
Using the R package motifcluster

William G. Underwood

November 15, 2021

Contents
1 Introduction 2

2 Building motif adjacency matrices 2
2.1 An example network . 2
2.2 Basic motif adjacency matrix construction . 2
2.3 Functional and structural motif adjacency matrices . 3
2.4 Weighted motif adjacency matrices . 3

2.4.1 Mean-weighted instances . 3
2.4.2 Product-weighted instances . 4
2.4.3 Computation method . 4

3 Sampling random weighted directed networks 4
3.1 Directed stochastic block models . 4

3.1.1 Constant-weighted directed stochastic block models 5
3.1.2 Poisson-weighted directed stochastic block models . 5

3.2 Bipartite stochastic block models . 6
3.2.1 Weighted bipartite stochastic block models . 6

4 Spectral embedding with motif adjacency matrices 6
4.1 Laplacian matrices . 6

4.1.1 Combinatorial Laplacian . 7
4.1.2 Random-walk Laplacian . 7

4.2 Laplace embedding . 7
4.3 Motif embedding . 8

5 Motif-based spectral clustering 8

1

1 Introduction
This vignette demonstrates how to use the R package motifcluster. These methods are detailed in the paper
Motif-Based Spectral Clustering of Weighted Directed Networks, which is available at arXiv:2004.01293
[Underwood et al., 2020]. The functionality of the motifcluster package falls into a few main categories:

• Building motif adjacency matrices
• Sampling random weighted directed networks
• Spectral embedding with motif adjacency matrices
• Motif-based spectral clustering

This vignette comprehensibly demonstrates all of these functionalities, showcasing the full capability of the
motifcluster package. We first load some helpful packages for this tutorial:
library(devtools)
library(mclust)

The motifcluster package can be installed from GitHub with:
install_github("wgunderwood/motifcluster/R")

The package can then be loaded from within R with:
library(motifcluster)

2 Building motif adjacency matrices
The main novelty in the motifcluster package is its ability to build a wide variety of motif adjacency
matrices (MAMs), and to do so quickly. There are several options to consider when building an MAM, which
are covered in this section.

2.1 An example network
In order to demonstrate the construction of MAMs, we first need a small weighted directed network G1 to
use as an example. Note that throughout this package we represent networks by their weighted directed
adjacency matrices (possibly in sparse form). This means that for use alongside R packages such as igraph,
one must manually convert between adjacency matrices and igraph objects.
G1 <- matrix(c(

0, 2, 0, 0,
0, 0, 2, 3,
0, 4, 0, 0,
4, 0, 5, 0

), byrow = TRUE, nrow = 4)

2.2 Basic motif adjacency matrix construction
The build_motif_adjacency_matrix function is the main workhorse for building MAMs with motifcluster.
Let’s use it to build an MAM for the network G1. First we must choose a motif to look for. A full list can be
obtained with:
get_motif_names()
#> [1] "Ms" "Md" "M1" "M2" "M3" "M4" "M5" "M6" "M7"
#> [10] "M8" "M9" "M10" "M11" "M12" "M13" "Mcoll" "Mexpa"

Let’s use the 3-cycle motifM1.

2

build_motif_adjacency_matrix(G1, motif_name = "M1")
#> 4 x 4 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . 1 . 1
#> [2,] 1 . . 1
#> [3,]
#> [4,] 1 1 . .

Note that all the entries are zero except for entries (1, 2), (1, 4), (2, 1), (2, 4), (4, 1), and (4, 2). This is because
vertices 1, 2 and 4 form an exact copy of the motifM1 in the network G1, and the (i, j)th MAM entry simply
counts the number of instances containing both vertices i and j.

2.3 Functional and structural motif adjacency matrices
Looking at our example network G1 again, you might notice that there is seemingly another instance of the
motifM1 in our network G1, on the vertices 2, 3 and 4, albeit with an “extra” edge from 2 to 3. The reason
for this is that we instructed build_motif_adjacency_matrix to look for structural motif instances (this is
the default). Structural instances require an exact match, with no extra edges. If we want to also include
instances which may have extra edges present, we must instead use functional motif instances:
build_motif_adjacency_matrix(G1, motif_name = "M1", motif_type = "func")
#> 4 x 4 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . 1 . 1
#> [2,] 1 . 1 2
#> [3,] . 1 . 1
#> [4,] 1 2 1 .

This time we also pick up the 3-cycle on vertices 2, 3 and 4. Vertices 2 and 4 therefore occur in two distinct
instances of the motif, and so their motif adjacency matrix entries are equal to two.

