
MetaOMineR
Edi Prifti & Emmanuelle Le Chatelier

26.06.15

Contents

Context 1

Data processing 2

Loading the data . 2

Normalization . 3

Downsizing . 4

Gene richness 5

Downsizing . 6

Upsizing . 7

Sample clustering 9

Heatmap . 9

Checking for consistency . 11

Clustering genes - selecting the most correlated samples 12

The mgs catalog . 12

Projecting genes onto the MGS catalog . 12

Visualizing MGS (the barcodes) . 13

Reducing dimensions . 14

Identifying differentially abundant features 15

Conclusion 16

References 16

Context

momr, is the base package of a larger suite of R packages named MetaOMineR, which stands for Mining
MetaOmics data in R. It encompasses many useful functions and modules needed for the analyses of shotgun
Quantitative Metagenomics (QM) data. It can be also used for 16S or other types of omics data. Developed
since the beginning of the field, momr has evolved and is structured around different modules such as
preprocessing, analysis, visualization, map-reduce parallel computing, etc. The package comes with a small

1

subset of a real metagenomics data-set of human gut microbiome from the MetaHIT project (Le Chatelier et
al, Nature, 2013).

MetaOMineR works with data that can be structured as standalone packages or not. They should contain
the needed information to describe a given gene catalog, such as for instance the gene length, annotations,
clustering information, etc. In this tutorial we demonstrate some of the functionalities of momr with simple
examples.

Data processing

In this section we will see how to load the test dataset that comes with the package and how to pre-process it
for analysis in a second step. Let us start by loading the momr library.

library(momr)
library(knitr) # for printing tables

To see what data objects are contained in the package we type:

data(package="momr")

We will see four objects
- hs_3.3_metahit_genesize - hs_3.3_metahit_sample_dat_freq - hs_3.3_metahit_sample_dat_raw
- mgs_hs_3.3_metahit_sup500

Loading the data

The files are named following these criteria (hs = homo sapiens; 3.3_metahit = the gene catalog from metahit
with 3.3M genes). Let us load the raw count data-set after mapping and counting against the (Qin et al,
Nature, 2010) gene catalog.

Loading the raw count dataset
data("hs_3.3_metahit_sample_dat_raw")
str(hs_3.3_metahit_sample_dat_raw[,10:14])

int [1:5000, 1:5] 0 0 0 0 0 0 0 0 0 0 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:5000] "4955" "4956" "4957" "4958" ...
..$: chr [1:5] "MH0109" "MH0110" "MH0186" "MH0108" ...

As we can see hs_3.3_metahit_sample_dat_raw is a data frame containing 5000 features (rows) and 292
samples (columns). This dataset is a subset of the whole 3.3M feature data-frame and as we can see is very
sparse.

kable(tail(hs_3.3_metahit_sample_dat_raw[,10:14]))

MH0109 MH0110 MH0186 MH0108 MH0236
9904 0 0 0 0 0
9905 0 0 0 0 0
9906 0 0 0 0 0
9907 0 0 0 0 0
9908 38 58 12 3 14
9909 0 0 0 0 0

2

http://metahit.eu

zeroperc <- round(sum(hs_3.3_metahit_sample_dat_raw==0)/
length(hs_3.3_metahit_sample_dat_raw)*100)

paste("There are ", zeroperc, "% zeros in this data frame.",sep="")

[1] "There are 81% zeros in this data frame."

Normalization

This processing step is necessary to be able to compare abundance among genes and samples. For this reason
different normalization procedures are implemented in the package. Note that even from an identical number
of reads, the total number of counts can vary when filtering the reads for quality or according to the reference
exhaustivity. For the experiment to work well we need to select a gene catalog reference that is representative
enough for the different microbial ecosystems sampled in the study. There is not yet a gold standard for
normalizing data in quantitative metagenomics and the RPKM method has proven to be good enough in
different QM projects. We aim to enrich the package with other normalization approached shortly in the
future.

