Journal of Statistical Software

December 2007, Volume 23, Issue 5. http:/ /www.jstatsoft.org/

Algorithms for Linear Time Series Analysis: With
R Package

A. Ian McLeod Hao Yu Zinovi L. Krougly
University of University of University of
Western Ontario Western Ontario Western Ontario
Abstract

Our ltsa package implements the Durbin-Levinson and Trench algorithms and provides
a general approach to the problems of fitting, forecasting and simulating linear time series
models as well as fitting regression models with linear time series errors. For computational
efficiency both algorithms are implemented in C and interfaced to R. Examples are given
which illustrate the efficiency and accuracy of the algorithms. We provide a second package
FGN which illustrates the use of the ltsa package with fractional Gaussian noise (FGN).
It is hoped that the ltsa will provide a base for further time series software.

Keywords: exact maximum likelihood estimation, forecasting, fractional Gaussian noise, in-
verse symmetric Toeplitz matrix, long memory and the Nile river minima, time series regres-
sion, time series simulation.

1. Introduction

Let z, t = 1,...,n, denote n successive observations from an ergodic covariance stationary
Gaussian time series with autocovariance function (acvf) v, = Cov (24, 2¢—k), k= 0,1,...,n—
1 and mean pu. The general linear process (GLP) may be specified by its autocovariance
sequence, v, or equivalently in terms of its autocorrelation sequence (acf), px = vi/70 or
coefficients 1y, in the infinite moving-average (MA),

Zt :,u+at+1/11at_1 +1/12at_2+..., (1)

where a; ~ NID (0,02) and 3 + 3 + ... < 0o. Notice that both acf and infinite MA model
specifications also require the innovation variance o2. The condition 2 + ¥3 + ... < oo

ensures that the acvf exists and that the GLP is stationary. For sufficiently large (we may

http://www.jstatsoft.org/

2 Algorithms for Linear Time Series Analysis: With R Package

approximate using a MA of order Q,

2t = p+ag+vrag1 +voa2 + .. hgar—q, (2)

Most parametric time series models may be specified so that either the autocovariances, g,
or the MA coefficients, 1y, are functions of a small number of parameters, 5. Both theory and
experience suggests that exact maximum likelihood are preferable to other methods. Please
see the Appendix for further discussion about the GLP.

The covariance matrix of z;, t =1,...,n, denoted by I, is given by I';, = (7;—;), where the
(i, 7)-entry in the n X n matrix is indicated. The minimum-mean-square linear predictor of z;
given zz,s = 1,...,t — 1, where t < n, may be written
2= r—1,121 F oo+ Dr—14-121-1, (3)
where ¢(®) = (pt—1.1,--.,Pt—14—1) is determined by the linear equations
Tyl = (v(1),..., 7)), (4)

and the variance of the predictor is given by

or =7(0) = dr_117(1) — ... — P11y (t — 1). (5)

The covariance determinant is,
k=t—1

= 1T ot (6)
k=0

The Durbin-Levinson algorithm (Golub and Loan 1996, Algorithm 5.7-1) provides an efficient
algorithm for solving Equations (4) and (5) in O(n?) flops. The Trench algorithm (Golub and
Loan 1996; Trench 1964) may be derived by determining the parameters in an AR (n—1) with
autocovariances Yy, . . ., Yn—1 using the Durbin-Levinson algorithm. After the AR coefficients
have been found, T',;! is obtained using the method given by Siddiqui (1958). The Trench
algorithm evaluates the matrix inverse in O(n?) flops. Our R function TrenchInverse uses
the C interface to provide an efficient implementation of the Trench algorithm. On a typical
current PC it takes less than a fraction of a second to evaluate this inverse for matrices
with n = 1000. In the special case of ARMA time series, Zinde-Walsh (1988) obtained an
explicit expression for computing the elements in I';!. This method is suitable for symbolic
computation (McLeod 2005).

