
Methodological and Implementation Details on the Weighted
BACON Algorithms

Tobias Schoch

University of Applied Sciences Northwestern Switzerland FHNW
School of Business, Riggenbachstrasse 16, CH-4600 Olten

tobias.schoch@fhnw.ch

May 21, 2021

Abstract. Billor et al. (2000, Comput. Stat. Data Anal.) proposed the BACON algorithms for mul-
tivariate outlier detection and robust linear regression. Béguin and Hulliger (2008, Surv. Methodol.)
extended the outlier detection method to weighted and incomplete data problems. Both methods are
implemented in the R packages, respectively, robustX and modi. We suggest a computationally
efficient implementation in the C language. Efficiency is achieved by using a weighted quantile based
on the Quicksort algorithm, partial sorting in place of full sorting, reuse of computed estimates, and
most importantly an up-/downdating scheme for the Cholesky and QR factorizations. The computa-
tional costs of up-/downdating are far less than recomputing the entire decomposition repeatedly.

MSC2020. 62D05, 62H12, 62J05.

1. Introduction

Outlier detection and robust regression are computationally hard problems. This is all the more true
when the number of variables and observations grow rapidly. Among all candidate methods, the BA-
CON (blocked adaptive computationally efficient outlier nominators) algorithm of Billor, Hadi, and
Vellemann (2000) has favorable computational characteristics as it requires only a few model evalua-
tion irrespective of the sample size. This makes it a superior algorithm for big data applications.

The BACON algorithms for multivariate outliers detection and robust linear regression are im-
plemented in the R package robustX (Maechler, Stahel, Turner, Oetliker, and Schoch, 2021). The
algorithms do not take the sampling weights into account. The multivariate outlier detection method of
Béguin and Hulliger (2008) that is capable of dealing with sampling weights and missing values can
be found in the R package modi (Hulliger and Sterchi, 2020). Both implementations are written in the
R statistical software (R Development Core Team, 2020).

In methodological terms, the BACON algorithms consist of the application of series of straight-
forward statistical estimation methods like coordinate-wise means, covariance matrix, Mahalanobis
distances, or least squares regression on subsets of the data. A naive implementation would call the
estimation methods iteratively on a sequence of growing subsets of the data without bothering too
much with re-using or updating existing blocks of data. This leads to an excessively large number of

1

copy/ modify operations and (unnecessary) re-computations. Altogether, the implementation will be
computationally inefficient.

In this paper, we discuss the methodological details of a computationally efficient implementation
of BACON algorithms. The techniques used to achieve this are (to name a few):

• an implementation of the weighted quantile based on the C.A.R. Hoare Select (FIND, Quicksort)
algorithm with Bentley–McIlroy partitioning,

• a partial sorting device (based on Quicksort),

• reuse of computed estimates,

• up-/downdating Cholesky and QR factorizations.

The computational costs of the up-/downdating schemes for the Cholesky and QR factorizations are far
less than recomputing the entire decomposition repeatedly.

The functions are implemented in the C language with an API for the R statistical software. In
comparison with the existing implementations in the R software, our implementations is better suited
for very large datasets.

The remainder of the paper is organized as follows. Section 2 presents the BACON algorithms in
a nutshell. The BACON algorithm for multivariate outlier detection is studied in more detail in Section
3. The BACON algorithm for robust linear regression is studied in Section 4. In Appendix A, the
weighted quantile and partial sorting device are documented.

2. The BACON algorithms in a nutshell

The BACON algorithms assume that the underlying model is an appropriate description of the non-
outlying observations (Billor et al., 2000). More precisely,

• the outlier nomination method assumes that the “good” data have (roughly) an elliptically con-
toured distribution (this includes the Gaussian distribution as a special case);

• the regression method assumes that the non-outlying (“good”) data are described by a linear (ho-
moscedastic) regression model and that the independent variables (having removed the regression
intercept/constant, if there is a constant) follow (roughly) an elliptically contoured distribution.

“Although the algorithms will often do something reasonable even when these assumptions are vio-
lated, it is hard to say what the results mean.” (Billor et al., 2000, p. 290)

It is strongly recommended that the structure of the data be examined and whether the assumptions
made about the “good” observations are reasonable. In line with Billor et al. (2000, p. 290), we use
the term outlier “nomination” rather than “detection” to highlight that algorithms should not go beyond
nominating observations as potential outliers; see also Béguin and Hulliger (2008). It is left to the
analyst to finally label outlying observations as such.

2

Suppose that the data at hand are n observations on p real-valued variables, p < n. The data are
represented as the (n× p) matrixX = (x1, . . . ,xn)T , xi ∈ Rp, and are known to be contaminated by
outliers. But it is not known which observations are outliers and how many observations are outliers.

Let us fix some notation. Denote by S = {1, . . . , n} the ordered set of row indices of X . Fix a
set S such that S ⊆ S . We write X|S to mean the row-wise restriction of X to the rows indexed by
the elements of set S. For instance, let S = {1, 3}; then X|S is the (2× p) matrix that consists of the
rows 1 and 3 of X . The complement of S is denoted by Sc. The cardinality of a set S is denoted by
|S|. For ease of notation, we writeX|TS instead of (X|S)T for the transpose of the restricted matrix.

2.1. Multivariate outlier detection

Following Billor et al. (2000), the BACON algorithm for multivariate outlier detection consists of two
algorithms (called Algorithm 2 and 3), which are applied after another.