2.4 Weighted motif adjacency matrices
Our example network G1 has weighted edges, which we have not yet used: so far our MAMs have been simply
counting instances of motifs. This is because the default weighting scheme is “unweighted”, assigning every
instance a weight of one.

2.4.1 Mean-weighted instances

We could instead use the “mean” weighting scheme, where every instance is assigned a weight equal to its
mean edge weight. The (i, j)th MAM entry is then defined as the sum of these instance weights across all
instances containing both vertices i and j:
build_motif_adjacency_matrix(G1, motif_name = "M1", motif_type = "func",

mam_weight_type = "mean")
#> 4 x 4 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . 3 . 3
#> [2,] 3 . 4 7
#> [3,] . 4 . 4
#> [4,] 3 7 4 .

The 3-cycle on vertices 1, 2 and 4 has edge weights of 2, 3 and 4, so its mean edge weight is 3. Similarly the
3-cycle on vertices 2, 3 and 4 has mean edge weight of 4. Vertices 2 and 4 appear in both, so their mutual
MAM entries are the sum of these two mean weights, which is 7.

3

2.4.2 Product-weighted instances

We can also use the “product” weighting scheme, where every instance is assigned a weight equal to the
product of its edge weights. The (i, j)th MAM entry is then defined as the sum of these instance weights
across all instances containing both vertices i and j:
build_motif_adjacency_matrix(G1, motif_name = "M1", motif_type = "func",

mam_weight_type = "product")
#> 4 x 4 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . 24 . 24
#> [2,] 24 . 60 84
#> [3,] . 60 . 60
#> [4,] 24 84 60 .

The 3-cycle on vertices 1, 2 and 4 has edge weights of 2, 3 and 4, so the product of its edge weights is 24.
Similarly the 3-cycle on vertices 2, 3 and 4 has product of edge weights of 60. Vertices 2 and 4 appear in
both, so their shared MAM entries are the sum of these two product weights, which is 84.

2.4.3 Computation method

The final argument to build_motif_adjacency_matrix is the mam_method argument. This does not affect
the value returned but may impact the amount of time taken to return the MAM. In general the “sparse”
method (the default) is faster on large sparse networks. The “dense” method, which uses fewer operations
but on denser matrices, tends to be faster for small dense networks.
mam_sparse <- build_motif_adjacency_matrix(G1, motif_name = "M1", mam_method = "sparse")
mam_dense <- build_motif_adjacency_matrix(G1, motif_name = "M1", mam_method = "dense")
all(mam_sparse == mam_dense)
#> [1] TRUE

3 Sampling random weighted directed networks
Building adjacency matrices by hand is tedious, so it is useful to have methods for generating the adjacency
matrices of networks drawn from some probabilistic model. We use (weighted) directed stochastic block
models (DSBMs) and (weighted) bipartite stochastic block models (BSBMs).

3.1 Directed stochastic block models
First let’s sample the adjacency matrix of a DSBM which has two blocks of vertices; the first containing
five vertices and the second containing three. We use strong within-block connections, with the diagonal
entries of the connection matrix set to 0.9. The between-block connections are weaker, with the off-diagonal
connection matrix entries set to 0.2. Note how the resulting adjacency matrix is denser on its diagonal blocks
{1, . . . , 5}×{1, . . . , 5} and {6, . . . , 8}×{6, . . . , 8}, and is sparser on its off-diagonal blocks {1, . . . , 5}×{6, . . . , 8}
and {6, . . . , 8} × {1, . . . , 5}. The entries which lie exactly on the diagonal will always be zero, since we only
consider networks without self-loops.
block_sizes = c(5, 3)
connection_matrix = matrix(c(

0.9, 0.2,
0.2, 0.9

), nrow = 2, byrow = TRUE)

4

sample_dsbm(block_sizes, connection_matrix)
#> 8 x 8 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . . 1 1 1 . . .
#> [2,] 1 . 1 . 1 . . .
#> [3,] 1 1 . 1 1 . . 1
#> [4,] 1 1 1 . 1 . 1 1
#> [5,] 1 1 1 1 . . . 1
#> [6,] 1
#> [7,] . . 1 1 . 1 . 1
#> [8,] 1 1 1 .

3.1.1 Constant-weighted directed stochastic block models

The matrix above has binary entries, indicating that it is the adjacency matrix of an unweighted directed
network. The motifcluster package also allows sampling of weighted directed networks. The simplest
example of this is “constant” weighting, where we simply multiply each block of the adjacency matrix by a
constant.
weight_matrix = matrix(c(

5, 2,
2, 5

), nrow = 2, byrow = TRUE)
sample_dsbm(block_sizes, connection_matrix, weight_matrix,

sample_weight_type = "constant")
#> 8 x 8 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . 5 5 5
#> [2,] 5 . 5 5 5 . 2 .
#> [3,] 5 5 . 5 5 . 2 .
#> [4,] 5 5 5 . 5 . . .
#> [5,] 5 5 5 5 . . . 2
#> [6,] . . 2 . . . 5 5
#> [7,] . . 2 . . 5 . 5
#> [8,] 5 5 .