1. RPKM (Reads Per Kilobase per Million reads mapped) is one of the first methods used in QM
and was inspired by the RNA-Seq field (Mortazavi et al., Nature Methods, 2008). This approach was
initially introduced to facilitate comparisons between genes within a sample and combines between- and
within-sample normalization, as it re-scales gene counts to correct for differences in both library sizes
and gene length. Let assume that two genes form a given species have different lengths. The longer
gene has a higher probability of having more reads mapped to it compared to the shorter one especially
when the abundance is low. For this reason we compute a scaling factor which is dependent on the
gene length in the normalization process. A second scaling factor applied is the sequencing depth.

2. TC (Total count) is a simpler method also used in the 16S datasets. The high variability of sequencing
depth among the different samples id inherent of the NGS technology. For this reason it is important
to scale the abundance of reads for each sample by the sequencing depth. Technically we can scale each
sample by the total number of counts.

Normalization should be performed with the whole dataset (3.3M)
Loading the gene length information
data(hs_3.3_metahit_genesize)
str(hs_3.3_metahit_genesize)

Named int [1:5000] 1083 1746 813 504 162 1356 150 1263 1794 273 ...
- attr(*, "names")= chr [1:5000] "4955" "4956" "4957" "4958" ...

norm.data <- normFreqRPKM(dat=hs_3.3_metahit_sample_dat_raw,
cat=hs_3.3_metahit_genesize)

[1] "The dataset is a matrix"

kable(tail(norm.data[,10:14]))

MH0109 MH0110 MH0186 MH0108 MH0236
9904 0.0000000 0.0000000 0.0000000 0.00e+00 0.0000000
9905 0.0000000 0.0000000 0.0000000 0.00e+00 0.0000000

3

MH0109 MH0110 MH0186 MH0108 MH0236
9906 0.0000000 0.0000000 0.0000000 0.00e+00 0.0000000
9907 0.0000000 0.0000000 0.0000000 0.00e+00 0.0000000
9908 0.0004564 0.0004709 0.0002019 9.99e-05 0.0001233
9909 0.0000000 0.0000000 0.0000000 0.00e+00 0.0000000

Hereafter we will use a subset of the complete dataset normalized using the 3.3M genes. Note that the scaling
factor is lower in the extracted dataset compared to the full dataset due to the lower number of reads sampled
for this subset of genes.

Loading the frequency dataset
data("hs_3.3_metahit_sample_dat_freq")
kable(tail(hs_3.3_metahit_sample_dat_freq[,10:14]))

MH0109 MH0110 MH0186 MH0108 MH0236
9904 0e+00 0e+00 0e+00 0e+00 0e+00
9905 0e+00 0e+00 0e+00 0e+00 0e+00
9906 0e+00 0e+00 0e+00 0e+00 0e+00
9907 0e+00 0e+00 0e+00 0e+00 0e+00
9908 6e-07 1e-06 2e-07 1e-07 2e-07
9909 0e+00 0e+00 0e+00 0e+00 0e+00

Downsizing

Another method to reduce the variability that is generated by the sequencing depths is the downsizing
also known as rarefaction. It consists of drawing randomly the same number of reads for each sample and
mapping those to the catalog. For this we need to determine a common level of reads to be drawn (sequencing
depth).

Determining the minimal common number of reads
min_nb_reads <- summary(colSums(hs_3.3_metahit_sample_dat_raw))
(min_nb_reads["Min."]); (min_nb_reads["Max."])

Min.
661

Max.
274400

min_nb_reads <- min_nb_reads["Min."]

We can notice that the sequencing depth varies greatly in this dataset and this is probably because this is an
incomplete dataset. We can perform this for the whole dataset only one time. Next the dataset needs to be
normalized as shown above.

Downsizing the whole matrix
data.downsized <- downsizeMatrix(data=hs_3.3_metahit_sample_dat_raw[,1:5],

level=min_nb_reads, repetitions=1, silent=FALSE)

4

[1] "1 Sample MH0277 with 661 reads and 54 genes"
[1] " step 1 with 54 genes"
[1] "2 Sample MH0087 with 7346 reads and 160 genes"
[1] " step 1 with 74 genes"
[1] "3 Sample MH0444 with 37988 reads and 384 genes"
[1] " step 1 with 118 genes"
[1] "4 Sample MH0156 with 20868 reads and 333 genes"
[1] " step 1 with 101 genes"
[1] "5 Sample MH0333 with 5671 reads and 182 genes"
[1] " step 1 with 98 genes"

kable(tail(data.downsized))

