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Summary

Outlier nomination (detection) and robust regression are computationally hard problems. This
is all the more true when the number of variables and observations grow rapidly. Among
all candidate methods, the two BACON (blocked adaptive computationally efficient outlier
nominators) algorithms of Billor et al. (2000) have favorable computational characteristics as
they require only a few model evaluations irrespective of the sample size. This makes them
popular algorithms for multivariate outlier nomination/detection and robust linear regression
(at the time of writing Google Scholar reports more than 500 citations of the Billor et al.
(2000) paper).
wbacon is a package for the R statistical software (R Core Team, 2021). It is aimed at medium
to large data sets that can possibly have (sampling) weights (e.g., data from complex survey
samples). The package has a user-friendly R interface (with plotting methods, etc.) and
is written mainly in the C language (with OpenMP support for parallelization; see OpenMP
Architecture Review Board (2018)) for performance reasons.

The BACON algorithms

Technically, the BACON algorithms consist of the application of series of simple statistical
estimation methods such as coordinate-wise means/medians, covariance matrix, Mahalanobis
distances, or least squares regression on subsets of the data. The algorithms start from an
initial small subset of non-outlying (“good”) data and keep adding those observations to the
subset whose distances (or discrepancies in the case of the regression algorithm) are smaller
than a predefined threshold value. The algorithms terminate if the subset cannot be increased
further. The observations not in the final subset are nominated as outliers. We follow Billor
et al. (2000) and use the term “nomination” of outliers instead of “detection” to emphasize
that the algorithms should not go beyond nominating observations as potential outliers. It is
left to the analyst to finally label outlying observations as such.
The BACON algorithm for multivariate outlier nomination can be initialized in two ways:
version “V1” or “V2” (see Billor et al., 2000). In version V2, the algorithm is started from the
coordinate-wise median. As a consequence, the resulting estimators of location and scatter are
robust, i.e., the breakdown point1 is approximately 40% (Billor et al., 2000), but the estimators
are not affine equivariant estimators of the population location and scatter. However, Billor
et al. (2000) show that the estimators are nearly affine equivariant.

1Intuitively, the breakdown point of an estimator is the proportion of outliers an estimator can handle before
giving a arbitrary or meaningless result; see Maronna et al. (2018) for a rigorous definition.
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The initialization by version V1 yields estimators that are affine equivariant by design because
the algorithm is started from the coordinate-wise mean, but the estimators have a very low
breakdown point.
A naive implementation of the BACON algorithms would call the (simple) estimation methods
iteratively on a sequence of growing subsets of the data without bothering too much with
reusing or updating existing blocks of data. This leads to an excessively large number of
copy/modify operations and (unnecessary) recomputations. Overall, we would end up with a
computationally inefficient implementation. For small data sets, the inefficiencies would likely
go unnoticed. With large amounts of data, however, the situation is quite different.

Statement of need

The two BACON algorithms are available from the package robustX (Maechler, Stahel, et al.,
2021) for the R statistical software. The BACON algorithm for multivariate outlier nomination
has been extended to weighted problems (in the context of survey sampling) and incomplete
data by Béguin & Hulliger (2008). The extended method is available from the R package
modi (Hulliger & Sterchi, 2020). Both implementations are not explicitly targeted at large
data sets. Our package fills this gap.

What the package offers

The implementation of the wbacon package is targeted at medium to large data sets and is
mainly implemented in the C language. The code depends heavily on the subroutines in the
libraries BLAS (Blackford et al., 2002) and LAPACK (Anderson et al., 1999). If computation
time is of great importance, we recommend replacing the reference implementation of the
BLAS library that ships with R by a version that has been adapted to the user’s hardware (see
e.g., OpenBLAS). The non-BLAS components of wbacon use multiple threads (if the compiler
supports OpenMP; see OpenMP Architecture Review Board (2018)) for the computations over
the p variables/columns because the computational time complexity is dominated by p. For
instance, the time complexity of the BACON algorithm for multivariate outlier nomination
is dominated by the complexity of the covariance matrix computation, which is of order
O(np2), where n denotes the number of observations. The major improvements of wbacon
(in terms of computation time) over the naive implementation, however, are achieved by using
partial sorting (in place of a full sort), reusing computed estimates, and employing an up-
/downdating scheme for the Cholesky and QR factorizations. The computational costs of the
up-/downdating schemes are far less than recomputing the entire decomposition repeatedly.