3.1.2 Poisson-weighted directed stochastic block models

We can also use weights drawn randomly from a Poisson distribution, where each block in the adjacency
matrix has its own mean parameter. This returns an adjacency matrix with weights which could be any
natural number, but is equal in expectation to the constant version. Note that in this scheme it is possible
for the weight to be zero, removing an edge which might have otherwise been present.
sample_dsbm(block_sizes, connection_matrix, weight_matrix, sample_weight_type = "poisson")
#> 8 x 8 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . 6 2 5 2 . 5 1
#> [2,] 3 . 4 6 . 2 . .
#> [3,] 3 1 . 4 4 . . .
#> [4,] 8 5 3 . 3 . . .
#> [5,] . 1 5 5
#> [6,] . . . 2 . . 4 3
#> [7,] 4 . 10
#> [8,] . . 2 . . 7 8 .

5

3.2 Bipartite stochastic block models
The motifcluster package can also be used to sample bipartite networks. The vertices of a bipartite network
are partitioned into “source” and “destination” vertices, and edges are only permitted to go from source
vertices to destination vertices. Let’s sample a DSBM with a single block of two source vertices and two blocks
of destination vertices, with sizes of three and two respectively. We can use a strong connection probability
of 0.9 to the first block of destination vertices, and a weaker connection probability of 0.2 to the second.
source_block_sizes = c(2)
destination_block_sizes = c(3, 2)
bipartite_connection_matrix = matrix(c(0.9, 0.2), nrow = 1)
sample_bsbm(source_block_sizes, destination_block_sizes, bipartite_connection_matrix)
#> 7 x 7 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . . 1 1 1 . 1
#> [2,] . . 1 1 1 . .
#> [3,]
#> [4,]
#> [5,]
#> [6,]
#> [7,]

3.2.1 Weighted bipartite stochastic block models

Similarly to the more general directed stochastic block models, we can also use constant-weighted or Poisson-
weighted edges for bipartite stochastic block models.
bipartite_weight_matrix = matrix(c(7, 2), nrow = 1)
sample_bsbm(source_block_sizes, destination_block_sizes,

bipartite_connection_matrix, bipartite_weight_matrix,
sample_weight_type = "poisson")

#> 7 x 7 sparse Matrix of class "dgCMatrix"
#>
#> [1,] . . 9 11 5 1 .
#> [2,] . . . 5 2 3 .
#> [3,]
#> [4,]
#> [5,]
#> [6,]
#> [7,]

4 Spectral embedding with motif adjacency matrices
Spectral methods involve performing eigenvalue and eigenvector operations on matrices related to networks.
We work here with weighted undirected networks (which have symmetric adjacency matrices), because motif
adjacency matrices are always symmetric.

4.1 Laplacian matrices
We can construct two types of Laplacian matrix for a network using the motifcluster package. First we
create an example of a weighted undirected network G2.

6

G2 <- matrix(c(
0, 2, 0, 0,
2, 0, 4, 3,
0, 4, 0, 5,
0, 3, 5, 0

), byrow = TRUE, nrow = 4)

4.1.1 Combinatorial Laplacian

The combinatorial Laplacian of an adjacency matrix G is Lc = D −G, where D is the diagonal matrix of
weighted vertex degrees:
build_laplacian(G2, type_lap = "comb")
#> 4 x 4 sparse Matrix of class "dgCMatrix"
#>
#> [1,] 2 -2 . .
#> [2,] -2 9 -4 -3
#> [3,] . -4 9 -5
#> [4,] . -3 -5 8

4.1.2 Random-walk Laplacian

The random-walk Laplacian of an adjacency matrix G is Lrw = I −D−1G, where D is the diagonal matrix of
weighted vertex degrees and I is the identity matrix:
build_laplacian(G2, type_lap = "rw")
#> 4 x 4 sparse Matrix of class "dgCMatrix"
#>
#> [1,] 1.00 -1.00 . .
#> [2,] -0.22 1.00 -0.44 -0.33
#> [3,] . -0.44 1.00 -0.56
#> [4,] . -0.38 -0.62 1.00

4.2 Laplace embedding
Once we have constructed the desired Laplacian matrix, we use it to embed each vertex into Rl by finding the
eigenvectors associated with its first (smallest magnitude) few eigenvalues. Below we use the random-walk
Laplacian, and embedding dimension l = 2:
spectrum = run_laplace_embedding(G2, num_eigs = 2, type_lap = "rw")
spectrum$vals
#> [1] -9.0e-17 7.9e-01
spectrum$vects
#> [,1] [,2]
#> [1,] 0.5 0.93
#> [2,] 0.5 0.20
#> [3,] 0.5 -0.20
#> [4,] 0.5 -0.23

For a random-walk Laplacian, the first eigenvalue is always zero (up to machine precision) and its corresponding
eigenvector is constant.

