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1. Introduction

The origin of this package goes back to the first authors’ years at RiskLab, when he worked
together with Alexander McNeil to develop an algorithm for fitting multivariate generalized
hyperbolic (GH) distributions. Accordingly, the functionality of this package partly overlaps
McNeil’s library QRMlib (McNeil, 2005). However, there are quite some differences in the
implementation. From the user’s point of view, an important difference may be that one can
choose between different parametrizations. In addition, with the present library it is possible to
fit multivariate as well as univariate generalized hypberbolic distributions in a unified framework.
Furthermore, the package ghyp provides a much richer set of functionality, including many
plotting resources and graphical diagnostic tools as well as various utilities as the likelihood-
ratio test, Akaike information based model selection, and linear transformations for instance.
In general, we put emphasis on financial application and provide several risk and performance
measurement functionalities and a portfolio optimization routine. The finance related facilities
are not described in this document, but in the reference manual of the package ghyp. This
document is primarily intended to give the necessary information and formulas to deal with
univariate and multivariate generalized hyperbolic distributions. It focuses on (i) different
parametrizations, (ii) fitting multivariate GH distributions, and (iii) special cases of the GH
distribution.

Please note that this document is by far not complete. A nice reference for univariate GH
distributions and the generalized inverse Gaussian (GIG) distribution is Prause (1999) and
Paolella (2007). An instructive guide for multivariate GH distributions is McNeil, Frey, and
Embrechts (2005), where one can find also some empirical work and applications of the GH
distribution in finance.

2. Definition

Facts about generalized hyperbolic (GH) distributions are cited according to McNeil, Frey, and
Embrechts (2005) chapter 3.2.

The random vector X is said to have a multivariate GH distribution if

X
d
= µ+Wγ +

√
WAZ (2.1)

where

(i) Z ∼ Nk(0, Ik)

(ii) A ∈ R
d×k

(iii) µ, γ ∈ R
d

(iv) W ≥ 0 is a scalar-valued random variable which is independent of Z and has a Generalized
Inverse Gaussian distribution, written GIG(λ, χ, ψ) (cf. appendix C).

Note that there are at least five alternative definitions leading to different parametrizations. In
section 4 we will present the parametrizations which are implemented in the package ghyp. The
above definition, though intuitive, acquires an identifiability problem which will be described
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in section 4.1. The parameters of a GH distribution given by the above definition admit the
following interpretation:

• λ, χ, ψ determine the shape of the distribution. That is, how much weight is assigned
to the tails and to the center. In general, the larger those parameters the closer the
distribution is to the normal distribution.

• µ is the location parameter.

• Σ = AA′ is the dispersion-matrix.

• γ is the skewness parameter. If γ = 0, then the distribution is symmetric around µ.

Observe that the conditional distribution of X|W = w is normal,

X|W = w ∼ Nd(µ+ w γ,wΣ), (2.2)

where Σ = AA′.

2.1. Expected value and variance

The expected value and the variance are given by

E [X] = µ+ E [W ] γ (2.3)

var(X) = E [cov(X|W )] + cov(E [X|W ]) (2.4)

= var(W )γγ′ + E [W ] Σ.

2.2. Density

Since the conditional distribution of X given W is Gaussian with mean µ + Wγ and variance
WΣ the GH density can be found by mixing X|W with respect to W .

fX(x) =

∫ ∞

0
fX♣W (x|w) fW (w) dw (2.5)

=

∫ ∞

0

e(x−µ)′Σ−1γ

(2π)
d

2 |Σ| 1

2w
d

2

exp

{

−Q(x)

2w
− γ′Σ−1γ

2/w

}

fW (w)dw

=
(
√

ψ/χ)λ(ψ + γ′Σ−1γ)
d

2
−λ

(2π)
d

2 |Σ| 1

2 Kλ(
√
χψ)

×
Kλ− d

2

(
√

(χ+ Q(x))(ψ + γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

(χ+ Q(x))(ψ + γ′Σ−1γ))
d

2
−λ

,

where the relation (B.2) for the modified Bessel function of the third kind Kλ(·) is used (cf.
section B) and Q(x) denotes the mahalanobis distance Q(x) = (x−µ)′Σ−1(x−µ). The domain
of variation of the parameters λ, χ and ψ is given in section 4 and appendix C.
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2.3. Moment generating function

