2 X3 scale

svyreg_huberGM (Schweppe) 19.911 0.679 -0.173 -0.675 0.707

svyreg_huberGM (Schweppe, mad0) 19.916 0.679 -0.173 -0.675 0.682

rywalg (ROBETH, Schweppe) 19.974 0.680 -0.177 -0.679 0.732

The estimates of svyreg_huberGM (Schweppe, mad0) and rywalg (ROBETH, Schweppe)
(see rows 2 and 3) are slightly different. But the differences are minor.

4 Summary

In this paper, we studied the behavior of the methods svyreg_huberM and svyreg_huberGM
in package robsurvey with other implementations. We restricted attention to studying the meth-
ods for four well-known datasets. For all datasets under study, our implementations replicate (or
are at least very close to) the results of the competing implementations. Although our compar-
isons provide only anecdotal evidence on the performance of the methods, we believe that the
comparisons shed some light on the behavior of our implementations.
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