Algorithm 2. The BACON algorithm is initialized by the computation of the center c of the data;
see left panel in Fig. 1; there, we have c = (c1, c2)

T . In order to achieve good overall robustness, the
center c is computed as the component-wise median (Billor et al., 2000, see “Version 2” of Algorihm
2). Next, the distances di = ‖xi − c‖2 about the center are computed for all i = 1, . . . , n, where ‖ · ‖2
denotes the Euclidean norm. Then, we select the m observations with the smallest di’s into the initial
basic subset S, where m = cp and {c ∈ N : c < bn/pc} is a tuning constant chosen by the user.

c1

c2

c1

c2

c∗1

c∗2

Figure 1: Schematic illustration

Algorithm 3.

Step 1) ForX|S , we compute

• the component-wise arithmetic mean µS ;

• the covariance/ scatter matrix ΣS ;

• if ΣS is singular, we keep adding observations to the subset S until ΣS is nonsingular.
The observations to be added are taken from the pool of the observations in the set S \S;
in particular, we add those observations with the smallest di’s.

3

Step 2) For all i = 1, . . . , n, compute the Mahalanobis distances

di =
√

(xi − µS)TΣ−1S (xi − µS) (1)

and select all observations into the new subset S∗ (see right panel in Fig. 1) whose Mahalanobis
distances di are smaller than the criterion cnpχ2

α,p, where χ2
α,p is the 1− α quantile of the chi-

square distribution with p degrees of freedom, and

cnp = 1 +
p+ 1

n− p
+

2

n− 1− 3p
. (2)

Step 3) If S = S∗ we terminate the updating scheme; otherwise, we let S ← S∗ and jump to Step 1).

Remarks.

i) Upon termination, the set of outliers is given by S \ S∗.

ii) The above algorithm generates a sequence of subsets, say, {Si : i = 0, 1, . . .}. The last subset
in the sequence is the final subset of “outlier-free” observations. It is important to note that the
subsets in the sequence are not nested; i.e., for any i, it is not guaranteed that Si ⊂ Si+1 (although
eventually it will happen that Si+1 is equal to Si; hence, the algorithm terminates).

iii) The algorithm is initialized at the center c, which is computed as the component-wise median (cf.
“Version 2” of Algorithm 2). As a consequence, the estimators of location and scatter are not affine
equivariant; still, this proposal leads to nearly affine equivariant estimators (Billor et al., 2000). An
estimator T is affine equivariant if and only if

T (AX + b) = AT (X) + b,

for any nonsingular (m× n) matrixA and any n-vector b.

iv) “Version 1” of Algorithm 2 of Billor et al. (2000) is affine equivariant by design as it takes the
component-wise arithmetic means as c. But this choice has a considerably lower breakdown point.

v) The breakdown point of “Version 2” of the BACON algorithm is approximately 40% (Billor et al.,
2000).

vi) Béguin and Hulliger (2008) generalized the BACON algorithms for outlier detection to account
for sampling weights (survey data) and missing values.

2.2. Robust linear regression

Denote by X the (n × p) design matrix with full column rank p (p < n). The response variable is
written as the (column) n-vector y. We want to compute the least squares estimator β ∈ Rp

β = (XTX)−1XTy.

4

(Note: we will introduce the sampling weights later).
In the presence of outliers in X and/or y, the least squares methods is (heavily) biased and/or

inefficient as an estimator of the population regression parameter. Therefore, Billor et al. (2000) pro-
posed to search for a subset S that is outlier-free and then to consider estimating βS , which is defined
as

βS = (X|TSX|S)−1X|TSy|S . (3)

Following Billor et al. (2000), the BACON robust linear regression method consists of Algorithm 4 and
5, which are applied after another. The two algorithms are sketched subsequently.

Algorithm 4.

Step 1) Apply Algorithm 3 to the X data to obtain the subset S of outlier-free observations (having
removed the column of X that contains the regression constant, if there is a constant). If
rank(X|S) 6= p, we keep adding observations to S untilX|S is of full rank. The observations
to be added are taken from the pool of the observations in the set S \ S, whose Mahalanobis
distances are smallest.

Step 2) Solve (3) for βS , and compute the residual scale σS = ‖rTr‖2/(‖S‖ − p), where r = y|S −
X|SβS is the least squares residual. Compute tS = (t1, . . . , tn)T , where

ti =

yi − xTi βS
σS

√
1− xTi (XT |SX|S)−1xi

if i ∈ S,

yi + xTi βS

σS

√
1 + xTi (XT |SX|S)−1xi

otherwise.
(4)

Note. On the subset S, ti is the scaled (absolute) least squares residual, whereas on the set
S \ S, ti is the scaled (absolute) prediction error.

Step 3) Let k ← p+ 1

Step 4) Select the k observations whose ti’s are smallest (in absolute value) into the subset S. If
rank(X|S) 6= p, we keep adding observations from S \ S (with the smallest ti’s) to S until
X|S is of full rank. The set S is called the initial basic subset.

Step 5) If k ≤ m, let k ← k + 1 and go to Step 4); otherwise terminate.

Algorithm 4 generates a sequence of subsets, say, {Si : 0 = 1, . . .}. It is important to note that
the subsets in the sequence are not nested.

Algorithm 5.

Step 1) Use Algorithm 4 to select a subset S0 of size m = c · p, where the constant c can be chosen by
the user; Billor et al. (2000) recommend a value of 4 or 5.

Step 2) For S0, compute the ti’s in (4) and select a new subset, say, S1 that consists of all observations
whose ti’s are (in absolute value) smaller than the α/2(|S1| + 1) quantile of the Student t-

5

distribution with |S1| − p degrees of freedom, formally

tα/2(|S1|+1), |S1|−p. (5)

Step 3) If S0 6= S1, let S1 ← S0 and go to Step 2); otherwise terminate.

Remark. Upon termination, Algorithm 5 provides the robust estimate βS of the population regression
parameter β, the regression scale estimate σS , and the subset of outlier-free observations.

