[FAA

IFAA offers a robust approach to make inference on the association of covariates with the absolute abundance
(AA) of microbiome in an ecosystem. It can be also directly applied to relative abundance (RA) data to make
inference on AA because the ratio of two RA is equal ratio of their AA. This algorithm can estimate and test
the associations of interest while adjusting for potential confounders. High-dimensional covariates are handled
with regularization. The estimates of this method have easy interpretation like a typical regression analysis.
High-dimensional covariates are handled with regularization and it is implemented by parallel computing.
False discovery rate is automatically controlled by this approach. Zeros do not need to be imputed by a
positive value for the analysis. The IFAA package also offers the ‘MZILN’ function for estimating and testing
associations of abundance ratios with covariates.

To model the association, the following equation is used:
log(VE)VE > 0= % + XT* + WINk + ZFbi +€f, k=1,.., K +1,

where
o YVF is the AA of taxa k in subject 7 in the entire ecosystem.
e X, is the covariate matrix.
e W, is the confounder matrix.
e Z; is the design matrix for random effects.
o [F is the regression coefficients that will be estimated and tested with the IFAA() function.

The challenge in microbiome analysis is that we can not oberve J¥. What is observed is its small proportion:
Y} = C;YF where C; is an unknown number between 0 and 1 that denote the observed proportion. The
TFAA method successfuly addressed this challenge.

Package installation

To install, type the following command in R console:

install.packages("IFAA", "http://cran.us.r-project.org")

The package could be also installed from GitHub using the following code:

require(devtools)
devtools: :install_github("gitlzg/IFAA")

Input for IFAA() function

Most of the time, users just need to feed the first three inputs to the function: experiment_dat, testCov
and ctrlCov. All other inputs can just take their default values. Below are all the inputs of the functions

o experiment_dat: A SummarizedExperiment object containing microbiome data and covarites (see
example on how to create a SummarizedExperiment object). The microbiome data can be absolute
abundance or relative abundance with each column per sample and each row per taxon/OTU/ASV
(or any other unit). No imputation is needed for zero-valued data points. The covarites data contains
covariates and confounders with each row per sample and each column per variable. The covarites data
has to be numeric or binary.

testCov: Covariates that are of primary interest for testing and estimating the associations. It
corresponds to X; in the equation. Default is NULL which means all covariates are testCov.

ctrlCov: Potential confounders that will be adjusted in the model. It corresponds to W; in the equation.
Default is NULL which means all covariates except those in testCov are adjusted as confounders.

sampleIDname: Name of the sample ID variable in the data. In the case that the data does not have
an ID variable, this can be ignored. Default is NULL.

testMany: This takes logical value TRUE or FALSE. If TRUE, the testCov will contain all the variables
in CovData provided testCov is set to be NULL. The default value is TRUE which does not do anything
if testCov is not NULL.

ctrlMany: This takes logical value TRUE or FALSE. If TRUE, all variables except testCov are considered
as control covariates provided ctrlCov is set to be NULL. The default value is FALSE.

nRef: The number of randomly picked reference taxa used in phase 1. Default number is 40.
nRefMaxForEsti: The maximum number of final reference taxa used in phase 2. The default is 2.

refTaxa: A vector of taxa names. These are reference taxa specified by the user to be used in phase 1
if the user believe these taxa are indepenent of the covariates. If the number of reference taxa is less
than ‘nRef’, the algorithm will randomly pick extra reference taxa to make up ‘nRef’. The default is
NULL since the algorithm will pick reference taxa randomly.

adjust_method: The adjusting method used for p value adjustment. Default is “BY” for dependent
FDR adjustment. It can take any adjustment method for p.adjust function in R.

fdrRate: The false discovery rate for identifying taxa/OTU/ASV associated with testCov. Default is
0.15.

paraJobs: If sequentialRun is FALSE, this specifies the number of parallel jobs that will be registered
to run the algorithm. If specified as NULL, it will automatically detect the cores to decide the number
of parallel jobs. Default is NULL.

bootB: Number of bootstrap samples for obtaining confidence interval of estimates in phase 2 for the
high dimensional regression. The default is 500.

standardize: This takes a logical value TRUE or FALSE. If TRUE, the design matrix for X will be
standardized in the analyses and the results. Default is FALSE.

sequentialRun: This takes a logical value TRUE or FALSE. Default is FALSE. This argument could be
useful for debug.

refReadsThresh: The threshold of proportion of non-zero sequencing reads for choosing the reference
taxon in phase 2. The default is 0.2 which means at least 20% non-zero sequencing reads.

taxDropThresh: The threshold of number of non-zero sequencing reads for each taxon to be dropped
from the analysis. The default is 0 which means taxon without any sequencing reads will be dropped
from the analysis.