The Durbin-Levinson and Trench algorithms provide a convenient method for computing
the exact likelihood function of a general linear Gaussian time series model (Li 1981; Sowell
1992; Brockwell and Davis 1991). In a suitable quantitative programming environment such
as R the likelihood function may be explored graphically, optimized to obtain exact MLE
or integrated for Bayesian estimates (McLeod and Quenneville 2001). For the well-known
ARMA family of time series models there are many algorithms for the computation of the
exact likelihood function which require only O(n) flops per function evaluation Box and
Luceiio (1997, Section 12B) as opposed to the O(n?) flops required in the Durbin-Levinson or
Trench algorithm. For long ARMA time series, a superfast likelihood algorithm requiring only
O(1) flops per log-likelihood evaluation is available (McLeod and Zhang 2007). The advantage
of the Durbin-Levinson or Trench algorithm is that they are more general and with current

Journal of Statistical Software

computing technology, MLE using this algorithm is sufficiently fast provided that n is not too
large. When the ARMA model is extended to include long-memory alternatives such as the
ARFIMA model Brockwell and Davis (1991, Section 13.2) and other ARMA long-memory
extensions (Baillie 1996), the Durbin-Levinson likelihood algorithm is as computationally
efficient as other commonly used exact likelihood methods such as the innovation algorithm
or Kalman filter. A brief discussion and comparison with the superfast algorithm (Chen,
Hurvich, and Lu 2006) is given in Section 2.3.

For linear parametric time series models, it is assumed that the acvf or MA coefficients, ¢, k =
0,1,..., are uniquely determined by p parameters, 8 = (01,...,3,). An example we will
discuss in Section 3 is the fractional Gaussian noise time series model which is characterized
by its autocorrelation function Hipel and McLeod (1994, page 340),

pe= (b + 127 =2k 4 [k —127)/2, 0<H<1. (7)

In addition to fitting and forecasting linear time series models, there are many other applica-
tions for our algorithms in time series analysis including regression with autocorrelated error,
an example of which is discussed in Section 3.4. Another example where the inverse matrix
is needed is for power computations in intervention analysis (McLeod and Vingilis 2005).

2. Main package

2.1. Package overview

The R functions in the ltsa package are shown in Table 1. The TrenchInverse function is
especially useful for efficient exact MLE for regression with autocorrelated error and for the
mean, u, as well for computing and updating forecasts. The log-likelihood may be computed
using either the Durbin-Levinson or Trench algorithm. Residuals are useful for checking
model adequacy and these may also be computed using the Durbin-Levinson algorithm. A
linear time series may be simulated using the Durbin-Levinson recursion, the Davies-Harte
algorithm (Davies and Harte 1987) or another method using the fast Fourier transform that
is given in Section 2.6. In the next section we discuss in more detail TrenchInverse and in
the following sections the remaining functions are discussed. The FGN package discussed in
Section 3 describes how the ltsa functions may be used to develop a package for fractional
Gaussian noise (FGN) time series modeling.

2.2. TrenchlInverse

The TrenchInverse function in R is interfaced to a C function for maximum speed. R memory
management C functions are used so there is complete compatibility with all R platforms. Our
package has been tested in the Windows, Mac OS X and Debian Linux environments.

The function TrenchInverse in this package inverts a positive-definite Toeplitz matrix uti-
lizing the interface provided in R to call a C function. If the matrix is not a positive definite,
a suitable error message is returned.

The TrenchInverse function takes a single matrix argument I',. The built-in R function,

toeplitz, may be used to create this matrix I';, from the vector input (vo,...,7n—1). For
maximum computational efficiency one could work with just this vector, and this is how in fact

4 Algorithms for Linear Time Series Analysis: With R Package

Function Purpose

DHSimulate Simulate using Davies-Harte method
DLAcfToAR AR parameters, variances, pacf
DLLoglikelihood Exact concentrated log-likelihood
DLResiduals Standardized prediction residuals
DLSimulate Simulate using DL recursion

SimGLP Simulate general linear process
tacvfARMA Acvf of ARMA

TrenchInverse Toeplitz matrix inverse

ToeplitzInverseUpdate Updates the inverse
TrenchLoglikelihood Exact concentrated log-likelihood
TrenchMean Exact MLE for mean
TrenchForecast Exact forecast and variance

Table 1: The principal functions in ltsa.

the underlying C algorithm is implemented. As a brief illustrative example of this package, in
the code below, we subtract the product of a Toeplitz matrix and its inverse from the identity
matrix and compute the largest absolute error in the result:

R> phi <- 0.8

R> n <- 1000

R>r <- (1 / (1 - phi~2)) * phi~(0:(n-1))
R> G <- toeplitz(r)