3. Weighted BACON algorithm

In this section, we study the weighted BACON algorithm for multivariate outlier detection and robust
estimation of the center and the covariance matrix.

3.1. Location and scatter

Let S ⊆ S . Denote the weighted column means ofX|S (Hajek estimator) by

µS =
1

WS

∑
i∈S

wixi, where WS =
∑
i∈S

wi, (6)

and define the matrix ZS (which is equal toX|S centered or shifted by µS and appropriately scaled)

ZS =

√
w|S

WS − 1
◦
(
X|S − 1cTS

)
, (7)

where 1 is the vector of ones (of size |S|), ◦ denotes the Hadamard product, and
√
· is applied element

by element. Note that the Gramian matrix ZT
SZS is equal to the scatter/ covariance matrix

ZSZ
T
S =

1

WS − 1

∑
i∈S

wi(xi − µS)(xi − µS)T =: ΣS . (8)

3.2. Mahalanobis distance

The scatter matrix ΣS is required to be nonsingular, for otherwise we cannot compute the Mahalanobis
distances in (1). There are several ways to check whether ΣS is nonsingular. We prefer a method that is
computationally cheap for the following reason. If ΣS appears to be singular, we stop the computations
on the current subset. Then, we keep adding observations to the set S until ΣS is nonsingular. Because
the computational costs associated with growing the set S are so small, it is not economical putting too
much effort into a sophisticated method to check whether the scatter matrix is singular.

We adopt a two-stage approach.

(1) First, we count the number of positive elements on the diagonal of ΣS (in floating-point arithmetic

6

terms),

r̂pd =

p∑
i=1

1
{

(sii) > ε
}
, (sij) ≡ ΣS , (9)

where 1{·} is the indicator function, and ε is the machine epsilon (double precision). If r̂pd 6= p,
the computations are stopped and we switch to the process of enlarging the subset S until r̂pd = p.

This approach is very effective as it catches the most common case of nonsingularity (non positive-
definiteness) while its computational costs are negligible. To see this, suppose a subset S such that
one column (variable) of X|S is constant; hence, the variance is zero (e.g. grouped data), which
implies that ΣS is singular.

(2) In the second step, we compute the factorization

ΣS = LSL
T
S . (10)

If ΣS is positive definite, the factorization in (10) is the (unique) Cholesky decomposition, where
L is a lower triangular matrix with positive diagonal elements. If, however, ΣS is positive semi-
definite it still has a decomposition of this form but the diagonal elements of L can be zero; see
e.g. Golub and van Loan (1996, Chap. 4.2.8). Now, our approach is the following.

a) We compute the Cholesky decomposition in (10) using the LAPACK: dpotrf subroutine (An-
derson et al., 1999).

b) If ΣS is indeed positive semi-definite, the Cholesky decomposition can (or will) break down
because a zero (or negative) pivot is encountered at some stage of the factorization. The subrou-
tine dpotrf has an error flag (see argument INFO) that indicates when the factorization could
not be completed because a leading minor of the matrix is not positive definite. If this flag has
been raised, ΣS is regarded as singular and we switch to the process of enlarging the subset S
until ΣS is nonsingular.

c) Relying on the error flag of dpotrf alone is too optimistic. Therefore, we also compute an
estimate of the number of positive diagonal elements of LS ,

r̂ =

p∑
i=1

1
{
(lii) > δ

}
, (lij) ≡ LS , (11)

where δ is a numerical constant. We pick a rather conservative choice for δ, e.g., δ = ε1/4,
where ε is the machine epsilon (double precision). If r̂ 6= p, ΣS is regarded as singular and we
switch to the process of enlarging the subset S until ΣS is nonsingular.

Remarks.

i) Our two-stage approach is not “fully waterproof” but it is computationally inexpensive.

ii) In place of the two-stage approach, we could determine the numerical rank of ZS by the singular
value decomposition (SVD). That is, the numerical rank r̂ is computed as the largest integer in
(0, . . . , p) for which σr ≥ nδσ1, where δ is a tolerance criterion (e.g. δ = 1 · 10−16) and σ1 ≥

7

· · · ≥ σp are the singular values (Golub and van Loan, 1996, Chap. 2.5.5). Alternatively, we could
use a rank-revealing Cholesky factorization with complete column pivoting (LAPACK: dpstrf,
Anderson et al., 1999) of ΣS to determine its numerical rank. However, both approaches are
computationally quite expensive. Another approach would be to check whether ΣS is positive
definite by checking if all of its eigenvalues of are positive (in exact arithmetic). In floating-
point arithmetic, we compute the eigenvalues (LAPACK: dsyev, Anderson et al., 1999) and then
proceed as in the SVD-based. However, this approach is computationally still quite expensive.

If ΣS is nonsingular, we solve the triangular system of linear equations

LSAS = ZS (12)

for the (n × p) matrix AS by forward substitution (BLAS: dtrsm, Blackford et al., 2002), where LS
and ZS are defined in, respectively, (10) and (7). The Mahalanobis distance in (1) can be efficiently
computed (for all i = 1, . . . , n) by

di =

√√√√ p∑
j=1

(aij)2, (aij) ≡ AS . (13)

3.3. Algorithms

The following display shows pseudo-code of a weighted variant of Algorithm 2 of Billor et al. (2000).

Algorithm 2.