MH0277 MH0087 MH0444 MH0156 MH0333
9904 0 0 0 0 0
9905 0 0 0 0 0
9906 0 0 2 0 0
9907 0 0 0 0 0
9908 0 2 0 1 2
9909 0 0 0 0 0

colSums(data.downsized, na.rm=TRUE)

MH0277 MH0087 MH0444 MH0156 MH0333
661 661 661 661 661

Important note: Let assume that most of the samples are sequenced nicely above a sequencing depth we set,
but a few samples have a low number of reads for various reasons. Should we still downsize very low (in order
to include them) and lose most of the data? The answer is No! We recommend setting up downsizing level
sufficiently high to maintain a high counting depth. Samples with a total number of reads below the level
won’t be downsized (NA will be generated instead) and may be discarded or replaced as a proxy by original
raw counts before generating the frequency matrix using normFreqRPKM function.

Gene richness

A simple number can describe the complexity of an ecosystem that we call here richness. That is the number
of genes that are found to be present (gene_abundance > 0) in a given sample. Indeed, different studies
have shown that the richness is associated with different aspects of the ecosystem (Le Chatelier et al, Nature,
2013) and correlates strongly with the number of present microbial species (Nielsen, Almeida et al, Nat
Biotech, 2014).

Downsizing the genecount
richness <- colSums(hs_3.3_metahit_sample_dat_raw>0, na.rm=TRUE)
summary(richness)

Min. 1st Qu. Median Mean 3rd Qu. Max.
54.0 720.8 956.0 941.8 1123.0 4909.0

5

Downsizing

Gene richness is very sensitive to the sequencing depth. For this reason we use the downsizing approach to
estimate it and perform this multiple times. Finally we compute a mean estimation of the multiple drawings.

Downsizing the matrix multiple times for the computation of gene richness
data.genenb <- downsizeGC(data=hs_3.3_metahit_sample_dat_raw,

level=min_nb_reads, repetitions=30, silent=TRUE)
head(apply(data.genenb,2,mean))

MH0277 MH0087 MH0444 MH0156 MH0333 MH0233
54.00000 77.93333 112.23333 108.66667 105.63333 150.76667

head(apply(data.genenb,2,sd))

MH0277 MH0087 MH0444 MH0156 MH0333 MH0233
0.000000 4.217642 5.537853 4.497764 4.319030 6.273553

Notice that the standard deviation is quite small for 30 random drawings.

richness.dwnz <- colMeans(data.genenb, na.rm=TRUE)
par(mfrow=c(1,2))
plot(density(richness), main="gene richness", lwd=2,col="darkred")
plot(density(richness.dwnz), main="downsized gene richness", lwd=2,col="darkred")

0 2000 4000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

gene richness

N = 292 Bandwidth = 86.86

D
en

si
ty

0 200 400 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

downsized gene richness

N = 292 Bandwidth = 19.21

D
en

si
ty

Figure 1: Raw and downsized richness distribution.

6

In this example (Figure 1) we can see the effect of downsizing on gene richness. For instance one sample had
a much higher richness than the rest due to the high variability as mentioned above. After downsizing this
sample still remained higher but more comparable with the rest.

par(mfrow=c(1,1))
col <- as.character(cut(colSums(hs_3.3_metahit_sample_dat_raw),

c(0,2^seq(0, 9, by=1))*1000,
labels=paste("gray",seq(100,10,-10),sep="")))

plot(richness, richness.dwnz, main="downsizing effect on richness",
pch=20,col=col)

0 1000 2000 3000 4000 5000

10
0

20
0

30
0

40
0

50
0

downsizing effect on richness

richness

ric
hn

es
s.

dw
nz

Figure 2: Downsizing effect on gene richness.

This plot (Figure 2) where samples are colored according to read count abundance (the darker the higher)
visualize the bias in gene richness estimation due to heterogenous counting depth.