An appealing property of normal mixtures is that the moment generating function is easily
calculated once the moment generating function of the mixture is known. Based on equation
(C.2) we obtain the moment generating function of a GH distributed random variable X as

MGH(t) = E
[

E
[

exp
{

t
′
X
} |W ]]

= et
′µ
E
[

exp
{

W
(

t
′γ + 1/2 t

′Σt
)}]

= et
′µ


ψ

ψ − 2t′γ − t′Σt

λ/2 Kλ(
√

ψ(χ− 2t′γ − t′Σt))

Kλ(
√
χψ)

, χ ≥ 2 t
′γ + t

′Σt.

For moment generating functions of the special cases of the GH distribution we refer to Prause
(1999) and Paolella (2007).

2.4. Linear transformations

The GH class is closed under linear transformations:

Proposition 1. If X ∼ GHd(λ, χ, ψ, µ,Σ, γ) and Y = BX + b, where B ∈ R
k×d and b ∈ R

k,
then Y ∼ GHk(λ, χ, ψ,Bµ+ b, BΣB′, Bγ).

Proof. The characteristic function of X is

ϕX(t) = E

[

E

[

ei t
′
X|W

]]

= E

[

ei t
′(µ+Wγ)−1/2W t

′ Σ t
]

= ei t
′µ Ĥ(1/2 t

′ Σ t − i t′γ),

where Ĥ(θ) =
∫∞

0 e−θvdH(v) denotes the Laplace-Stieltjes transform of the distribution function
H of W . Let Y = BX + b. The characteristic function is then

ϕY (t) = E

[

E

[

ei t
′ (BX+b)|W

]]

= E

[

ei t
′ (B(µ+Wγ)+b)−1/2W t

′ BΣB′
t
]

= ei t
′ (B µ+b) Ĥ(1/2 t

′BΣB′
t − i t′B γ).

Therefore, BX + b ∼ GHk(λ, χ, ψ,Bµ+ b, BΣB′, Bγ).

3. Special cases of the generalized hyperbolic distribution

The GH distribution contains several special cases known under special names.

• If λ = d+1
2 the name generalized is dropped and we have a multivariate hyperbolic (hyp)

distribution. The univariate margins are still GH distributed. Inversely, when λ = 1 we
get a multivariate GH distribution with hyperbolic margins.

• If λ = −1
2 the distribution is called Normal Inverse Gaussian (NIG).

• If χ = 0 and λ > 0 one gets a limiting case which is known amongst others as Variance
Gamma (VG) distribution.

• If ψ = 0 and λ < 0 the generalized hyperbolic Student-t distribution is obtained (called
simply Student-t in what follows).

Further information about the special cases and the necessary formulas to fit these distributions
to multivariate data can be found in the appendixes C and D. The parameter constraints for
the special cases in different parametrizations are described in the following section.
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4. Parametrization

There are several alternative parametrizations for the GH distribution. In the R package ghyp the
user can choose between three of them. There exist further parametrizations which are not im-
plemented and not mentioned here. For these parametrizations we refer to Prause (1999) and
Paolella (2007).

Appendix H.1 explains how to use the parametrizations implemented in the package ghyp.
Table 4.1 describes the parameter ranges for each parametrization and each special case. Clearly,
the dispersion matrices Σ and ∆ have to fulfill the usual conditions for covariance matrices, i.e.,
symmetry and positive definiteness as well as full rank. Appendix H.1 also gives a table where
the constructor functions for each combination of distribution and parametrization are listed.