R> Gi <- TrenchInverse(G)

R> id <- matrix(0, nrow=n, ncol=n)

R> diag(id) < -1

R> max(abs(id - GJ*%Gi))

[1] 6.661338e-16

We investigated the timings for the function TrenchInverse and compared them with the
general purpose matrix inverse function solve in R. The timings reported in this section were
done on a 3.6 GHz Pentium 4 PC running Windows XP. For these timings we first generated 25
uniform random values on the interval (—1, 1), denoted by ¢x, k = 1,...,25. These values were

used to generate 25 Toeplitz matrices of the form, T';, = (qﬁ',;_]‘/(l — 2))nxns k=1,...,25,
for each n = 400, 800, 1200, 1600, 2000. The code for generating this table is included in the
package documentation for TrenchInverse. We conclude from Table 2 that TrenchInverse
is significantly faster than solve.

In forecasting applications that we will discuss below in Section 2.5, the successive inverses of
Tpak, k=1,2,..., are needed. Then F;ik may be more efficiently computed using the result
for the inverse of partitioned matrices Graybill (1983, Section 8.3). When k = 1, we obtain,

—— (L, NZ, + T, a) f), (8)

n+1 = f/ e

Journal of Statistical Software

n TrenchInverse solve

400 0.08 0.43
800 0.22 4.57
1200 0.44 18.73
1600 0.74 51.15
2000 1.16 114.30

Table 2: CPU time in seconds for TrenchInverse and the R function solve.

where a = ehh’, e = 1/(y0 — W'T,;'h), h = (y1,...,7)s f = —el';;'h and T, is the n x n

identity matrix. Then Equation (8) may be applied repeatedly to obtain F;}rk, k=1,2,....

In Table 3, we compare the timing and accuracy of the updating approach described in Equa-
tion (8), implemented in ToeplitzInverseUpdate, with direct inversion in TrenchInverse.
The function TrenchInverse is implemented wusing R interface to C, whereas
ToeplitzInverseUpdate is implemented entirely in R. For the comparison we used the
hyperbolic decay autocovariance function v, = 1/(k + 1), & > 0, and computed F;ik,
k=1,2,...,100 and n = 100, 500,1000,2000. As a check, the absolute error for the dif-
ference between the two matrices was computed and it was found to be negligible. The CPU
times are shown in Table 3. The updating algorithm is about 3 to 4 times as fast and this
factor does not seem to change much with n. This might be expected since both algorithms
require O(n?) flops.

2.3. Log-likelihoood

In this section we discuss the functions DLLoglikelihood and TrenchLoglikelihood.

Assuming the mean is known and that z; has been mean-corrected, the log-likelihood function
for parameters (3, 02) given data z = (z1, . .., z,)’ may be written, after dropping the constant
term,

L(3,02) = —% log(det(T')) — 2/T-12/2.)

Letting M, = I',/0? and maximizing L over o2, the concentrated log-likelihood may be

n ToeplitzInverseUpdate TrenchInverse

100 0.09 0.61

500 2.14 7.89

1000 7.85 29.47

2000 33.07 110.00
Table 3: CPU time in seconds for direct computation using TrenchInverse and
ToeplitzInverseUpdate. First the inverse of a matrix of order n is computed and then
the inverses for matrices of orders n+1,...,n+ 100 are computed using TrenchInverse and

ToeplitzInverseUpdate.

6 Algorithms for Linear Time Series Analysis: With R Package

written,
Le(5) = — 5 1og(S(5)/m) — 5 los(gn). (10)

where S(8) = 2’M,, 'z and g,, = det(M,,). Note that L. is unchanged if we simply replace M,
in S(8) and g, by the autocorrelation matrix R, = (p|;—j|)nxn- Using the Durbin-Levinson
algorithm,

S(B) = 3 (et — 22/l (1)

t=1

where %; and o7 are given in Equation (3) and (5). The C functions we developed can evaluate
S(B) as well as log(gy,) using the Durbin-Levinson method as well as the more direct Trench
algorithm. These C functions are interfaced to DLLoglikelihood and TrenchLoglikelihood.
Either can then be used with the optimization functions provided with R to obtain the MLE.
In practice, the Durbin-Levinson is somewhat faster as can be seen in Table 4.