Require: X , w, m

1: ζ ← WEIGHTED_MEDIAN(X,w) . component-wise weighted median

2: d← (d1, . . . , dn)T , where di = ‖xi − ζ‖2
3: S ← SELECT_SUBSET(d,m) . select the set with the m smallest di’s

4: while m < n do
5: µS ← WEIGHTED_MEAN (X|S ,w|S) . Eq. (6)

6: ΣS ← WEIGHTED_SCATTER (X|S ,w|S ,µS) . Eqs. (7) and (8)

7: if r̂pd = p then . Eq. (9)

8: LS ← CHOLESKY_DECOMPOSITION (ΣS) . Eq. (10)

9: if r̂ = p then . Eq. (11)

10: break
11: end if
12: end if
13: m← m+ 1 . add obs. to the subset

14: S ← S ∪ INDEX
(
d[m]

)
. INDEX returns the indices

15: end while
16: return S, m . return initial basic subset and its size

8

Remarks.

i) WEIGHTED_MEDIAN(X,w) computes the weighted median for each column ofX . The weighted
median is implemented as a weighted Select (FIND, Quickselect) algorithm; see Appendix A.

ii) SELECT_SUBSET(d,m) partially sorts the elements of d such that the first m elements are in their
final (sorted) position. The indices of the first m elements are selected into the subset, which is
returned; see Appendix A for more details.

iii) In the while loop, we keep adding observations to the subset until the scatter matrix ΣS is
nonsingular.

The following display shows pseudo-code of a weighted variant of Algorithm 3 of Billor et al. (2000).

Algorithm 3.

Require: X , w, S, m from ALGORITHM 2 . initial basic subset and its size

1: S1 ← {} . initialize S1 as the empty set

2: while m < n do
3: µS ← WEIGHTEED_MEAN (X|S , w|S) . Eq. (6)

4: ΣS ← WEIGHTED_SCATTER (X|S , w|S) . Eqs. (7) and (8)

5: LS ← CHOLESKY_DECOMPOSITION(ΣS) . Eq. (10)

6: dS = (d1, . . . , dn)T ← MAHALANOBIS_DISTANCE
(
X,L, S

)
7: S1 ← INDEX

(
dS < cnp · χ2

p,α

)
. new subset

8: m← |S1|
9: if S = S1 then

10: break
11: end if
12: S ← S1

13: end while
14: return µS , ΣS , S, m

Remarks.

i) The return values of Algorithm 3 are the final subset S, its size m, the weighted mean µS , and the
weighted scatter/covariance matrix ΣS on the subset S.

ii) The function MAHALANOBIS_DISTANCE at Line 6 computes the Mahalanobis distances for all
i ∈ S ; it solves (12) and then computes the di’s defined in (13).

iii) The chi-square criterion cnp · χ2
p,α at Line 7 is defined in (2).

9

4. Weighted BACON regression algorithm

Denote by X the (n × p) design matrix with full column rank p (p < n). The response variable is
written as the (column) n-vector y. Fix S such that S ⊆ S and |S| ≥ p. Consider the least squares
(LS) estimator βS ∈ Rp which solves the normal equations

X|TS X|S βS = X|TS y|S . (14)

Note. The weighted least squares estimator obtains by replacing X̃|S and ỹ|S in (14) with,
respectively, X̃|S = (

√
w ◦X)|S and ỹ|S = (

√
w ◦ y)|S , where

√
· is applied element by element,

and ◦ denotes the Hadamard product.
The solution of the normal equations in (14) is known to be numerically unstable (Golub and

van Loan, 1996, Chap. 5.3). Therefore, we consider solving the LS problem by the QR factorization,
which is stable but computationally rather expensive. Suppose that X|S has full column rank. Define
the “thin” QR factorization ofX|S (Golub and van Loan, 1996, Chap. 5.3)

X|S = QR =
(
Q1
S , Q

2
S

)(R1
S

0S

)
= Q1

SR
1
S , (15)

whereR1
S is an (p× p) upper triangular matrix andQ1

S is an (|S| × p) orthogonal matrix; the matrices
0S and Q2

S are of conformable size but of no further interest. The parameter βS solves the triangular
system

R1
S βS = (Q1

S)T y|S . (16)

A key characteristic of the BACON algorithm for regression is that the subset S is enlarged over
several steps. To see this, let the design matrix X be of dimension n = 1 000 with p = 4 variables. In
the first step (see Section 2), Algorithm 3 is called on X . We suppose that the resulting initial subset
is of size 700. In step 2, we apply Algorithm 4 to select k ← p + 1 observations with the smallest
distances. Then, we keep growing k ← k + 1 as long as k ≤ m, where m = cp and c is typically
chosen to be 4 or 5. Let’s take c = 5. Then, we observe the following sequence of subset sizes

700, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

until we can start with Algorithm 5. The computation of the QR factorization for each instance along
this sequence is computationally quite expensive. Fortunately, an updating scheme for the QR factor-
ization is available such that we do not have to re-compute the entire factorization over and over. The
computational costs of the updating scheme are far less than recomputing the entire decomposition.

4.1. Up- and dating schemes

We consider up- and downdating separately. For ease of reading, we study the un-weighted regression
problem and point out what needs to be modified for the weighted problem.

10

4.1.1. Updating

Consider the subset S and the QR factorization of X|S in (15) X|S = Q1
SR

1
S . Suppose that the

subset S is enlarged by one element. To be specific, we shall assume that the kth element is added to
the subset; hence, S+ = S ∪ {k}. The design matrix associated with the enlarged subset obtains by
appending the kth row ofX toX|S ,

X|S+ =

[
X|S
xTk

]
.

Let G1, . . . ,Gp denote Givens rotation matrices (i.e., planar rotation matrices); see e.g. Golub
and van Loan (1996, Chap. 5.1.8). Premultiplication by a Givens rotation matrix amounts to a counter-
clockwise rotation. In particular, the rotation matrices can be determined such that

GT
1 · · ·GT

pH = R1
S (17)

is an upper triangular matrix; H is an upper Hessenberg matrix. It then follows that (Golub and van
Loan, 1996, Chap. 12.5.3) the QR factorization ofX|S+ isX|S+ = Q1

S+
R1
S+

, where

Q1
S+

= diag
(
1,Q1

S

)
G1 · · ·Gp. (18)

In other words, the identities (17) and (18) describe a scheme for updating the matrices R1
S and Q1

S

to get R1
S+

and Q1
S+

. There exists a similar method to downdate the QR factorization (i.e., removing
a row from X|S). The downdating scheme is more intricate as it can break down when the matrix
becomes indefinite. We shall discuss this later.