(λ, χ, ψ, µ,Σ, γ)-Parametrization
λ χ ψ µ Σ γ

ghyp λ ∈ R χ > 0 ψ > 0 µ ∈ R
d Σ ∈ R

Σ γ ∈ R
d

hyp λ = d+1

2
χ > 0 ψ > 0 µ ∈ R

d Σ ∈ R
Σ γ ∈ R

d

NIG λ = − 1

2
χ > 0 ψ > 0 µ ∈ R

d Σ ∈ R
Σ γ ∈ R

d

t λ < 0 χ > 0 ψ = 0 µ ∈ R
d Σ ∈ R

Σ γ ∈ R
d

VG λ > 0 χ = 0 ψ > 0 µ ∈ R
d Σ ∈ R

Σ γ ∈ R
d

(λ, α, µ,Σ, γ)-Parametrization
λ α µ Σ γ

ghyp λ ∈ R α > 0 µ ∈ R
d Σ ∈ R

Σ γ ∈ R
d

hyp λ = d+1

2
α > 0 µ ∈ R

d Σ ∈ R
Σ γ ∈ R

d

NIG λ = 1

2
α > 0 µ ∈ R

d Σ ∈ R
Σ γ ∈ R

d

t λ = − ν

2
< −1 α = 0 µ ∈ R

d Σ ∈ R
Σ γ ∈ R

d

VG λ > 0 α = 0 µ ∈ R
d Σ ∈ R

Σ γ ∈ R
d

(λ, α, µ,∆, δ,βββ)-Parametrization
λ α δ µ ∆ βββ

ghyp λ ∈ R α > 0 δ > 0 µ ∈ R
d ∆ ∈ R

∆ βββ ∈ {x ∈ R
d : α2 − x

′∆x > 0}
hyp λ = d+1

2
α > 0 δ > 0 µ ∈ R

d ∆ ∈ R
∆ βββ ∈ {x ∈ R

d : α2 − x
′∆x > 0}

NIG λ = − 1

2
α > 0 δ > 0 µ ∈ R

d ∆ ∈ R
∆ βββ ∈ {x ∈ R

d : α2 − x
′∆x > 0}

t λ < 0 α =
√

βββ′∆βββ δ > 0 µ ∈ R
d ∆ ∈ R

∆ βββ ∈ R
d

VG λ > 0 α > 0 δ = 0 µ ∈ R
d ∆ ∈ R

∆ βββ ∈ {x ∈ R
d : α2 − x

′∆x > 0}

Table 4.1: The domain of variation for the parameters of the GH distribution and some of its
special cases for different parametrizations. We denote the set of all feasible covariance
matrices in R

d×d with R
Σ. Furthermore, let R

∆ = {A ∈ R
Σ : |A| = 1}.

4.1. (λ, χ, ψ, µ,Σ, γ)-Parametrization

The (λ, χ, ψ, µ,Σ, γ)-parametrization is obtained as the normal mean-variance mixture distribu-
tion whenW ∼ GIG(λ, χ, ψ). This parametrization has a drawback of an identification problem.
Indeed, the distributions GHd(λ, χ, ψ, µ,Σ, γ) and GHd(λ, χ/k, kψ, µ, kΣ, kγ) are identical for
any k > 0. Therefore, an identifying problem occurs when we start to fit the parameters of a
GH distribution to data. This problem may be solved by introducing a suitable contraint. One
possibility is to require the determinant of the dispersion matrix Σ to be 1.
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4.2. (λ, α, µ,Σ, γ)-Parametrization

There is a more elegant way to eliminate the degree of freedom than constraining the determi-
nant of the dispersion matrix Σ to 1. We simply require the expected value of the generalized
inverse Gaussian distributed mixing variable W to be 1 (cf. C). This makes the interpretation
of the skewness parameters γ easier and in addition, the fitting procedure becomes faster (cf.
5.1).

Note that the expected value of a GIG distributed random variable exists as long as ψ > 0. If
ψ → 0 the GIG distribution approaches the Inverse Gamma distribution (the mixing distribution
belonging to a Student-t distribution) for which the expectation only exists if γ < −1 (cf.
appendix C and D.1).

We define

E [W ] =

√

χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

= 1. (4.1)

and set
α =

√

χψ. (4.2)

It follows that

ψ = α
Kλ+1(α)

Kλ(α)
and χ =

α2

ψ
= α

Kλ(α)

Kλ+1(α)
. (4.3)

Note that whenever λ = −0.5 (NIG distribution) we have that ψ = α and χ = α. This is
because of the symmetry of the Bessel function (cf. equation B.5).