Diagnostic tools

The BACON algorithms assume that the underlying model is an appropriate description of
the non-outlying observations. More precisely (Billor et al., 2000),

• the outlier nomination method assumes that the “good” data have (roughly) an ellipti-
cally contoured distribution (this includes the Gaussian distribution as a special case);

• the regression method assumes that the non-outlying (“good”) data are described by
a linear (homoscedastic) regression model and that the independent variables (having
removed the regression intercept/constant, if there is a constant) follow (roughly) an
elliptically contoured distribution.
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We recommend that the users examine the data structure of the “good” observations to verify
that the assumptions hold. The following quote from the authors of the BACON algorithms
should be noted.

“Although the algorithms will often do something reasonable even when these
assumptions are violated, it is hard to say what the results mean.” (Billor et al.,
2000, p. 289)

The wbacon package provides the analyst with tools to identify potentially outlying observa-
tions. For multivariate outlier nomination, the package implements several diagnostic plots.
Worth mentioning is the graph which plots the robust (Mahalanobis) distances against the
univariate projection of the data that maximizes the separation criterion of Qiu & Joe (2006).
This kind of diagnostic graph attempts to separate outlying from non-outlying observations
as much as possible; see Willems et al. (2009). It is particularly helpful when the outliers
are clustered or show patterns. For robust linear regression, the package offers the standard
plotting methods that are available for objects of the class lm. In addition, it implements the
plot of the robust distances of the (non-constant) design variables against the standardized
residuals. This diagnostic plot been proposed by Rousseeuw & Zomeren (1990). All plotting
methods can be displayed as hexagonally binned scatter plots, using the functionality of the
hexbin (Carr et al., 2021) package. This option is recommended for large data sets.

Illustration

In this section, we illustrate the use of the BACON algorithm for robust linear regression. Our
data are on education expenditures in 50 US states in 1975 (Chatterjee & Hadi, 2006, Chap.
5.7). The data can be loaded from the robustbase (Maechler, Rousseeuw, et al., 2021)
package.

library(wbacon)
data(education, package = "robustbase")

names(education)[3:6] <- c("RES", "INC", "YOUNG", "EXP")
head(education)

The variables are:

• State: State
• Region: group variable with outcomes: 1=Northeastern, 2=North central, 3=Southern,

and 4=Western
• RES: Number of residents per thousand residing in urban areas in 1970
• INC: Per capita personal income in 1973 ($US)
• YOUNG: Number of residents per thousand under 18 years of age in 1974
• EXP: Per capita expenditure on public education in a state ($US), projected for 1975

Our goal is to regress education expenditures (EXP) on the variables RES, INC, and YOUNG.
For the BACON robust linear regression algorithm, we have

reg <- wBACON_reg(EXP ~ RES + INC + YOUNG, data = education)

reg

Schoch, T., (2021). wbacon: Weighted BACON algorithms for multivariate outlier nomination (detection) and robust linear regression. Journal
of Open Source Software, 6(62), 3238. https://doi.org/10.21105/joss.03238

3

https://doi.org/10.21105/joss.03238


#> Call:
#> wBACON_reg(formula = EXP ~ RES + INC + YOUNG, data = education)
#>
#> Regression on the subset of 49 out of 50 observations (98%)
#>
#> Coefficients:
#> (Intercept) RES INC YOUNG
#> -277.57731 0.06679 0.04829 0.88693

