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We provide an introductory demo of the usage for the npcs package. This package implements two multi-class
Neyman-Pearson classification algorithms proposed in Tian and Feng (2021).
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Installation
RaSEn can be installed from CRAN.
install.packages("npcs", repos = "http://cran.us.r-project.org")

Then we can load the package:
library(npcs)

Introduction
Suppose there are K classes (K ≥ 2), and we denote them as classes 1 to K. The training samples
{(xi, yi)}ni=1 are i.i.d. copies of (X,Y ) ⊆ X ⊗ {1, . . . ,K}, where X ⊆ Rp. Suggested by Mossman (1999)
and Dreiseitl, Ohno-Machado, and Binder (2000), we consider PX|Y=k(φ(X) 6= k|Y = k) as the k-th error
rate of classifier φ for any k ∈ {1, . . . ,K}. We focus on the problem which minimizes a weighted sum
of {PX|Y=k(φ(X) 6= k)}Kk=1 and controls PX|Y=k(φ(X) 6= k) for k ∈ A, where A ⊆ {1, . . . ,K}. The
Neyman-Pearson multi-class classification (NPMC) problem can be formally presented as

min
φ

J(φ) =
K∑
k=1

wkPX|Y=k(φ(X) 6= k) (1)

s.t. PX|Y=k(φ(X) 6= k) ≤ αk, k ∈ A, (2)

where φ : X → {1, . . . ,K} is a classifier, αk ∈ [0, 1), wk ≥ 0 and A ⊆ {1, . . . ,K} (Tian and Feng (2021)).

This package implements two NPMC algorithms, NPMC-CX and NPMC-ER, which are motivated from
cost-sensitive learning. For details about them, please refer to Tian and Feng (2021). Here we just show how
to call relative functions to solve NP problems by these two algorithms.

A Simple Example
We take Example 1 in Tian and Feng (2021) as an example. Consider a three-class independent Gaussian
conditional distributions X|Y = k ∼ N(µk, Ip), where p = 5, µ1 = (−1, 2, 1, 1, 1)T , µ2 = (1, 1, 0, 2, 0)T ,
µ3 = (2,−1,−1, 0, 0)T and Ip is the p-dimensional identity matrix. The marginal distribution of Y is
P(Y = 1) = P(Y = 2) = 0.3 and P(Y = 3) = 0.4. Training sample size n = 1000 and test sample size is 2000.
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We would like to solve the following NP problem

min
φ

PX|Y=2(φ(X) 6= 2) (3)

s.t. PX|Y=1(φ(X) 6= 1) ≤ 0.05, PX|Y=3(φ(X) 6= 3) ≤ 0.01. (4)

Now let’s first generate the training data by calling function generate.data. We also create variables alpha
and w, representing the target level to control and the weight in the objective function for each error rate.
Here the target levels for classes 1 and 3 are 0.05 and 0.01. There is no need to control error rate of class 2,
therefore we set the corresponding level as NA. The weights for three classes are 0, 1, 0, respectively.
set.seed(123, kind = "L'Ecuyer-CMRG")
train.set <- generate_data(n = 1000, model.no = 1)
x <- train.set$x
y <- train.set$y

test.set <- generate_data(n = 2000, model.no = 1)
x.test <- test.set$x
y.test <- test.set$y

alpha <- c(0.05, NA, 0.01)
w <- c(0, 1, 0)

We first examine the test error rates of vanilla logistic regression model fitted by training data. We fit the
multinomial logistic regression via function multinom in package nnet. Note that our package provides
function error_rate to calculate the error rate per class by inputing the predicted response vector and true
response vector. The results show that the vanilla logistic regression fails to control the error rates of classes
1 and 3.
library(nnet)
fit.vanilla <- multinom(y ~ ., data = data.frame(x = x, y = factor(y)),

trace = FALSE)
y.pred.vanilla <- predict(fit.vanilla, newdata = data.frame(x = x.test))
error_rate(y.pred.vanilla, y.test)

## 1 2 3
## 0.08517888 0.16264090 0.04924242

Then we conduct NPMC-CX and NPMC-ER based on multinomial logistic regression by calling function
npcs. The user can indicate which algorithm to use in parameter algorithm. Also note that we need to
input the target level alpha and weight w. For NPMC-ER, the user can decide whether to refit the model
using all training data or not by the boolean parameter refit. Compared to the previous results of vanilla
logistic regression, it shows that both NPMC-CX-logistic and NPMC-ER-logistic can successfully control
PX|Y=1(φ(X) 6= 1) and PX|Y=3(φ(X) 6= 3) around levels 0.05 and 0.01, respectively.
fit.npmc.CX.logistic <- try(npcs(x, y, algorithm = "CX", classifier = "logistic",

w = w, alpha = alpha))
fit.npmc.ER.logistic <- try(npcs(x, y, algorithm = "ER", classifier = "logistic",

w = w, alpha = alpha, refit = TRUE))

# test error of NPMC-CX-logistic
y.pred.CX.logistic <- predict(fit.npmc.CX.logistic, x.test)
error_rate(y.pred.CX.logistic, y.test)

## 1 2 3
## 0.063032368 0.309178744 0.008838384
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# test error of NPMC-ER-logistic
y.pred.ER.logistic <- predict(fit.npmc.ER.logistic, x.test)
error_rate(y.pred.ER.logistic, y.test)

## 1 2 3
## 0.04940375 0.24798712 0.02020202

We can also run NPMC-CX and NPMC-ER with different models, for example, LDA and random forests.
They can also successfully control PX|Y=1(φ(X) 6= 1) and PX|Y=3(φ(X) 6= 3) around levels 0.05 and 0.01,
respectively.
fit.npmc.CX.lda <- try(npcs(x, y, algorithm = "CX", classifier = "lda",

w = w, alpha = alpha))
fit.npmc.ER.lda <- try(npcs(x, y, algorithm = "ER", classifier = "lda",

w = w, alpha = alpha, refit = TRUE))

fit.npmc.CX.rf <- try(npcs(x, y, algorithm = "CX", classifier = "randomforest",
w = w, alpha = alpha))

fit.npmc.ER.rf <- try(npcs(x, y, algorithm = "ER", classifier = "randomforest",
w = w, alpha = alpha, refit = TRUE))

# test error of NPMC-CX-LDA
y.pred.CX.lda <- predict(fit.npmc.CX.lda, x.test)
error_rate(y.pred.CX.lda, y.test)

## 1 2 3
## 0.056218058 0.341384863 0.007575758
# test error of NPMC-ER-LDA
y.pred.ER.lda <- predict(fit.npmc.ER.lda, x.test)
error_rate(y.pred.ER.lda, y.test)

## 1 2 3
## 0.03577513 0.29951691 0.02020202
# test error of NPMC-CX-RF
y.pred.CX.rf <- predict(fit.npmc.CX.rf, x.test)
error_rate(y.pred.CX.rf, y.test)

## 1 2 3
## 0.05792164 0.59259259 0.00000000
# test error of NPMC-ER-RF
y.pred.ER.rf <- predict(fit.npmc.ER.rf, x.test)
error_rate(y.pred.ER.rf, y.test)

## 1 2 3
## 0.03066440 0.44122383 0.01767677
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