The drawback of the (λ, α, µ,Σ, γ)-parametrization is that it does not exist in the case α = 0
and λ ∈ [−1, 0], which corresponds to a Student-t distribution with non-existing variance. Note
that the (λ, α, µ,Σ, γ)-parametrization yields to a slightly different parametrization for the
special case of a Student-t distribution (cf. section D.1 for details). The limit of the equations
(4.3) as α ↓ 0 can be found in (D.3) and (D.9).

4.3. (λ, α, µ,∆, δ,βββ)-Parametrization

When the GH distribution was introduced in Barndorff-Nielsen (1977), the following parametriza-
tion for the multivariate case was used:

fX(x) =
(α2 − βββ′∆βββ)λ/2

(2π)
d

2

√

|∆|αλ− d

2 δλ Kλ(δ
√

α2 − βββ′∆βββ)
×

Kλ− d

2

(α
√

δ2 + (x − µ)′∆−1(x − µ)) eβββ
′(x−µ)

(
√

δ2 + (x − µ)′∆−1(x − µ))
d

2
−λ

.

(4.4)
Similar to the (λ, χ, ψ, µ,Σ, γ) parametrization, there is an identifying problem which can be
solved by constraining the determinant of ∆ to 1. The mixture representation belonging to this
parametrization is

X|W = w ∼ Nd(µ+ wβββ∆, w∆) (4.5)

W ∼ GIG(λ, δ2, α2 − βββ′∆βββ). (4.6)

In the univariate case the above expression reduces to

fX(x) =
(α2 − β2)λ/2

√
2π αλ− 1

2 δλ Kλ(δ
√

α2 − β2)
×

Kλ− 1

2

(α
√

δ2 + (x− µ)2)

(
√

δ2 + (x− µ)2)
1

2
−λ

eβ(x−µ), (4.7)

which is the most widely used parametrization of the GH distribution in literature.
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4.4. Switching between different parametrizations

The following formulas can be used to switch between the (λ, α, µ,Σ, γ), (λ, χ, ψ, µ,Σ, γ), and
the (λ, α, µ,∆, δ,βββ)-parametrization. The parameters λ and µ remain the same, regardless of
the parametrization.

The way to obtain the (λ, α, µ,∆, δ,βββ)-parametrization from the (λ, α, µ,Σ, γ)-parametrization
leads over the (λ, χ, ψ, µ,Σ, γ)-parametrization:

(λ, α, µ,Σ, γ) ⇆ (λ, χ, ψ, µ,Σ, γ) ⇆ (λ, α, µ,∆, δ,βββ)

(λ, α, µ,Σ, γ) → (λ, χ, ψ, µ,Σ, γ): Use the relations in (4.3) to obtain χ and ψ. The parameters
Σ and γ remain the same.

(λ, χ, ψ, µ,Σ, γ) → (λ, α, µ,Σ, γ): Set k =
√

χ
ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

.

α =
√

χψ, Σ ≡ kΣ, γ ≡ k γ (4.8)

(λ, χ, ψ, µ,Σ, γ) → (λ, α, µ,∆, δ,βββ):

∆ = |Σ|− 1

d Σ , βββ = Σ−1γ

δ =

√

χ|Σ| 1

d , α =

√

|Σ|− 1

d (ψ + γ′Σ−1γ) (4.9)

(λ, α, µ,∆, δ,βββ) → (λ, χ, ψ, µ,Σ, γ):

Σ = ∆, γ = ∆βββ, χ = δ2, ψ = α2 − βββ′∆βββ. (4.10)

4.5. Location and scale invariant parametrizations

All parametrizations mentioned above can be modified to location and scale invariant parametriza-
tions. For a d-variate GH random variable X there may occur problems if it is linearly trans-
formed (Y = BX + b) while B affects the dimensionality (i.e. B /∈ R

d×d). Thus, let’s consider
the univariate case for a moment.