Updating R1
S is straightforward and inexpensive (order p2/2 flops). In contrast, updating Q1

S is
more expensive (order n2 flops). Therefore, we take a different approach. Our approach is based on
the observation that R1

S = LTS , where LS is a lower triangular matrix, i.e. the Cholesky factor of the
Gramian matrix X|TSX|S . So, we initialize the regression estimator by the QR factorization, and then
we switch to a Cholesky-based regression approach,

LS L
T
S βS = X|TS y|S ⇐⇒ LS uS = X|TS y|S ,

where uS = LTS βS . For the Cholesky-based approach, we solve

βS ← FORWARD_SOLVE
(
LS , FORWARD_SOLVE

(
LS , (X

Ty)|S
))
. (19)

The Cholesky regression approach is computationally less expensive than the QR aproach. Its flop
counts is of order p2(n+ p/3), whereas the QR algorithm requires 2p2(n− p/3) flops; see e.g. Golub
and van Loan (1996, Chap. 5.3).

For the Cholesky-based approach, the updating scheme is as follows (let S+ = S ∪ {k}). First,
we compute, the rank-one update ofX|TS y|S ,

X|TS+
yS+ = X|TS y|S + ykx

T
k . (20)

For the weighted regression-problem, the r.h.s. has to be pre-multiplied by wk. Second, the Cholesky

11

factor LS is updated by the following function (Stewart, 1998, p. 340).

1: function CHOL_UPDATE(L,x)

2: for i = 1, . . . , p do
3: SETUP_ROTATION

(
LS [i, i],x[i], c, s

)
4: APPLY_ROTATION

(
LS [i, i+ 1 : p],x[i+ 1 : p], c, s

)
5: end for
6: end function

where LS [i, j] denotes the element on the ith row and in the jth column of LS . The functions
SETUP_ROTATION and APPLY_ROTATION are defined as follows (Stewart, 1998, Algorithms 1.6 and
1.7).

1: function SETUP_ROTATION(a, b, c, s)

2: τ ← |a|+ |b|
3: if τ ≤ ε then
4: c← 1; s← 0

5: return
6: end if
7: ν ← τ

√
(a/τ)2 + (b/τ)2

8: c← a/ν; s← b/ν

9: a← ν; b← 0

10: end function

1: function APPLY_ROTATION (c, s,x,y)

2: t← cx+ sy

3: y ← cy − sx
4: x← t

5: end function

Remarks.

i) The scaling factor τ in function SETUP_ROTATION is introduced to avoid overflows and make
underflows harmless; see Stewart (1998, p. 273) and Golub and van Loan (1996, Chap. 5.1.8).

ii) The C library math.h provides (since standard C99) the dedicated function hypot(x,y) for the
computation of

√
x2 + y2 (see Line 7 of SETUP_ROTATION) without undue overflow or underflow

at intermediate stages of the computation.

iii) The complexity of function CHOL_UPDATE is of order p2/2 flops (Stewart, 1998, p. 340).

12

4.1.2. Downdating scheme

The downdating scheme is more intricate as it can break down when the matrix becomes indefinite. Let
S− = S \ {k}. The rank-one downdate ofX|TS y|S is unproblematic and is given by

X|TS− yS− = X|TS y|S − ykxTk . (21)

There exist three candidate algorithms for downdating the Cholesky factor L (Stewart, 1998, p.
355): Saunder‘s method, the methods of mixed rotation, and the methods of hyperbolic rotations. We
use the method of mixed rotations, an implementation of which is the following algorithm (Stewart,
1998, Algorithm 3.9).

1: function CHOL_DOWNDATE(L,x)

2: for i = 1, . . . , p do
3: a← L[i, i]2 − x[i]2

4: if a < ε then
5: return Error

6: else
7: b←

√
a

8: end if
9: c← b/L[i, i]

10: s← x[i]/L[i, i]

11: L[i, i]← b

12: L[i, i+ 1 : p]←
(
L[i, i+ 1 : p]− sx[i+ 1 : p]

)
/c

13: x[i+ 1 : p]← cx[i+ 1 : p]− sL[i, i+ 1 : p]

14: end for
15: end function

Remarks.
1. The constant ε (see Line 5 in CHOL_DOWNDATE) is taken to be the machine double epsilon.

2. The function CHOL_DOWNDATE returns an ERROR if downdating is not feasible (see line 5).
This happens when the matrix LTL− xxT associated with downdating is not positive definite.

3. It might be thought that the appearance of a small c leads to numerical instability (see Line
12). But this is not the case as Stewart (1998, p. 346) shows, unless the problem is itself ill-
conditioned.

4. Stewart (1998, p. 352) shows that the downdating scheme used in CHOL_DOWNDATE has some
nice numerical properties; in particular, it is relationally stable (whereas the method of hyperbolic
rotations is not).

5. The order of flops count of the functions CHOL_DOWNDATE and CHOL_UPDATE is the same
(Stewart, 1998, p. 346).

13

4.1.3. Application of the up- and downdating schemes

The functions CHOL_UPDATE and CHOL_DOWNDATE compute an update of the Cholesky factor when
one row of the design matrix is added or removed. Let S0 and S1 be subsets. The following function
(where the weights array has been suppressed for ease of reading) takes care of all up-/ and downdates
that result when we transition from set S0 to set S1. It returns up-/downdates of LS andXT

S yS .