SDThresh: The threshold of standard deviations of sequencing reads for been chosen as the reference
taxon in phase 2. The default is 0.05 which means the standard deviation of sequencing reads should
be at least 0.05 in order to be chosen as reference taxon.

SDquantilThresh: The threshold of the quantile of standard deviation of sequencing reads, above
which could be selected as reference taxon. The default is 0.

balanceCut: The threshold of the proportion of non-zero sequencing reads in each group of a binary
variable for choosing the final reference taxa in phase 2. The default number is 0.2 which means at
least 20% non-zero sequencing reads in each group are needed to be eligible for being chosen as a final
reference taxon.

seed: Random seed for reproducibility. Default is 1. It can be set to be NULL to remove seeding.

Output for IFAA() function

A list containing 2 elements

full_results: The main results for IFAA containing the estimation and testing results for all associa-
tions between all taxa and all test covariates in testCov. It is a dataframe with each row representing
an association, and eight columns named as “taxon”, “cov”, “estimate”, “SE.est”, “Cl.low”, “CL.up”,
“adj.p.value”; and “sig_ind”. The columns correspond to taxon name, covariate name, association
estimates, standard error estimates, lower bound and upper bound of the 95% confidence interval,
adjusted p value, and the indicator showing whether the association is significant after multiple testing
adjustment.

metadata: The metadata is a list containing the following items: covariatesData: A dataset containing
covariates and confounders used in the analyses. final_ref_taxon: The final 2 reference taxa used for
analysis. ref_taxon_count: The counts of selection for the associations of all taxa with test covariates
in Phase 1. ref_taxon_est: The average magnitude estimates for the associations of all taxa with test
covariates in Phase 1. totalTimeMins: Total time used for the entire analysis. seed: The seed used for
the analysis for reproducibility. fdrRate: FDR rate used for the analysis. adjust_method: Multiple
testing adjust method used for the analysis.

Example

The example datasets dataM and dataC are included in this package. The input should be a SummarizedEx-
periment object, which could be constructed as below.

If you already have a SummarizedExperiment format data, you can ignore the data processing steps below.

library (IFAA)
suppressMessages (library (SummarizedExperiment))

load the example microbiome data. This could be relative abundance or

absolute abundance data. If you have a csv or tsv file for the microbiome data,
you can use read.csv() function or read.table() function in R to read the

data file into R.

data(dataM)

dim(dataM)

#> [1] 40 61

dataM[1:5, 1:8]

#> 1d rawCountl rawCount2 rawCount3 rawCounts rawCountb5 rawCounté rawCount7
#> 1 1 4 49 2 0 360 222 4
#> 2 2 0 20 14 0 86 211 5
#> 3 3 3 0 3 7 0 57 0
#> 4 4 9 18 5 31 42 58 8
5 5 0 2 1 19 15 67 6
load the example covariates data. If you have a csv or tsv file for the

covariates data, you can use read.csv() function or read.table() function
in R to read the data file into R.

data(dataC)

dim(dataC)

#> [1] 40 4

dataC[1:3,]

#> 1d vl v2 v3

#> 1 1 58.06969 -49.90376 -15.30643

#> 2 2 25.96522 -68.58894 -23.10992
#> 3 3 193.71625 124.40186 119.56747

Both the microbiome data dataM and the covariates data dataC contain 40 samples (i.e., 40 rows).
o dataM contains 60 taxa with absolute abundances and these are gut microbiome.

e dataC contains 3 covariates.