By default, wBACON_reg() uses the parametrization alpha = 0.05, collect = 4, and
version = "V2". These parameters are used to call the wBACON() multivariate outlier
nomination/detection algorithm on the design matrix. Then, the same parameters are used
to compute the robust linear regression.
To ensure a high breakdown point, version = "V2" should not be changed to “V1” unless
you have good reasons to do so. The main “turning knob” to tune the regression algorithm
is alpha, which defines the (1−α) quantile tα,ν of the Student t-distribution with ν degrees
of freedom. In fact, the quantile tα/(2r+2),r−p is used as the cutoff value (see Billor et al.,
2000), where r and p denote, respectively, the number observations in the set of “good”
observations and the number of variables. All observations whose discrepancies (defined as
the scaled residuals on the set of “good” observations and the scaled prediction error on the set
of “bad” observations) are smaller (in absolute value) than the cutoff value are selected into
the subset of “good” data [see document methods.pdf in the folder inst/doc of the source
package]. By choosing larger values for alpha (e.g., 0.2), more observations are selected
(ceteris paribus) into the subset of “good” data (and vice versa).
The parameter collect specifies the size of the initial subset, which is defined as m =
p · collect. It should be chosen such that m is considerably smaller than the number of
observations n. Otherwise we are at risk of selecting too many “bad” observations into the
initial subset, which will eventually bias the regression estimates.
The instance reg is an object of the class wbaconlm. The printed output of wBACON_reg()
is identical with the one of the stats::lm() function. In addition, we are told the size of the
subset on which the final regression has been computed. The observations not in the subset
are considered potential outliers (here 1 out of 50 observations). The summary() method can
be used to summarize the estimated model.

summary(reg)

#> Call:
#> wBACON_reg(formula = EXP ~ RES + INC + YOUNG, data = education)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -81.128 -22.154 -7.542 22.542 80.890
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -277.57731 132.42286 -2.096 0.041724 *
#> RES 0.06679 0.04934 1.354 0.182591
#> INC 0.04829 0.01215 3.976 0.000252 ***
#> YOUNG 0.88693 0.33114 2.678 0.010291 *
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 35.81 on 45 degrees of freedom
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#> Multiple R-squared: 0.4967, Adjusted R-squared: 0.4631
#> F-statistic: 14.8 on 3 and 45 DF, p-value: 7.653e-07

The methods coef(), vcov(), and predict() work exactly the same as their lm() coun-
terparts. This is also true for the first three plot() types, that is

• which = 1: Residuals vs Fitted,
• which = 2: Normal Q-Q,
• which = 3: Scale-Location.

The plot types 4:6 of plot.lm() are not implemented for objects of the class wbaconlm
because it is not sensible to study the standard regression influence diagnostics in the presence
of outliers in the model’s design space (leverage observations). Instead, type four (which = 4)
plots the robust Mahalanobis distances with respect to the non-constant design variables
against the standardized residual. This plot has been proposed by Rousseeuw & Zomeren
(1990). This plot method is also available in the package robustbase (Maechler, Rousseeuw,
et al., 2021) for robust regression estimators of the class lmrob.
See vignette to learn more about the package.

Benchmarking

We compare our implementation with robustX::BACON() in terms of computational time.
First, we consider estimating a robust linear regression for a Gaussian mixture distribution,
where a proportion of 1− ϵ of the observations on the p independent variables is generated by
the Gaussian model, while a proportion of ϵ (the outliers) is generated by a shifted Gaussian
distribution. For the outlying observations (i.e., ϵ proportion of the data), the response variable
is generated by a regression coefficient which is 10 times larger than the coefficient of the
non-outlying observations. We choose ϵ = 0.05; see Appendix for more details on the setup.
The number of variables (p) and the number of observations (n) are varied.
For the regression exercise, our setup is intentionally limited to single-threaded computations
(n_threads = 1; no OpenMP parallelization support). It is clear that when the number of
variables is large, the parallelized computations are (usually) much faster. Table 1 shows the
ratio of average computation time of the two implementation for some configurations of n
and p. A ratio > 1.0 (< 1.0) implies that wBACON_reg() is faster (slower) than robustX::
BACON(). The average ratio refers to computation time averaged over repeated benchmarks
using the R package microbenchmark (Mersmann et al., 2019). It is evident from the results
in Table 1 that wBACON_reg() is considerably faster than its competitor, e.g., wBACON_reg()
is on average 4.4 times faster for the setup p = 5 and n = 100. More importantly, the
differences become larger as we increase n or p. The differences in computation time are
mainly due to the fact that wBACON_reg() updates the regression estimates as the subset of
non-outlying observations grows, while robustX::BACON() recomputes the estimates at each
iteration. When thread-level parallelism is enabled in wBACON_reg(), the differences become
even larger (for p ≥ 20 and n ≥ 103).