Upsizing

As mentioned above for samples with very low sequencing depth (under the downsizing level) the downsizing
process will produce NAs and they will not be exploitable. Based on our observations gene richness downsized
at different levels will correlate very strongly among the different levels. This observation led us to propose
the upsizing approach for gene richness estimation, which allows to estimate a higher level distribution and
impute the missing data. In the following example we will use different downsizing levels and show how we
can use the up-sizing process to solve this issue.

downsize.gc.res <- downsizeGC.all(data = hs_3.3_metahit_sample_dat_raw,
levels = c(600, 5000, 10000, 15000, 20000),

7

repetitions = 10, silent = TRUE)
kable(downsize.gc.res[[2]])

down_6e-04M down_0.005M down_0.01M down_0.015M down_0.02M
75 141 NA NA NA
69 145 NA NA NA
74 142 NA NA NA
77 143 NA NA NA
76 144 NA NA NA
74 146 NA NA NA
77 139 NA NA NA
71 138 NA NA NA
78 141 NA NA NA
80 137 NA NA NA

This function returns a list of samples each containing a matrix of dimension n=repetitions x l=levels as
illustrated above for the second sample. Now let’s transform it as a matrix where each column contain the
mean-ed downsized values for each repetition.

downsize.gc.mat <- downsizedRichnessL2T(richness.list = downsize.gc.res)
kable(head(downsize.gc.mat))

down_6e-04M down_0.005M down_0.01M down_0.015M down_0.02M
MH0277 49.7 NA NA NA NA
MH0087 75.1 141.6 NA NA NA
MH0444 108.6 216.9 262.0 296.2 320.1
MH0156 106.1 231.2 285.2 312.3 330.3
MH0333 100.3 177.8 NA NA NA
MH0233 142.4 311.6 369.7 417.2 442.6

Next, we will use the upsizing approach to estimate the missing values as illustrated in Figure 3.

upsized <- computeUpsizedGC(richness.table = downsize.gc.mat,
keep.real = TRUE)

kable(head(upsized))

down_6e-04M_una down_0.005M_una down_0.01M_una down_0.015M_una down_0.02M_una
MH0277 50 78 86 86 89
MH0087 75 142 167 177 187
MH0444 109 217 262 296 320
MH0156 106 231 285 312 330
MH0333 100 178 212 228 241
MH0233 142 312 370 417 443

reg <- lm(upsized[,2] ~ upsized[,1])
plot(upsized[,2] ~ upsized[,1], main="Regression of the first two levels",

8

xlab=("600 reads"),ylab=("5000 reads"), pch=21)
abline(reg,col="red")
points(upsized[is.na(downsize.gc.mat[,2]),2] ~ upsized[is.na(downsize.gc.mat[,2]),1],

pch=20, col="red")

100 200 300 400 500

0
50

0
10

00
15

00
20

00

Regression of the first two levels

600 reads

50
00

 r
ea

ds

Figure 3: Regression of the first two levels downsizing levels. In red are depicted the points not downsized in
the second level.

To compare properly gene richness between samples, we recommend to fix the downsizing/upsizing threshold
level in a way that the read counts of most of the samples are above the threshold but also without losing
much information with a stringent level.

Sample clustering

Heatmap

Now that the dataset is processed we will relate samples together in order to explore any particular pattern.
For this the function hierClust will compute the inter-sample distance and use a hierarchical clustering
approach cluster samples in a tree. The default distance is computed as 1-cor where cor is the inter-sample
spearman correlation. The hierarchical clustering method is the ward.D. This function returns a list containing
the correlation matrix, the distance object and the hierarchical clustering object. It also displays a heatmap
of the correlation matrix with the ward computed dendrogram (Figure 4). These results can be also used as
standalone data to fine-tune the analyses.

hc.data <- hierClust(data=hs_3.3_metahit_sample_dat_freq[,1:10], side="col", hclust.method = "ward.D")

9

M
H

02
77

M
H

01
79

M
H

02
33

M
H

02
39

M
H

00
87

M
H

04
44

M
H

03
33

M
H

01
09

M
H

01
56

M
H

04
20

MH0277

MH0179

MH0233

MH0239

MH0087

MH0444

MH0333

MH0109

MH0156

MH0420

0.2 0.4 0.6 0.8 1

Value

0
10

20

Color Key
and Histogram

C
ou

nt

Figure 4: Sample heatmap of the correlation matrix clusterd with the ward approach.

str(hc.data)