Merge the microbiome data and covariate data by id to avoid unmatching observations.
data_merged<-merge(dataM,dataC,by="1d",all1=FALSE)

Seperate microbiome data and covariate data, drop id variable from microbiome data
dataM_sub<-data_merged[,colnames(dataM) [!colnames(dataM)in%c("id")]1]
dataC_sub<-data_merged[,colnames(dataC)]

Create a SummarizedExperiment object
test_dat<-SummarizedExperiment (assays=1list(MicrobData=t(dataM_sub)), colData=dataC_sub)

If you already have a SummarizedExperiment format data, you can ignore the above steps. Next we analyze
the data to test the association between microbiome and the variable "v1" while adjusting for the variables
(potential confounders) "v2" and "v3".

results <- IFAA(experiment dat = test_dat,
testCov = c("v1"),
ctrlCov = c("v2","v3"),
sampleIDname = c("id"),
fdrRate = 0.05)
#> Data dimensions (after removing missing data <f any):
#> 40 samples
#> 60 taxa/0TU/ASV
#> 1 testCov wvartiables in the analysis
#> These are the testCov wariables:
#> vl
#> 2 ctrlCov vartiables in the analysis
#> These are the ctrlCov wvariables:
#> v2, v3
#> 0 binary covartiates in the analysis
#> 25.71 percent of microbiome sequencing reads are zero
#> Start Phase 1 analysis
#> 6 parallel jobs are registered for analyzing 40 reference taxa in Phase 1
#> 33 percent of phase 1 analysis has been done and it took 0.83 minutes
#> 6 parallel jobs are registered for analyzing 20 reference taza in Phase 1
#> 67 percent of phase 1 analystis has been done and it took 1.34 minutes
#> 6 parallel jobs are registered for analyzing 20 reference tazxa in Phase 1
#> 100 percent of phase 1 analysis has been done and it took 1.85 minutes
#> Start Phase 2 parameter estimation
#> 50 percent of Phase 2 is done and it took 0.019 minutes
#> Entire Phase 2 parameter estimation done and took 0.04 minutes.
#> The entire analysis took 1.89 minutes

In this example, we are only interested in testing the associations with "v1" which is why testCov=c("v1").
The variables "v2" and "v3" are adjusted as potential confounders in the analyses. The final analysis results
are saved in the list full_result and the significant results can be extracted as follows:

summary_res<-results$full_result
sig_results<-subset (summary_res,sig_ind==T)

sig_results
#> DataFrame with 3 rows and 8 columns

#> tazon cov estimate SE.est CI.low CI.up adj.p.value
#> <character> <character> <numeric> <numeric> <numeric> <numeric> <numeric>
#> 1 rawCountl8 vl 0.0248316 0.00523955 0.0145620 0.0351011 1.92686e-04
#> 2 rawCount36 vl 0.0285573 0.00564242 0.0174982 0.0396165 5.61399e-05
#> 3 rawCount4l vl 0.0300483 0.00515387 0.0199467 0.0401499 1.49157e-06
#> sig_1ind
#> <numeric>
#> 1 1
#> 2 1
#> 3 1

The results found three taxa "rawCount18", "rawCount36", "rawCount41l" associated with "v1" while
adjusting for "v2" and "v3". The regression coefficients and their 95% confidence intervals are provided.
These coefficients correspond to 4* in the model equation.

The interpretation is that

o Every unit increase in "v1" is associated with approximately 2.5% increase in the absolute abundance
of "rawCount18", approximately 2.9% increase in the absolute abundance of "rawCount36", and
approximately 3.0% increase in the absolute abundance of "rawCount41" in the entire gut ecosystem.

Reference

Li et al.(2021) IFAA: Robust association identification and Inference For Absolute Abundance in microbiome
analyses. Journal of the American Statistical Association. 116(536):1595-1608

MZILN() function

The IFAA package can also implement the Multivariate Zero-Inflated Logistic Normal (MZILN) regression
model for estimating and testing the association of abundance ratios with covariates. The MZILN() function
estimates and tests the associations of user-specified abundance ratios with covariates. When the denominator
taxon of the ratio is independent of the covariates, ‘MZILN()’ should generate similar results as ‘IFAA()".
The regression model of ‘MZILN()’ can be expressed as follows:

k
log (yfg+1>|yf >0,V >0=a% 4+ XTa" + €, k=1,..K,

where
o VFis the AA of taxa k in subject i in the entire ecosystem.
o VX1 s the reference taxon (specified by user).
e X is the covariate matrix for all covariates including confounders.

o aF is the regression coefficients that will be estimated and tested.