Chen et al. (2006) have implemented a superfast method of solving linear Toeplitz systems of
the form I',z = b, where I'j, is an order n symmetric positive-definite Toeplitz matrix, b is a
known vector of length n and z is the vector of unknowns. With their method, x can be found
in O(nlog5/ 2 n) flops. This provides an alternative and, in principle, computationally more
efficient method of evaluating the loglikelhood. However, unless n is very large, the gain may
not be significant. The time will also depend on the computer and the specific implementation.
Timings they gave for their superfast algorithm, ML-PCG (S-PLUS), are reported in Table 4
and Table 5 along with timings for their S-PLUS version of the Durbin-Levinson method,
ML-Levinson (S-PLUS). Apart from coding, their ML-Levinson (S-PLUS) is equivalent to
our DLLoglikelihood, useC=TRUE. Our timings for the Durbin-Levison algorithm are much
faster and this is no doubt due to language/machine differences. In Table 5 we used a Windows
PC with a 3.6 Ghz Pentium processor and in Table 4 we used a newer PC running Debian
Linnux since our Windows PC could not handle such large matrices. (Chen et al. 2006, Table
4) used a Sun Workstation running the Solaris OS. Tables 4 and 5 suggest that, for many
purposes, the current implementation of our algorithms has a satisfactory performance with
respect to computer time.

The superfast algorithm of Chen et al. (2006) is an iterative method which is more compli-
cated to program and has several other practical limitations. If only the inverse matrix is
required then the Trench algorithm is always computationally more efficient, since the super-
fast algorithm only solves a set of linear equations and does not directly compute the matrix

Algorithm Computer/OS n

10000 15000
DLLoglikelihood, useC=FALSE PC/Linnux 6.11 14.34
DLLoglikelihood, useC=TRUE PC/Linnux 0.52 1.17
TrenchLoglikelihood PC/Linnux 3.73 9.35
ML-Levinson (S-PLUS) Sun/Solaris 168.4 379.8
ML-PCG (S-PLUS) Sun/Solaris 6.3 9.4

Table 4: CPU time in seconds for d = 0.45, n = 10,000 and n = 15, 000.

Journal of Statistical Software

Algorithm Computer/OS d

-0.45 —-0.25 0.25 045
DLLoglikelihood, useC=FALSE PC/WinXp 3.42 3.39 340 3.39
DLLoglikelihood, useC=TRUE PC/WinXP 0.17 0.17 0.17 0.17
TrenchLoglikelihood PC/WinXP 2.88 2.61 270 2.60

DLLoglikelihood, useC=FALSE MacBook/OS X 2.45 251 248 248
DLLoglikelihood, useC=TRUE = MacBook/OS X 0.14 0.14 0.14 0.14

TrenchLoglikelihood MacBook/OS X 1.40 1.14 1.13 1.13
DLLoglikelihood, useC=FALSE PC/Linnux 1.64 1.63 1.64 1.64
DLLoglikelihood, useC=TRUE PC/Linnux 0.13 0.13 0.13 0.13
TrenchlLoglikelihood PC/Linnux 0.91 0.90 0.93 0.92
ML-Levinson (S-PLUS) Sun/Solaris 42.8 42,6 423 426
ML-PCG (S-PLUS) Sun/Solaris 550 4.40 3.80 4.70

Table 5: Comparison of CPU time in seconds for n = 5000.

inverse. A further advantage of the Trench algorithm is that as a byproduct the exact value
of the determinant is also obtained.
2.4. Estimation of the mean

Given the other parameters in the model, so that v;,k = 0,...,n — 1 is specified, the best
linear unbiased estiamte estimate (BLUE) for p is given by (Beran 1994, Section 8.2),

R T 1z
n= 1,n1_,_nll) (12)
ntn 1n
where 2’ = (21,...,2,) and 1,, is an n dimensional column vector whose entries are all equal to

one. Notice that the autocovariances in Equation (12) may be replaced by autocorrelations.
The function TrenchMean implements the computation in Equation (12).

An iterative algorithm may be used for the simultaneous joint MLE of p and the other
parameters 3.

Step 0 Set the maximum number of iterations, M « 5. Set the iteration counter, i « 0.
Set ,&(0) — z, where Z is the sample mean. Set initial parameters to zero, 5(*) « 0 or
some other suitable initial estimate. Set £y = L.(3®, 4(0).