List of 3
$ mat.rho : num [1:10, 1:10] 1 0.182 0.151 0.132 0.104 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:10] "MH0277" "MH0087" "MH0444" "MH0156" ...
.. ..$: chr [1:10] "MH0277" "MH0087" "MH0444" "MH0156" ...
$ mat.dist :Class 'dist' atomic [1:45] 0.818 0.849 0.868 0.896 0.874 ...
.. ..- attr(*, "Labels")= chr [1:10] "MH0277" "MH0087" "MH0444" "MH0156" ...
.. ..- attr(*, "Size")= int 10
.. ..- attr(*, "call")= language as.dist.default(m = 1 - mat.rho)
.. ..- attr(*, "Diag")= logi FALSE
.. ..- attr(*, "Upper")= logi FALSE
$ mat.hclust:List of 7
..$ merge : int [1:9, 1:2] -6 -4 -10 -2 -7 -5 4 5 -1 -8 ...
..$ height : num [1:9] 0.471 0.523 0.608 0.623 0.686 ...
..$ order : int [1:10] 1 7 6 8 2 3 5 10 4 9
..$ labels : chr [1:10] "MH0277" "MH0087" "MH0444" "MH0156" ...
..$ method : chr "ward.D"
..$ call : language hclust(d = mat.dist, method = hclust.method)
..$ dist.method: NULL
..- attr(*, "class")= chr "hclust"

clust.order <- hc.data$mat.hclust$order
order samples followin the hierarchical clustering
ordered.samples <- colnames(hs_3.3_metahit_sample_dat_freq[,1:10])[clust.order]

10

how close are the two first samples (spearman, rho)
hc.data$mat.rho[ordered.samples[1], ordered.samples[2]]

[1] 0.1148695

Checking for consistency

When looking for possible contamination or mislabeling in order to make sure that samples in the dataset
should not be related ,it is useful to use the filt.hierClust function. This routine will extract a subset of
the inter-sample correlation matrix and focus on the samples that are closely related (above a given threshold)
as illustrated in Figure 5. It also returns a table indicating for each samples the best correlated ones and
displays a heatmap of the correlation matrix restricted to the samples correlated above the filter threshold
(plot=TRUE as default).

Selecting the most closely related observations
close.samples <- filt.hierClust(hc.data$mat.rho, hclust.method = "ward.D",

plot = TRUE, filt = 0.45, size = 4)

M
H

02
33

M
H

02
39

M
H

01
56

M
H

04
20

MH0233

MH0239

MH0156

MH0420

0.4 0.5 0.6 0.7 0.8 0.9 1

Value

0
4

8

Color Key
and Histogram

C
ou

nt

Figure 5: Heatmap of the most correlated observations.

kable(head(close.samples)[,1:6])

Hit_1 Hit_rho_1 Hit_2 Hit_rho_2 Hit_3 Hit_rho_3
MH0277 MH0087 0.182 MH0239 0.159 MH0109 0.156
MH0087 MH0444 0.377 MH0109 0.372 MH0420 0.352

11

Hit_1 Hit_rho_1 Hit_2 Hit_rho_2 Hit_3 Hit_rho_3
MH0444 MH0239 0.392 MH0087 0.377 MH0156 0.333
MH0156 MH0420 0.477 MH0109 0.387 MH0179 0.350
MH0333 MH0420 0.332 MH0156 0.302 MH0233 0.259
MH0233 MH0239 0.529 MH0179 0.400 MH0420 0.322

Clustering genes - selecting the most correlated samples

Genes as other features of interest can be clustered using different techniques. In QM it makes sense
biologically to cluster genes since they are indeed genetically linked together in the same molecular structure
- the genome. Based on this observation the metagenomic species (MGS) were proposed and published in
2014 (Nielsen, Almeida et al, Nat Biotech, 2014). We have build multiple tools that will allow exploring
these objects and here is a preview.