p = 5 p = 10 p = 20

n = 102 4.4 5.3 7.1
n = 103 43.9 52.5 55.0

Table 1. Robust linear regression (single thread): Ratio of average computation time. A ratio
> 1.0 implies that wBACON_reg() is faster than robustX::BACON()
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In the second benchmark, we study the ratio of average computation time of wBACON()
vs. robustX::BACON() for multivariate outlier nomination; see Table 2. A ratio > 1.0
(< 1.0) implies that wBACON() is faster (slower) than robustX::BACON(). In this benchmark,
wBACON() is set up with thread-level and instruction-level parallelization: OpenBLAS in place
of the standard BLAS library and full OpenMP (OpenMP Architecture Review Board, 2018)
support. For ease of simplicity, we use a “plain vanilla” parallelization mode which spawns all
available cores/threads.

p = 5 p = 10 p = 20 p = 30 p = 40 p = 50 p = 100 p = 200

n = 103 0.5 1.0 1.2 1.4 2.3 2.7 4.7 9.0
n = 104 0.9 1.1 1.5 1.7 2.6 3.0 5.0 8.3
n = 105 0.1 0.6 0.8 1.3 2.0 2.3 4.7 9.9
n = 106 0.9 1.5 2.2 2.8 4.0 4.1 7.7 13.7

Table 2. Multivariate outlier nomination/detection (multithreading): Ratio of average com-
putation time. A ratio > 1.0 (< 1.0) implies that wBACON() is faster (slower) than robustX
::BACON()

For very small data sets (e.g., n = 103 and p = 5), wBACON() is slower because parallelization
leads to computation overhead that dominates computation time. Clearly, it would be more
efficient to specify only 1 or 2 threads for such small data sets. However, the differences in
computation time are hardly noticeable to the user (0.08 vs. 0.14 seconds). For larger data
sets (in terms of number of variables and observations), wBACON() outperforms robustX::
BACON(); see Table 2. For instance, wBACON() is 13.7 times faster for the setup p = 200
and n = 106. The differences in computation time between the two implementations become
larger as we increase n or p.
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Appendix

Consider the Gaussian mixture distribution G = (1 − ϵ) · N(0 · 1p, Ip) + ϵ · N(4 · 1p, Ip),
where ϵ = 0.05 (amount of contamination), N is the cumulative distribution function of the
p-variate Gaussian distribution, Ip and 1p are, respectively, the (p × p) identity matrix and
the p-vector of ones. We generate the (⌊ϵn⌋ × p) matrix Xgood of “good” observations from
the N(0 · 1p, Ip) distribution, where n denotes the sample size. The matrix Xbad consisting
of ⌈(1− ϵ)n⌉ “bad” observations is generated from the N(4 · 1p, Ip) distribution.
For the regression analysis, we generate the vectors of the response variable ygood = Xgood1p+
e and ybad = Xbad(10 ·1p)+e, where e is a random error with standard Gaussian distribution.
In the simulation, y is regressed on X, where y = (yTgood, y

T
bad)

T and X = (XT
good, X

T
bad)

T .
Computing environment: R version 3.6.3 (x86_64-pc-linux-gnu, 64 bit, Ubuntu 20.04.2 LTS),
Intel Core i7-10700K CPU (8 cores, 16 threads), 3.80 GHz base clock.
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