Step 1 Obtain (1) by numerically maximizing Le(3, (D) over ¢. Set €;11 = Le(30FD | a0).
Step 2 Evaluate 40+ using 40D in Equation (12).

Step 3 Terminate when ¢;;; has converged or @ > M. Otherwise set i «+— i+ 1 and return to
Step 1 to perform the next iteration.

Convergence usually occurs in two or three iterations.

8 Algorithms for Linear Time Series Analysis: With R Package

Another topic of interest is the question of the efficiency of the sample mean. The variance
of the sample mean, Z = (21 + ...+ 2,)/n, may be written,

Var(z) = Var(1,2)
= 1,1, /n?
E 2n—1 k

= 2y 25 a- S (13)

n n =1

It may be shown that the exact finite sample efficiency of the sample mean is (Beran 1994,
Section 8.2)
E=n?/((1T1,)(1,T711,)). (14)

Although the sample mean often provides an efficient estimate, situations exist it is not very
efficient. We will discuss an example of this in Section 3.2.

2.5. Forecasting

The Trench algorithm is useful for the computation of exact finite-sample forecasts and their
variances. Let z,(k) denote the minimum-mean-square-error linear predictor of z,, given

the data 2’ = (21, ..., 2,,), the mean p and autocovariances v, £ = 0, ...,n—1. Then Hamilton
(1994, Section 4.3) or Hipel and McLeod (1994, Section 10.4.5),
(k) = p+ gl (z =), (15)
where g, = (Yn4k—1,---,7%) and the variance for the forecast,
Vie =0 — 9, T7 gk (16)

For large n, V1 = 02. In Equation (15), the autocovariances may be replaced by autocorre-
lations, but in Equation (16) autocovariances must be used. Equations (15) and (16) may
be vectorized to compute the k-step predictor for k = 1,2,..., L, and this is implemented in
TrenchForecast. The computation of the forecasts and their variances using Equations (15)
and (16) requires the autocovariances o, ..., Vntk—1- LThe prediction variance may also be
computed in another way as described in Section 2.9, and this is implemented in the function
PredictionVariance.

In practice we may also be interested in updating the forecasts given a new data values
Zn+k, k=1,2,..., L. This entails computing F:Hl_k for k =1,2,..., L given T',;! and may be
computed using the updating method described in Section 2.2. The function TrenchForecast
implements the updating method as well as an option to compute the forecasts using direct
matrix inversion. This is done in order to provide an optional check on the computations.

An example application of TrenchForecast to actual time series data is given in Section 3.3.
In the example below, we simulate a series of length n = 202 from an AR(1), then using
the known parameter, we forecast starting at origin n = 200 for lead times k& = 1,2, 3, and

updating the forecast origin to n = 201,202. The result is a list with two 3 x 3 matrices. It
is easy to check the forecasts and standard deviations in this case,

R> n <- 200
R>m <- 2

Journal of Statistical Software 9

R> maxLead <- 3

R> N <-n +m

R> phi <- 0.9

R> r <- phi~seq(0, N + maxLead - wl)

R> set.seed(19890824)

R> z <- DLSimulate(N, r)

R> out <- TrenchForecast(z, r, 0.0, n, maxLead)
R> out$Forecasts

1 2 3
200 0.4016172 0.36145544 0.32530990
201 0.3366849 0.30301644 0.27271480
202 -0.0794845 -0.07153605 -0.06438244

R> outer(z[n:NJ,phi~(1:maxLead))

[,1] [,2] [,3]
[1,] 0.4016172 0.36145544 0.32530990
[2,] 0.3366849 0.30301644 0.27271480
[3,] -0.0794845 -0.07153605 -0.06438244

It should be noted that the predict.Arima function in R can not be used to obtain the above
results, since it only predicts for a single forecast origin time which is fixed to be at the end of
the series. This hampers the use of R in forecasting experiments in time series where the data
is divided into training and test samples. Examples of this technique are given in Sections 3.3
and 3.4.

Finally, it should be noted that often the Gaussian assumption may not be valid for the
forecast errors. In the non-Gaussian case the prediction variances should not be used to
set probability limits for the forecasts. Instead probability limits for the forecasts may be
obtained by simulation or bootstrapping (McCullough 1994; Aronsson, Holst, Lindoff, and
Svensson 2006).