1: function UPDATE
(
LS0 ,X,y, S0, S1

)
2: U ← S0 \ S1 6= {} . identify updates

3: D ← S1 \ S0 6= {} . identify downdates

4: for u ∈ U do
5: LS1 ← CHOL_UPDATE

(
LS0 ,X|S0\S1

)
6: (XTy)|S1 ← (XTy)|S0 + (XTy)|S0\S1

. Eq. (20)

7: end for
8: for u ∈ U do
9: LS1 ← CHOL_DOWNDATE

(
LS0 ,X|S1\S0

)
. returns ERROR if downdating breaks

10: if ERROR then
11: return ERROR

12: end if
13: (XTy)|S1 ← (XTy)|S0 − (XTy)|S1\S0

. Eq. (21)

14: end for
15: return LS1 , (XTy)|S1

16: end function

Remark. The “mechanics” underlying the function UPDATE are trivial. But it is important that the
updates are computed in the first place, followed by the downdates. Otherwise we would experience
too many breakdowns of the downdating algorithm.

4.2. Residuals, “hat” matrix, and ti’s

Define the least squares residuals by

r(βS) =
(
r1(βS), . . . , rn(βS)

)T
= y −XβS (22)

for all i = 1, . . . , n and let

σS =

∥∥ r|S(βS)
∥∥
2√

|S| − p
(23)

denote the estimate of the residual scale (on the restriction). For the weighted regression, we have

σS =

∥∥ r̃|S(βS)
∥∥
2√∑

i∈S wi − p
, (24)

14

where r̃(βS) = ỹ − X̃βS .
The “hat” matrix of the LS estimate, i.e., the orthogonal projection matrix onto the column space

ofX|S , is given byHS = QS1Q
T
S1. The diagonal elements ofHS are called leverages. The extension

of the projection matrix onto column space of the entire matrixX is given by

H = AAT with A ≡ (aij) = XR−1S1 ,

and the “extended” leverages for all 1, . . . , n observations are computed as

h = (h1, . . . , hn)T = diag(H) =

p∑
j=1

(aij)
2. (25)

For the weighted regression, the weighted “hat” matrix is defined as (Li and Valliant, 2009)

hw = diag
{
X
(
X̃|TS X̃|S

)−1
XTW

}
, (26)

whereW = diag(w). It can be computed efficiently by

hw = h∗ ◦w, (27)

where h∗ obtains from (25) with (aij) ≡ A = XR̃−1S1 , where R̃S1 is the R1 matrix of the “thin” QR
factorization of X̃|S .

The distances ti of Billor et al. (2000, p. 288) – see also Eq. (4) – are computed for all i = 1, . . . , n

by

ti(βS) =

|ri(βS)|
σS
√

1− hi
if i ∈ S,

|ri(βS)|
σS
√

1 + hi
otherwise,

(28)

where ri(βS) is defined in (22) and the hi’s are defined in (25). The following function computes the
ti’s.

1: function COMPUTE_TI(L,X|S ,Xy, S, p)

2: βS ← FORWARD_SOLVE
(
LS , FORWARD_SOLVE(LS , (X

Ty)|S
)

. BLAS: dtrsm, Eq. (19)

3: r ← y −XβS . LAPACK: dgemv

4: σS ←
∥∥r|TS (βS)r|S(βS)

∥∥
2
/
√
|S| − p . Eq. (23)

5: L−1S ← INVERT_TRIANGULAR_MATRIX(LS) . LAPACK: dtrtri

6: A← L−TS X . BLAS: dtrmm

7: h←
∑

j=1,...,p(a
2
ij), where (aij) ≡ A . Eq. (25)

8: t←
(
t1(βS), . . . , tn(βS)

)T
. Eq. (28)

9: return t
10: end function

15

Remark. For the weighted regression, Equations (23) and (25) referred to in the Lines 4 and 7 of
COMPUTE_TI must be replaced by, respectively, (24) and (27).

4.3. Algorithms

The following display shows pseudo-code of a weighted variant of Algorithm 4 of Billor et al. (2000).

Algorithm 4.

Require: dsort
1: t← COMPUTE_TI

(
LS0 ,X|S0 ,X,y, S0, p

)
2: m← p+ 1

3: S1 ← SELECT_SUBSET(dsort,m)

4: while |S1| ≤ c · p do
5: LS1 , (XTy)|S1 ← UPDATE

(
LS0 , (X

Ty)|S0 , S0, S1
)

. update Cholesky factor

6: if rank(LS1) 6= p then . check for rank deficiency

7: while |S1| < c · p do
8: m← m+ 1 . add obs. to S1
9: S1 ← S1∪ INDEX (dsort[m]) . INDEX returns the index

10: LS1 , (XTy)|S1 ← UPDATE
(
LS0 , (X

Ty)|S0 , S0, S1
)

11: if rank(LS1) = p then
12: break . stop adding obs.

13: end if
14: end while
15: end if
16: t← COMPUTE_TI

(
LS1 ,X|S0 ,X,y, S1, p

)
17: S1 ← SELECT_SUBSET(t,m) . update the set

18: S0 ← S1; m← m+ 1 . prepare the next iteration

19: end while
20: return S, m

Remarks.

1) For ease of reading, ALGORITHM 4 is displayed without the sampling weights.

2) The constant c (supplied by the user) determines the iterations of the while loop.

The following display shows pseudo-code of a weighted variant of Algorithm 5 of Billor et al. (2000).

Algorithm 5.