7

4.3 Motif embedding
Motif embedding is simply the process of building an MAM and performing Laplace embedding with it. As
an example we use the run_motif_embedding function on the network G3 below.
G3 <- matrix(c(

0, 0, 0, 0,
0, 0, 2, 3,
0, 4, 0, 0,
4, 0, 5, 0

), byrow = TRUE, nrow = 4)

An artifact of building MAMs is that although the original network may be connected, there is no guarantee
that the MAM is also connected. Hence the MAM is restricted to its largest connected component before
the Laplacian is formed. We observe this with the network G3, in which only three of the four vertices are
embedded.
spectrum = run_motif_embedding(G3, motif_name = "M1", motif_type = "func",

mam_weight_type = "unweighted", mam_method = "sparse", num_eigs = 2,
restrict = TRUE, type_lap = "rw")

spectrum$vals
#> [1] 1.1e-15 1.5e+00
spectrum$vects
#> [,1] [,2]
#> [1,] 0.58 0.00
#> [2,] 0.58 -0.71
#> [3,] 0.58 0.71

5 Motif-based spectral clustering
The overall aim of motifcluster is to use motifs for spectral clustering, so now we see how to extract clusters
from the motif-based eigenvector embeddings. The run_motif_clustering function handles the entire process
of building an MAM, restricting it to its largest connected component, performing eigenvector embedding,
and extracting clusters. We therefore take the opportunity to showcase the ability of motifcluster to
recover the blocks of a DSBM, demonstrating all of the methods outlined in this vignette.

Let’s use a DSBM with three blocks of 10 nodes each.
block_sizes = rep(10, 3)

We use strong connections of 0.8 within the blocks, and weaker connections of 0.3 between the blocks.
connection_matrix = matrix(c(

0.8, 0.2, 0.2,
0.2, 0.8, 0.2,
0.2, 0.2, 0.8

), nrow = 3)

We also set the within-block edges to be Poisson-weighted with mean 20, and the between-block edges to be
Poisson-weighted with smaller mean 10.
weight_matrix = matrix(c(

20, 10, 10,
10, 20, 10,
10, 10, 20

), nrow = 3)

8

G4 = sample_dsbm(block_sizes, connection_matrix, weight_matrix,
sample_weight_type = "poisson")

Now we can run the motif-based spectral clustering algorithm on this network with the 3-cycle motifM1. We
build a functional MAM, weighting the instances by their mean edge weights, using the sparse formulation.
We restrict this MAM to its largest connected component. Then we construct a random-walk Laplacian and
embed it using the first four eigenvalues and eigenvectors. Finally we extract three clusters.
motif_cluster = run_motif_clustering(G4, motif_name = "M1", motif_type = "func",

mam_weight_type = "mean", mam_method = "sparse", type_lap = "rw", num_eigs = 4,
num_clusts = 3

)

We can evaluate the performance by comparing it to the ground-truth labels using the adjusted Rand index
from the mclust package:
truth = c(rep(1, 10), rep(2, 10), rep(3, 10))
mclust::adjustedRandIndex(motif_cluster$clusts, truth)
#> [1] 1

A larger value indicates better recovery of the blocks, with a value of one indicating perfect agreement.

References
William George Underwood, Andrew Elliott, and Mihai Cucuringu. Motif-based spectral clustering of
weighted directed networks. April 2020. arXiv:2004.01293.

9

https://arxiv.org/abs/2004.01293

	Introduction
	Building motif adjacency matrices
	An example network
	Basic motif adjacency matrix construction
	Functional and structural motif adjacency matrices
	Weighted motif adjacency matrices
	Mean-weighted instances
	Product-weighted instances
	Computation method

	Sampling random weighted directed networks
	Directed stochastic block models
	Constant-weighted directed stochastic block models
	Poisson-weighted directed stochastic block models

	Bipartite stochastic block models
	Weighted bipartite stochastic block models

	Spectral embedding with motif adjacency matrices
	Laplacian matrices
	Combinatorial Laplacian
	Random-walk Laplacian

	Laplace embedding
	Motif embedding

	Motif-based spectral clustering