2.6. Simulation

Simulation of time series is widely used in bootstrapping for statistical inference as well in
the exploration of statistical properties of time series methods. Time series simulation is also
important in engineering design and operational research (Dembo 1991; Hipel and McLeod
1994; Maceira and Damadzio 2006). The Durbin-Levinson algorithm provides a convenient

method for simulating a Gaussian time series, z1, ..., z,, with autocovariances, g, - .., Vn—1
(Hosking 1981; Hipel and McLeod 1994). Using the Durbin-Levinson algorithm to solve
Equations (4) and (5), the series 21, ..., z, may be generated for t = 2,...,n from

2=¢i 1121+ ...+ d1-12-1 e (17)

where ¢; ~ NID (0,07 ;) and z; ~ NID (0, 07).

The function DLSimulate implements this simulation method using an interface to C. As
a check the algorithm was also implemented in R and may be invoked using the optional
argument useC = FALSE.

10 Algorithms for Linear Time Series Analysis: With R Package

Davies and Harte (1987) gave an algorithm which only requires O(nlog(n)) flops as compared
with Durbin-Levinson’s O(n?) flops. This algorithm is implemented in R, in our function
DHSimulate. However, the Davies-Harte algorithm requires a complicated non-negativity
condition, and this condition may not always hold. For example, in Table 6 we generate a
time series of length n = 5000 with fractional difference d = 0.45, and we found the Davies-
Harte non-negativity condition failed, and so DLSimulate was needed.

Table 6 compares the average time needed for 100 simulations for various series lengths,
n. >From this table we see that DHSimulate is overall faster even though it is entirely
implemented in R.

Another method is useful for simulating time series with innovations from a specified non-
Gaussian distribution that also uses the Fast Fourier Transform (FFT). In this case we may
approximate the linear time series model as a high-order MA

Q
z=p+ Y Piai. (18)

=1

The order Q may be quite large in some cases, and it may be chosen so that mean-square
error difference,

Q 00
E=lho—og) Wvil=05 > ¥, (19)
i=1

i=Q+1

is made sufficiently small. It may be shown that by making £ small we can make the
Kullback-Leibler discrepancy between the exact model and the MA(Q) approximation neg-
ligible McLeod and Zhang (2007, Equation 13) An example R script for determining the
approximation is given in the online documentation for DLAcfToAR. The sum involved in
Equation (18) is efficiently evaluated using the R function convolve which uses the FFT
method. Hence the simulation requires O(nlog(n)) flops when n is a power of 2 and assum-
ing n > . The built-in R function arima.sim may also be used, and it uses direct evaluation
and drops the initial transients values. The number of initial transient values to drop is de-
termined by the optional argument n.start. Only O(n) flops are required by arima.sim. In
Table 6, we took Q = 1000 and n.start=1000 for SimGLP and arima.sim respectively. These
two approximate methods were compared with the exact simulation methods, DLSimulate
and DHSimulate, for the case of an hyperbolic decay time series with v, = 1/vVk+ 1, k > 0,
for time series of lengths 100, 200, 500, 1,000, 5,000 and 10,000. For each n, the total time
for 100 simulations was found.

Algorithm n

100 200 500 1000 5000 10000
arima.sim 0.31 0.56 1.08 2.00 9.43 18.72
SimGLP 0.28 0.30 0.55 0.65 0.64 15.09

DLSimulate, useC=TRUE 0.04 0.05 0.18 0.68 15.43 61.30
DLSimulate, useC=FALSE 1.59 293 8.25 19.46 220.36 785.11
DHSimulate 0.03 0.05 0.10 0.22 1.49 3.67

Table 6: CPU time in seconds for 100 simulations of a time series of length n.

Journal of Statistical Software

In general, if it is planned to do many simulations, DHSimulate may be preferred provided
the Davies-Harte condition is met. As described in the documentation for DHSimulate, one
can use the function DHSimulate itself to test, if the Davies-Harte condition is satisfied.
Both DHSimulate and DLSimulate can also be used to generate non-Gaussian time series by
setting the optional argument rand. gen to some other distribution. However, only SimGLP and
arima.sim allow one to specify the exact innovation distribution. See online documentation
for examples.