The mgs catalog

The MGS catalog can be built using different approaches. We supply in this package a subset of the MGS
catalog that was computed in a large dataset in the MetaHIT 3.3M gene catalog. Briefly this is a list of gene
(feature) identifiers.

load the curated mgs data for the hs_3.3_metahit catalog
data("mgs_hs_3.3_metahit_sup500")
the size of each MGS
unlist(lapply(mgs_hs_3.3_metahit_sup500,length))

10763_0_2 10766_2 10770_ 10775_ 10780_ 1_11_2 11747_
1708 2249 2778 1436 599 783 4728
11752_ 11757_ 1_20 12719_1 12720_1 12723_ 1_3
2274 811 2240 1113 2056 2198 827
13608_ 1_4 1533_1 241_2 273_ 319_ 4373_16
1233 642 694 2931 2241 943 3001

Projecting genes onto the MGS catalog

In the following example we will cluster a number of genes in the MGS catalog. We call this: projecting genes
onto the MGS. The notion of genebag (a bag of genes or features) is recurrent in the architecture of momr.

Projecting a list of genes onto the mgs catalogue
genebag <- rownames(hs_3.3_metahit_sample_dat_freq)
mgs <- projectOntoMGS(genebag=genebag, list.mgs=mgs_hs_3.3_metahit_sup500)
length(genebag)

[1] 5000

unlist(lapply(mgs,length))

1533_1 241_2 273_ 319_ 4373_16
131 495 54 80 142
not_projected
4098

12

You can notice that these 5000 genes fall in 5 different MGS and that 4098 genes are not clustered. Indeed
only approximately half of the catalog is clustered, due to different stringent criteria for QM purposes. Now
that we know which gene is which MGS we can extract their profiles to explore them further.

Extracting the profiles of a list of genes from the whole dataset
mgs.dat <- extractProfiles(mgs, hs_3.3_metahit_sample_dat_freq, silent=FALSE)

[1] "Multiple profile extraction"

This is a list of data frames where we have a data frame for each MGS.

Visualizing MGS (the barcodes)

The barcode visualization is a very good tool for pattern discovery and recognition (Figure 6). It is a kind of
heatmap where white A white color indicates absence and from light blue to dark red an increasing abundance.
Each color step is a 4-fold in abundance.

plot the barcodes
par(mfrow=c(length(mgs.dat),1), mar=c(1,0,0,0))
for(i in 1:length(mgs.dat)){

plotBarcode(mgs.dat[[i]], main=names(mgs.dat)[i])
}

1533_1

241_2

273_

319_

4373_16

not_projected

Figure 6: Barcodes of the MGS abundance profiles. Samples are in the columns and genes clustered togetehr
in the MGS in the rows.

13

Reducing dimensions

The MGS can be transformed in simple tracer vectors using computeFilteredVectors. This allows to reduce
dimensions and apply different statistical learning tools such as clustering (Figure 7). Different metrics can
be used to compute this: the mean, the median or the sum are implemeted at the moment. The function
returns a table of the calculated MGS signal in each sample.

Computing the filtered vectors
mgs.mean.vect <- computeFilteredVectors(profile=mgs.dat, type="mean")
hierClust(t(mgs.mean.vect))

The "ward" method has been renamed to "ward.D"; note new "ward.D2"
15

33
_1

43
73

_1
6

24
1_

2

31
9_

27
3_

no
t_

pr
oj

ec
te

d
1533_1

4373_16

241_2

319_

273_

not_projected

−1 −0.5 0 0.5 1

Value

0
5

15

Color Key
and Histogram

C
ou

nt

Figure 7: Similarity heatmap and clustering of the MGS.

$mat.rho
1533_1 241_2 273_ 319_ 4373_16
1533_1 1.00000000 0.1336279064 0.03183426 0.10000386 0.16266416
241_2 0.13362791 1.0000000000 0.05561149 0.13894849 0.05708167
273_ 0.03183426 0.0556114912 1.00000000 0.07835247 0.01794230
319_ 0.10000386 0.1389484853 0.07835247 1.00000000 0.15109205
4373_16 0.16266416 0.0570816696 0.01794230 0.15109205 1.00000000
not_projected 0.07064679 -0.0005112535 0.03702869 0.08821160 0.03419235
not_projected
1533_1 0.0706467852
241_2 -0.0005112535
273_ 0.0370286889