Require: m and S from ALGORITHM 4

1: i← 1; S1 ← {}

16

2: while i ≤ maxiter do
3: (βS , L

T
S)← REGRESSION (X|S ,y|S) . QR-based least squares, Eq. (16)

4: t← COMPUTE_TI
(
LS ,X|S ,X,y, S, p

)
5: S1 ← SELECT_SUBSET_WHERE

(
t < tα/2(|S1|+1), |S1|−p

)
. Eq. (5)

6: if S1 = S then
7: break
8: end if
9: i← i+ 1; S ← S1 . prepare the next iteration

10: end while

Remarks.

1) On return, ALGORITHM 5 yields a robust estimate of β and σ; and it returns the set S of outlier-free
observations.

2) The REGRESSION function (see Line 3) is based on the QR factorization see (16).

3) For ease of reading, ALGORITHM 5 is displayed without the sampling weights. For the weighted
regression problem, (i) the REGRESSION function in Line 3 is called with the arguments X̃|S and
ỹ|S in place of X|S and y|S ; and (ii) COMPUTE_TI must be adapted for the weights.

17

Appendix

A. Weighted quantile

There exists a large number of different definitions for unweighted sample quantiles. Hyndman and
Fan (1996) discuss nine different definitions. We focus on their second definition, which corresponds
to type 2 in the stats::quantile function of the R statistical software. This definition averages
over discontinuities of the inverse empirical distribution function.

Consider a sample of size n. Let x be an n-vector of real values, and denote by x(i) the ith order
statistic of x (with array indexing: 1..n). The type 2 of the pth sample quantile can be written as

Q(p) =

x(1) if p = 0,
1
2

(
x(i) + x(i+1)

)
if 0 < p < 1 and frac(np) = 0,

x(i+1) if 0 < p < 1 and frac(np) 6= 0,

x(n) if p = 1,

where i = bpnc and frac(x) = x− bxc denotes the fractional part of x.
Let w denote an n-vector of positive weights. Let w(i) denote the weight associated with the

order statistic x(i). A weighted estimator of the pth population quantile is given by

Qw(p) =

x(1) if w(1) < pW,
1
2

(
x(i) + x(i+1)

)
if
∑i

j=1w(j) = pW,

x(i+1) if
∑i

j=1w(j) < pW <
∑i+1

j=1w(k),

where W is the total weight W =
∑n

i=1wi.
The function to compute Qw(p) is WQUANTILE, which is based on a weighted variant of C.A.R.

Hoare’s Quicksort/ Select (FIND) algorithm. Select differs from Quicksort in that it does not do a full
sort. Instead it sorts only the partition of the data where the value to be selected lies. Quicksort/ Select
has some desirable feature (Sedgewick, 1997, p. 303).

i) It is an in-place sorting device;

ii) Quicksort requires only time proportional to n log n for sorting an array of size n. Because Select
does not do a full sort its time complexity is linear in n.

The drawbacks of Quicksort/ Select are (Sedgewick, 1997, p. 303).

i) The sort need not be stable (i.e. the order of equal elements is not preserved).

ii) It may take up to an order of n2 operations in the worst case.

Gurwitz (1990) compared several implementations of the weighted median (partial heapsort,
linear-time fast median, and Quicksort/ Select). He found that Quicksort/ Select was considerably
faster than the other methods. This may come at some surprise since the linear-time fast median has

18

(in theory) the best worst-case run time. However, the overhead associated with finding the median in
subsamples slows the linear-time fast median down.

Some further remarks are in order.

• On arrays with many identical elements, Quicksort with the classical Lomuto or Hoare parti-
tioning scheme may perform rather poorly. It can be substantially improved by using the 3-way
partitioning scheme of Bentley and McIlroy (1993).

• For very small arrays, insertion sort is used because it has less overhead than Quicksort; see e.g.
(Sedgewick, 1997, p. 316).

• The Quicksort algorithm is “easy to describe, and also easy to get wrong” (Bentley and McIlroy,
1993, p. 1252). In the words of Sedgewick (1997, p. 303) Quicksort “is fragile in the sense
that a simple mistake in the implementation can go unnoticed and cause it to perform badly”.
Therefore, we follow the implementation of Bentley and McIlroy (1993) closely.

All functions use C style zero array indexing; a denotes the array of data andw is the array of weights
(of the same dimension); p ∈ [0, 1] determines the quantile of interest.

1: function WQUANTILE(a, w, p)

2: n←LENGTH(a)

3: if p = 0 then
4: WSELECT0 (a, w, 0) . select the smallest value

5: q ← a[0]

6: else if p = 1 then
7: WSELECT0 (a, w, n− 1) . select the largest value

8: q ← a[n− 1]

9: else
10: WQUANT0 (a, w, 0, n− 1, p, q) . compute weighted quantile

11: end if
12: return q
13: end function

Remarks.

i) The function WSELECT0 (see below) selects the kth largest element in the array (k is the last
argument in the function call). The function does not return anything; instead, it sorts/ selects the
kth element into is final sorted position. What remains to be done is the extraction of the respective
element from array a (see lines 5 and 8).

ii) The function WQUANT0 is the workhorse function and is defined as follows. On exit, the function
returns the result in argument q.