Input for MZILN() function

Most of the time, users just feed the first three inputs to the function: experiment_dat, refTaxa and allCov.
All other inputs can just take their default values. All the inputs for ‘MZILN()’ are:

o experiment_dat: A SummarizedExperiment object containing microbiome data and covarites (see
example on how to create a SummarizedExperiment object). The microbiome data can be absolute
abundance or relative abundance with each column per sample and each row per taxon/OTU/ASV
(or any other unit). No imputation is needed for zero-valued data points. The covarites data contains

covariates and confounders with each row per sample and each column per variable. The covarites data
has to be numeric or binary.

e refTaxa: Denominator taxa names specified by the user for the targeted ratios. This could be a vector
of names.

o allCov: All covariates of interest (including confounders) for estimating and testing their associations
with the targeted ratios. Default is ‘NULL’ meaning that all covariates in covData are of interest.

e samplelDname: Name of the sample ID variable in the data. In the case that the data does not have
an ID variable, this can be ignored. Default is NULL.

e adjust_method: The adjusting method for p value adjustment. Default is “BY” for dependent FDR
adjustment. It can take any adjustment method for p.adjust function in R.

o fdrRate The false discovery rate for identifying ratios associated with allCov. Default is 0.15.

e paraJobs: If sequentialRun is FALSE, this specifies the number of parallel jobs that will be registered
to run the algorithm. If specified as NULL, it will automatically detect the cores to decide the number
of parallel jobs. Default is NULL.

e bootB: Number of bootstrap samples for obtaining confidence interval of estimates for the high
dimensional regression. The default is 500.

e taxDropThresh: The threshold of number of non-zero sequencing reads for each taxon to be dropped
from the analysis. The default is 0 which means taxon without any sequencing reads will be dropped
from the analysis.

e standardize: This takes a logical value TRUE or FALSE. If TRUE, the design matrix for X will be
standardized in the analyses and the results. Default is FALSE.

o sequentialRun: This takes a logical value TRUE or FALSE. Default is TRUE. It can be set to be “FALSE”
to increase speed if there are multiple taxa in the argument ‘refTaxa’.

e seed: Random seed for reproducibility. Default is 1. It can be set to be NULL to remove seeding.

Output for MZILN() function

A list with two elements:

e full results: The main results for MZILN containing the estimation and testing results for all
associations between all taxa ratios with refTaxan being the denominator and all covariates in allCov.
It is a dataframe with each row representing an association, and ten columns named as “ref tax”,
“taxon”, “cov”, “estimate”, “SE.est”, “Cl.low”, “CLup”, “adj.p.value”, “unadj.p.value” and “sig_ind”.
The columns correspond to the denominator taxon, numerator taxon, covariate name, association
estimates, standard error estimates, lower bound and upper bound of the 95% confidence interval,
adjusted p value, and the indicator showing whether the association is significant after multiple testing
adjustment.

o metadata: The metadata is a list containing total time used in minutes, random seed used, FDR rate,
and multiple testing adjustment method used.

Examples

We use the same example data The example dataset as that for illustrating the MZILN function. dataM and
dataC are included in this package.

If you have a SummarizedExperiment format data, you can ignore the data processing steps below.

load the example microbiome data. This could be relative abundance or
absolute abundance data. If you have a csv or tsv file for the microbiome data,
you can use read.csv() function or read.table() function in R to read the

data file into R.

data(dataM)

dim(dataM)

#> [1] 40 61

dataM[1:5, 1:8]

#> 1d rawCountl rawCount2 rawCount3 rawCounts rawCountb rawCounté rawCount7

1 1 4 49 2 0 360 222 4
2 2 0 20 14 0 86 211 5
3 3 3 0 3 7 0 57 0
4 4 9 18 5 31 42 58 8
5 5 0 2 1 19 15 67 6

load the example covariates data. If you have a csv or tsv file for the
covariates data, you can use read.csv() function or read.table() function
in R to read the data file into R.

data(dataC)

dim(dataC)

#> [1] 40 4

dataC[1:3,]

#> 1d vl v2 v3

#> 1 1 58.06969 -49.90376 -15.30643

#> 2 2 25.96522 -68.58894 -23.10992

#> 3 3 193.71625 124.40186 119.56747

Both the microbiome data dataM and the covariates data dataC contain 40 samples (i.e., 40 rows).
e dataM contains 60 taxa with absolute abundances and these are gut microbiome.