14

319_ 0.0882116035
4373_16 0.0341923498
not_projected 1.0000000000
##
$mat.dist
1533_1 241_2 273_ 319_ 4373_16
241_2 0.8663721
273_ 0.9681657 0.9443885
319_ 0.8999961 0.8610515 0.9216475
4373_16 0.8373358 0.9429183 0.9820577 0.8489079
not_projected 0.9293532 1.0005113 0.9629713 0.9117884 0.9658077
##
$mat.hclust
##
Call:
hclust(d = mat.dist, method = hclust.method)
##
Cluster method : ward.D
Number of objects: 6

Identifying differentially abundant features

Another interesting function is testRelations, which allows to identify features (genes, MGS, etc) that are
differentially abundant between two groups of samples or correlate with some quantitative variable.

for the first 500 genes
class <- c(rep(1,150),rep(2,142))
res.test <- testRelations(data=hs_3.3_metahit_sample_dat_freq[1:500,],

trait=class,type="wilcoxon")
print(paste("There are",sum(res.test$p<0.05, na.rm=TRUE),"significant genes and",

sum(res.test$q<0.05, na.rm=TRUE), "after adjustment for multiple testing"))

[1] "There are 135 significant genes and 93 after adjustment for multiple testing"

keep the significant genes
res.test <- res.test[res.test$q < 0.05 & !is.na(res.test$q),]
sort tham by status and q-value
res.test <- res.test[order(res.test$status,res.test$q),]
kable(head(res.test))

rho rho2 p q status
5300 NA NA 0.0010278 0.0073287 1
5172 NA NA 0.0010929 0.0076815 1
5272 NA NA 0.0011985 0.0081897 1
5190 NA NA 0.0021005 0.0130817 1
5385 NA NA 0.0033330 0.0202449 1
5191 NA NA 0.0052412 0.0306984 1

15

table(res.test$status)

##
1 2
9 84

test weather the MGS are also differentially abundant with the class
res.test.mgs <- testRelations(data=mgs.mean.vect, trait=class,type="wilcoxon")
kable(res.test.mgs[res.test.mgs$q<0.05,])

rho rho2 p q status
319_ NA NA 0.0007663 0.0022988 2
4373_16 NA NA 0.0000000 0.0000000 2

In the example above we tested whether the first 500 genes of this test dataset are differentially abundant
between the groups 1 and 2. Indeed there are 9 genes enriched in 1 and 84 in the second group after
multiple testing adjustment. We performed this test also on the vectors of the MGS and two of them are also
differentially abundant.

Conclusion

momr is a very useful package for quantitative metagenomics and only the main functionalities are described
here. The package also allows to perform // computing using the map-reduce principles. We are constantly
optimizing algorithms and adding new tools so that it really becomes easy to explore QM datasets. The
authors would like to acknowledge the very exciting and fruitful environment that MetaHIT community
created.

References

1. Le Chatelier, Emmanuelle, Trine Nielsen, Junjie Qin, Edi Prifti, Falk Hildebrand, Gwen Falony,
Mathieu Almeida, et al “Richness of human gut microbiome correlates with metabolic markers.” Nature
500, no. 7464 (April 9, 2014): 541–546.

2. Qin, Junjie, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristoffer Solvsten Burgdorf,
Chaysavanh Manichanh, Trine Nielsen, et al “A human gut microbial gene catalogue established by
metagenomic sequencing.” Nature 464, no. 7285 (March 4, 2010): 59–65.

3. Mortazavi, Ali, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold. “Mapping
and quantifying mammalian transcriptomes by RNA-Seq..” Nature Methods 5, no. 7 (July 2008):
621–628.

4. Nielsen, H Bjørn, Mathieu Almeida, Agnieszka Sierakowska Juncker, Simon Rasmussen, Junhua Li,
Shinichi Sunagawa, Damian R Plichta, et al “Identification and assembly of genomes and genetic
elements in complex metagenomic samples without using reference genomes.” Nature biotechnology
(July 6, 2014): 1–11.

16

	Context
	Data processing
	Loading the data
	Normalization
	Downsizing

	Gene richness
	Downsizing
	Upsizing

	Sample clustering
	Heatmap
	Checking for consistency

	Clustering genes - selecting the most correlated samples
	The mgs catalog
	Projecting genes onto the MGS catalog
	Visualizing MGS (the barcodes)
	Reducing dimensions

	Identifying differentially abundant features
	Conclusion
	References