2.7. Regression with autocorrelated error

Consider the regression with autocorrelated error model, z; = ag + 1214 + ... + apxp s + &,
where &’s, the errors, are assumed to be generated from a general linear Gaussian mean-zero
process with parameters 3 and 2. Given observed data (z,z14,...,2ks), t = 1,...,n, for
fixed 3, the MLE for o/ = (g, a1, ...,) is given by

&= (X'R'X)'X'R 2, (20)

where X is the n x (k+ 1) matrix with first column 1’s and j-th column z;;, t =1,...,n;j =
2. k41

Joint MLE for a, 8 and ¢ may be obtained using the following iterative algorithm.

Step O Initialization. Set i « 0. Set R, to the identity matrix. Set £y to a negative number
with large absolute value.

Step 1 Use Equation (20) to obtain an estimate of a, @?. Compute the residuals £ =
z—Xa0,

Step 2 Taking é as the input time series, maximize L, using a nonlinear optimization func-
tion to obtain ﬂ(i) and ¢; = Lm(ﬁ(i)).

Step 3 If ¢; — ¢;_1 < 1073, perform Step 4. Otherwise set ¢ < i + 1, and return to Step 1 to
perform the next iteration.

Step 4 Compute the MLE for 2.

The error tolerance is set to 1073, since in terms of the log-likelihood the change in parameters
is of negligible importance. With this error tolerance, convergence usually occurs in three or
four iterations. An implementation of this method for multiple linear regression with FGN
error is given in our FGN package.

2.8. Prediction residuals

The prediction residuals are defined by the difference between the observed value and the
one-step ahead minimum-mean-square error forecast. These residuals may be standardized
by dividing by their standard deviations. If the model is correct, these residuals should be
approximately uncorrelated. It should be noted that asymptotically the prediction residuals
are equivalent to the usual residuals, the estimated innovations, a;. Hence, the widely used
Ljung-Box portmanteau test (Ljung and Box 1978) and other diagnostic checks (Li 2004) may
be used to check the adequacy of the fitted model.

11

12 Algorithms for Linear Time Series Analysis: With R Package

2.9. Acf to AR parameters and ARMA Acvf

Given the autocorrelations pi, ..., pm, the function DLAcfToAR uses the Durbin-Levinson re-
cursions to obtain the parameters ¢1, ..., ¢,, of the best linear predictor of order m as well
the partial autocorrelations ¢11,..., ¢m,m and the minimum mean-square-errors o2,..., 02,

corresponding to the k-th order predictor, k = 1, ..., m. For our purposes DLAcfToAR provides
more general and useful output than the built-in R function Acf2AR.

As an illustrative application, consider the computation R? (Nelson 1976),

0.2

RZ=1- 22, 21
Yo ()

For a fitted model we may use estimates of the parameters. For sufficiently large m,

R?=1-52, (22)

where 62, is computed with DLACfToAR using the fitted values, p1, . . ., pm ,and setting, without

loss of generality, 70 = 1 in Equation (21). R? indicates the proportion of variability accounted
for by the model and is sometimes called the coefficient of forecastibility.

In the brief example below, we show that for a FGN model with H = 0.84, R? = 41%.

R> library("FGN")

R>m <- 1074

R> r < -FGNAcf(1:m, 0.84)
R> 1 - DLAcfToAR(r)[,3] [m]

10000
0.4075724

(Box, Jenkins, and Reinsel 1994, Chapter 7) gave algorithms for forecasting ARMA models
which work well when n is not too small and the model is invertible whereas the method

given in Section 2.5 is always exact although not as computationally efficient or elegant their
methods. (Box et al. 1994, Chapter 7) showed,

k-1
Vi =03) k- (23)

J=0

Given autocorrelations py, . . ., pn, we may fit the AR(n) linear predictor using DLAcfToAR, and
then expand as a MA using the built-in R function ARMAtoAR. Our function PredictionVariance
uses Equation (23) to compute Vi, k = 1,..., L, where L is the maximum lead time. As an
option, PredictionVariance also implements the exact method of Section 2.5.