e dataC contains 3 covariates.

load the example microbiome data. This could be relative abundance or

absolute abundance data. If you have a csv or tsv file for the microbiome data,
you can use read.csv() function or read.table() function in R to read the

data file into R.

data_merged<-merge(dataM,dataC,by="1id",all=FALSE)

load the covariates data. If you have a csv or tsv file for the covariates data,
you can use read.csv() function or read.table() function in R to read

the data file into R.

dataM_sub<-data_merged[,colnames(dataM) [!colnames(dataM)in%c("id")]1]
dataC_sub<-data_merged[,colnames(dataC)]

Create a SummarizedExperiment object
test_dat<-SummarizedExperiment (assays=list(MicrobData=t(dataM_sub)), colData=dataC_sub)

If you already have a SummarizedExperiment format data, you can ignore the above steps. Next we analyze
the data to test the associations between the ratio “rawCount18/rawCount11” and all the three variables
"yi", "v2" and "v3" in a multivariate model where all "v1", "v2" and "v3" are independent variables
simultaneously.

results <- MZILN(experiment dat=test_dat,
refTaxa=c("rawCount11"),
allCov=c("v1","v2" "y3"),
sampleIDname = c("id"),
fdrRate=0.05)

#> Data dimensions (after removing missing data <f any):

#> 40 samples

#> 60 taxa/0TU/ASV

#> 3 testCov wvartiables in the analysis

#> These are the testCov wariables:

#> vl, v2, v3

#> 0 ctrlCov wvartables in the analysis

#> 0 binary covartates in the analysis

#> 25.71 percent of microbiome sequencing reads are zero

#> Estimation done for the 1th denominator tazon: rawCountll and it took 0.02 minutes
#> The entire analysis took 0.02 minutes

The full final analysis results can be extracted as follows:

summary_res<-results$full_results

The results for the log-ratio of “rawCount18” over “rawCount11” can extracted as follows:

summary_res [summary_res$taxon=="rawCount18", ,drop=FALSE]
#> DataFrame with 3 rows and 10 columns

#> ref_tazr tazon cov estimate SE.est CI.low
#> <character> <character> <character> <numeric> <numeric> <numertc>
#> 1 rawCountll rawCounti8 vl 0.02310369 0.00557079 0.01218495
#> 2 rawCountll rawCountl8 v2 0.00260412 0.00317369 -0.00361632
#> 3 rawCountll rawCountl8 v3 -0.00625053 0.00281432 -0.01176659
#> CI.up adj.p.value unadj.p.value sig_ind
#> <numertc> <numeric> <numeric> <logical>
#> 1 0.034022440 0.00308539 0.000033643 TRUE
#> 2 0.008824558 1.00000000 0.411913110 FALSE
#> 3 -0.000734468 0.80559644 0.026352611 FALSE

The regression coefficients and their 95% confidence intervals are provided. These coefficients correspond to
o in the model equation, and can be interpreted as the associations between the covariates and log-ratio of
"rawCount18" over ‘ “rawCount11”".

The interpretation for the results is that

o Every unit increase in "v1" is associated with approximately 2.3% increase in the abundance ratio
of "rawCount18" over "rawCount11" (while controlling for "v2" and "v3"); Every unit increase in
"y2" is associated with approximately 0.26% increase in the abundance ratio of "rawCount18" over
"rawCount11" (while controlling for "v1" and "v3"), but not statistically significant; Every unit increase
in "v3" is associated with approximately -0.63% decrease in the abundance ratio of "rawCount18" over
"rawCount11" (while controlling for "vi" and "v2"), but not statistically significant.

We can also extract all the ratios (with "rawCount11" being the denominator taxon) that are significantly
associated with any of the covariates as follows:

subset (summary_res,sig_ind==T)

#> DataFrame with 3 rows and 10 columns

#> ref_tazx tazon cov estimate SE.est CI.low CI.up
#> <character> <character> <character> <numeric> <numeric> <numeric> <numeric>
#> 1 rawCountll rawCountl8 vl 0.0231037 0.00557079 0.0121849 0.0340224
#> 2 rawCountll rawCount36 vl 0.0296571 0.00589475 0.0181034 0.0412108
#> 3 rawCountll rawCount4l vl 0.0256273 0.00546293 0.0149199 0.0363346
#> adj.p.value unadj.p.value sig_ind
#> <numertc> <numeric> <logical>
#> 1 0.003085391 3.36430e-05 TRUE
#> 2 0.000134166 4.87647e-07 TRUE