1: function WQUANT0(x, w, lo, hi, p, q)

19

2: if lo ≤ hi then
3: q ← x[0] . case: n = 1

4: return
5: end if
6: if hi− lo = 1 then . case: n = 2

7: if (1− p)w[lo] = pw[hi] then
8: q ← (x[lo] + x[hi])/2

9: return
10: else if (p− 1)w[lo] > pw[hi] then
11: q ← x[lo]

12: return
13: else
14: q ← x[hi]

15: return
16: end if
17: end if
18: if hi− lo+ 1 ≤ _n_quickselect then
19: q ← INSERTIONSELECT(x, w, lo, hi, p) . insertion sort

20: end if
21: S ←

∑hi
k=low[k] . total weight

22: i, j ← 0 . initialize sentinels

23: PARTITION_3WAY(x, w, lo, hi, i, j)

24: Slo ←
∑j

k=low[k], Shi ←
∑hi

k=iw[k] . total weight by partition

25: if Slo < pS AND Shi < (1− p)S then . termination criterion

26: q ← x[j + 1]

27: return
28: else
29: if (1− p)Slo > pShi then
30: w[j + 1]← S − Slo
31: WQUANT0(x,w, lo, j + 1, p) . recursion: lower part

32: else
33: w[i− 1]← S − Shi
34: WQUANT0(x,w, i− 1, hi, p) . recursion: upper part

35: end if
36: end if
37: end function

20

Remarks.

i) The lines 6–17 implement the computation of the weighted quantile, which coincides with the type
2 quantile in Hyndman and Fan (1996) if all weights are equal.

ii) If the array has _n_quickselect elements or less, insertion sort is used; see lines 18–20.

iii) The function PARTITION_3WAY implements the Bentley–McIlroy partitioning scheme; see Bent-
ley and McIlroy (1993) or Program 7.5 in Sedgewick (1997, p. 326). It takes the two sentinels, i
and j as arguments and modifies them while partitioning. The two sentinels are required in the pro-
gram (see line 24 and beyond) in order to compute the weight totals associcated with the partitions
(this is a speciality of the weighted algorithm and is not part of the original Bentley–McIlroy imple-
mentation). The function PARTITION_3WAY calls the function CHOOSE_PIVOT [not shown] which
computes the pivotal element by the median-of-three rule (see e.g. Sedgewick, 1997, Chap. 7.5)
if the array has less than _n_ninther elements; otherwise the pivot is determined by Tukey’s
ninther (Bentley and McIlroy, 1993, cf.).

iv) From the lines 31 and 34 we see that the tail recursion only takes place on one partition. This
is a key characteristic of the Select algorithm. In contrast, Quicksort uses tail recursion on both
partitions simultaneously.

1: function WSELECT0(a,w, lo, hi, k)

2: if hi ≤ lo then
3: return
4: end if
5: i, j ← 0 . initialize sentinels

6: PARTITION_3WAY(x, w, lo, hi, i, j)

7: if k ≤ j then
8: WSELECT0(a,w, lo, j, k) . recursion: lower part

9: else if k ≥ i then
10: WSELECT0(a,w, i, hi, k) . recursion: upper part

11: end if
12: end function

Remark. The function WSELECT0 is a one-to-one implementation of the Bentley–McIlroy type Quick-
sort/ Select algorithm except that it also selects/ sorts the array of weights along its way.

References

ANDERSON, E., Z. BAI, C. BISCHOF, L. S. BLACKFORD, J. DEMMEL, J. DONGARRA, J. D.
CROZ, A. GREENHAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN (1999): LA-
PACK Users’ Guide, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 3rd
ed.

21

BÉGUIN, C. AND B. HULLIGER (2008): “The BACON-EEM Algorithm for Multivariate Outlier De-
tection in Incomplete Survey Data,” Survey Methodology, Vol. 34, No. 1, 91–103.

BENTLEY, J. AND D. MCILROY (1993): “Engineering a Sort Function,” Software - Practice and
Experience, 23, 1249–1265.

BILLOR, N., A. S. HADI, AND P. F. VELLEMANN (2000): “BACON: Blocked Adaptive
Computationally-efficient Outlier Nominators,” Computational Statistics and Data Analysis, 34,
279–298.

BLACKFORD, L. S., A. PETITET, R. POZO, K. REMINGTON, R. C. WHALEY, J. DEMMEL, J. DON-
GARRA, I. DUFF, S. HAMMARLING, G. HENRY, M. HEROUX, L. KAUFMAN, AND A. LUMS-
DAINE (2002): “An updated set of basic linear algebra subprograms (BLAS),” ACM Transactions on
Mathematical Software, 28, 135–151.

GOLUB, G. H. AND C. F. VAN LOAN (1996): Matrix Computations, London: The Johns Hopkins
University Press, 3rd ed.

GURWITZ, C. (1990): “Weighted median algorithms for L1 approximation,” BIT Numerical Mathe-
matics, 30, 301–310.

HULLIGER, B. AND M. STERCHI (2020): modi: Multivariate Outlier Detection and Imputation for
Incomplete Survey Data, R package version 0.1-0.

HYNDMAN, R. J. AND Y. FAN (1996): “Sample Quantiles in Statistical Packages,” The American
Statistician, 50, 361–365.

LI, J. AND R. VALLIANT (2009): “Survey weighted hat matrix and leverages,” Survey Methodology,
35, 15–24.

MAECHLER, M., W. A. STAHEL, R. TURNER, U. OETLIKER, AND T. SCHOCH (2021): robustX:
’eXtra’ / ’eXperimental’ Functionality for Robust Statistics, R package version 1.2-5.

R DEVELOPMENT CORE TEAM (2020): R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

SEDGEWICK, R. (1997): Algorithms in C: Parts 1-4, Fundamentals, Data Structures, Sorting, and
Searching, USA: Addison-Wesley Longman Publishing Co., Inc., 3rd ed.

STEWART, G. W. (1998): Matrix Algorithms: Volume 1, Basic Decompositions, vol. 1, Philadelphia:
SIAM Society for Industrial and Applied Mathematics.

22

	Introduction
	The BACON algorithms in a nutshell
	Multivariate outlier detection
	Robust linear regression

	Weighted BACON algorithm
	Location and scatter
	Mahalanobis distance
	Algorithms

	Weighted BACON regression algorithm
	Up- and dating schemes
	Updating
	Downdating scheme
	Application of the up- and downdating schemes

	Residuals, ``hat'' matrix, and ti's
	Algorithms

	Weighted quantile