Another useful function is tacvfARMA for the tacvf of the ARMA(p,q) which is similar to
the built-in ARMAacf but provides autocovariances (McLeod 1975) instead of autocorrela-
tions. Again this function generalizes the built-in R function in a useful way. The function
tacvfARMA is needed to demonstrate that the output from our TrenchForecast normally
agrees quite closely with the built-in predict.Arima for ARMA models — see Example 1 in
the TrenchForecast documentation. This function is also useful in computing the variance
of the sample mean using Equation (13).

Journal of Statistical Software

2.10. Validation and checking of the algorithms

Many checks were done to ensure the accuracy of our results. Most of the checks described
below are given in the help file documentation associated with the particular R functions.

The function TrenchInverse is easily checked by simply multiplying the output by the input
to obtain the identity matrix. The exact concentrated log-likelihood function defined in
Equation (10) and implemented in TrenchLoglikelihood was checked by implementing in
R the Durbin-Levinson recursion to compute (10). This function, DLLoglikelihood, with
the option useC=FALSE provides a slower alternative method for the evaluation of (10). The
computation is also easily verified in the case of the Gaussian AR(1) model, z; = ¢12,—1 +
at, a; ~ NID (0,02). Given data z1,. .., 2,, Equation (10) for the concentrated log-likelihood
reduces to

Le(6) = 3 log(1 — 67) — & log(S/n), (24)

where S = (1—¢2) 23+ (20— 121)%+ (23— p122)*+. . .4+ (2n—P12,1)?. In the documentation for
DLLoglikelihood we show numerically that these two methods of evaluating the concentrated
log-likelihood for the AR(1) are equivalent.

Also, for the AR(1), the exact forecast function may be written z,(k) = u + ¢* (2, — p) with
variance Vi, = 02(1—¢?¥) /(1 — ¢?). The output from TrenchForecast agrees with the results
produced by this formula for the AR(1) case. Details are given in the package documentation
for TrenchForecast. The function TrenchMean can be checked by computing the exact MLE
for an AR(1) fitted to some test data and then using the function TrenchMean to compute the
exact MLE for y given the estimate gZ; obtained from arima. This estimate of p closely agrees
with that given by arima. An illustration of this check is provided in the documentation to
the function TrenchMean.

3. Application to fractional Gaussian noise

3.1. FGN package

The FGN package illustrates the use of the ltsa package. This package provides modelling
capabilities for the FGN time series defined by the autocorrelation function given in Equa-
tion (7). The principal functions available in this package are shown in Table 7.

Function Purpose

Boot Generic function for bootstrap
FGNAcf Autocorrelation of FGN

FGNLL Evaluate Equation (10)

FitFGN Exact MLE in FGN
FitRegressionFGN Implements algorithm in Section 2.3
GetFitFGN Fitting function used in FitFGN
HurstK Hurst’s estimator

SimulateFGN Simulation of FGN time series

Table 7: The principal functions in FGN.

13

14 Algorithms for Linear Time Series Analysis: With R Package

n 500 1000 2000 5000
GetFitFGN 0.02 0.05 0.19 1.07
FitFGN 0.35 033 0.50 1.47

Table 8: Average CPU time to simulate and fit an FGN series of length n.

The functions FGNLL, FitFGN, FitRegressionFGN, GetFitFGN, and SimulateFGN are specific
implementations of the general methods discussed in Section 2.5 for the case of the FGN
model.

The function HurstK provides a nonparametric estimator of H which is described in detail in
Hipel and McLeod (1994, page 232).

The simulation function SimulateFGN utilizes DHSimulate or DLSimulate. It was determined
empirically that the Davies-Harte non-negativity condition holds for n > 50 and 0 < H <
0.84. So in this case DHSimulate is used, and DLSimulate is used otherwise. Table 8 shows
average time taken to simulate and fit an FGN model for various n on our PC Windows XP
3.6 GHz Pentium IV computer.

The output from FitFGN is an S3-class object "FitFGN" with methods implemented for the
standard R generic functions: coef, plot, predict, print and summary.

3.2. Efficiency of the sample mean

It is shown in Beran (1994, Section 8.2) that the asymptotic efficiency of the sample mean
is always greater than 98% in the persistent case, that is, when % < H < 1. Table 9,
obtained by evaluating Equation (14), shows the exact small sample efficiency for various
lengths n. The finite sample efficiency is in good agreement with the asymptotic limit in the
persistent case. Note that when H = %, the series is simply Gaussian white noise, and when
0< H < % the series is said to be antipersisten