#> 3 0.000373778 2.71711e-06 TRUE

The interpretation for the results is that

o Every unit increase in "v1" is associated with approximately 2.3% increase in the abundance ratio
of "rawCount18" over "rawCount11" (while controlling for "v2" and "v3"), and it is statistically
significant; Every unit increase in "v1" is also associated with approximately 3.0% increase in the
abundance ratio of "rawCount36" over "rawCount11" (while controlling for "v2" and "v3"), and it is
statistically significant; Every unit increase in "v1" is also associated with approximately 2.6% decrease
in the abundance ratio of "rawCount41" over "rawCount11" (while controlling for "v2" and "v3"),
and it is statistically significant.

Reference

Li et al.(2018) Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for
Microbiome Relative Abundance Data. Statistics in Biosciences 10(3): 587-608

Session Info

sessionInfo()

#> R wversion 4.2.1 (2022-06-23 ucrt)

#> Platform: x86_64-w64-minquw32/x64 (64-bit)
#> Running under: Windows 10 z64 (build 19044)
#>

#> Matriz products: default

#>

#> locale:

#> [1] LC_COLLATE=C

#> [2] LC_CTYPE=English_Untited States.utf8
#> [3] LC_MONETARY=English_United States.utf8
#> [4] LC_NUMERIC=C

#> [5] LC_TIME=English_United States.utf8

#>

#> attached base packages:

#> [1] statsy stats graphics grDevices utils datasets methods
#> [8] base

#>

#> other attached packages:
#> [1] SummarizedExperiment_1.26.1 Biobase_2.56.0

#> [3] GenomicRanges_1.48.0 GenomeInfoDb_1.32.2

#> [5] IRanges_2.30.0 S4Vectors_0.34.0

#> [7] BiocGenerics_0.42.0 MatrizGenerics_1.8.0

#> [9] matrizStats_0.62.0 IFAA_1.0.7

#>

#> loaded via a namespace (and not attached):

#> [1] Rcpp_1.0.7 mvtnorm_1.1-3 lattice_0.20-45
#> [4] class_7.3-20 glmnet_4.1-3 digest_0.6.29

#> [7] RhpcBLASctl_0.21-247.1 foreach_1.5.1 parallelly_1.30.0
#> [10] slam_ 0.1-49 R6_2.5.1 cellranger 1.1.0
#> [13] sparsesvd_0.2 qlcMatriz_0.9.7 evaluate_0.14

#> [16] rootSolve_1.8.2.3 el1071_1.7-11 httr_1.4.2

#> [19] zlibbioc_1.42.0 rlang_1.0.3 Ezact_3.1

#> [22] readzl_1.4.0 rstudioapi_0.13 data.table_1.14.2
#> [25] Matriz_1.4-1 rmarkdown_2. 12 mathjazr_1.4-0
#> [28] splines_4.2.1 stringr_1.4.0 RCurl_1.98-1.7

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

[31]
[34]
[37]
[407
[43]
[46]
[49]
[52]
[55]
[58]
[61]

DelayedArray_0.22.0
zfun_0.29
DescTools_0.99.45

GenomeInfoDbData_1.2.8

codetools_0.2-18
grid_4.2.1
gld_2.6.4
XVector_0.36.0
HDCI_1.0-2
float_0.3-0
survival_3.3-1

proxy_0.4-27
speedglm_0.3-4
htmltools_0.5.2
MatrizEztra_0.1.10
MASS_7.3-57
magrittr_2.0.1
cli_3.3.0
doParallel_1.0.16
iterators_1.0.13
parallel_4.2.1
yaml_2.2.1

10

compiler_4.2.1
shape_1.4.6
Lmom_2.9
expm_0.999-6
bitops_1.0-7
docopt_0.7.1
stringt_1.7.6
boot_1.3-28
tools_4.2.1
fastmap_1.1.0
knitr_1.37

	Package installation
	Input for IFAA() function
	Output for IFAA() function
	Example
	Reference
	MZILN() function
	Input for MZILN() function
	Output for MZILN() function
	Examples
	Reference