2.4 Let σ2 = Σ. For the (λ, χ, ψ, µ,Σ, γ) and (λ, α, µ,Σ, γ) parametrization one can define
γ̄ = σγ. The density reads

fX(x) =
(
√

ψ/χ)λ(ψ + γ2)
1

2
−λ

√
2πσKλ(

√
χψ)

×
Kλ− 1

2

(
√

(χ+ q(x)2)(ψ + γ2)) eq(x)γ

(
√

(χ+ q(x)2)(ψ + γ2))
1

2
−λ

, (4.11)

where q(x) = (x− µ)/σ.
In case of the (λ, α, µ,∆, δ,βββ) parametrization one can define α = αδ and β = βδ (see the

appendix of Prause (1999)) to get the invariant density

fX(x) =
(α2 − β

2
)λ/2

√
2π αλ− 1

2 δKλ(

√

α2 − β
2
)

×
Kλ− 1

2

(α
√

1 + q(x)2)

(
√

1 + q(x)2)
1

2
−λ

eβq(x). (4.12)
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4.6. Numerical implementation

Internally, he package ghyp uses the (λ, χ, ψ, µ,Σ, γ)-parametrization. However, fitting is done
in the (λ, α, µ,Σ, γ)-parametrization since this parametrization does not necessitate additional
constraints to eliminate the redundant degree of freedom. Consequently, what cannot be rep-
resented by the (λ, α, µ,Σ, γ)-parametrization cannot be fitted (cf. section 4.2).

5. Fitting generalized hyperbolic distributions to data

Numerical optimizers can be used to fit univariate GH distributions to data by means of max-
imum likelihood estimation. Multivariate GH distributions can be fitted with expectation-
maximazion (EM) type algorithms (see Dempster et al. (1977) and Meng and Rubin (1993)).

5.1. EM-Scheme

Assume we have iid data x1, . . . ,xn and parameters represented by Θ = (λ, α, µ,Σ, γ). The
problem is to maximize

lnL(Θ; x1, . . . ,xn) =
n
∑

i=1

ln fX(xi; Θ). (5.1)

This problem is not easy to solve due to the number of parameters and necessity of maximizing
over covariance matrices. We can proceed by introducing an augmented likelihood function

ln L̃(Θ; x1, . . . ,xn, w1, . . . , wn) =
n
∑

i=1

ln fX♣W (xi|wi;µ,Σ, γ) +
n
∑

i=1

ln fW (wi;λ, α) (5.2)

and spend the effort on the estimation of the latent mixing variables wi coming from the mixture
representation (2.2). This is where the EM algorithm comes into play.

E-step: Calculate the conditional expectation of the likelihood function (5.2) given the data
x1, . . . ,xn and the current estimates of parameters Θ[k]. This results in the objective
function

Q(Θ; Θ[k]) = E

[

ln L̃(Θ; x1, . . . ,xn, w1, . . . , wn)|x1, . . . ,xn; Θ[k]
]

. (5.3)

M-step: Maximize the objective function with respect to Θ to obtain the next set of estimates
Θ[k+1].

Alternating between these steps yields to the maximum likelihood estimation of the parameter
set Θ.

In practice, performing the E-Step means maximizing the second summand of (5.2) numerically.
The log density of the GIG distribution (cf. C.1) is

ln fW (w) =
λ

2
ln(ψ/χ) − ln(2Kλ

√

χψ) + (λ− 1) lnw − χ

2

1

w
− ψ

2
w. (5.4)

When using the (λ, α)-parametrization this problem is of dimension two instead of three as it
is in the (λ, χ, ψ)-parametrization. As a consequence the performance increases.
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Since the wi’s are latent one has to replace w, 1/w and lnw with the respective expected
values in order to maximize the log likelihood function. Let

η
[k]
i := E

[

wi | xi; Θ[k]
]

, δ
[k]
i := E

[

w−1
i | xi; Θ[k]

]

, ξ
[k]
i := E

[

lnwi | xi; Θ[k]
]

. (5.5)

We have to find the conditional density of wi given xi to calculate these quantities (cf. (E.1)).

5.2. MCECM estimation

In the R implementation a modified EM scheme is used, which is called multi-cycle, expecta-
tion, conditional estimation (MCECM) algorithm (Meng and Rubin, 1993; McNeil, Frey, and
Embrechts, 2005). The different steps of the MCECM algorithm are sketched as follows:

(1) Select reasonable starting values for Θ[k]. For example λ = 1, α = 1, µ is set to the sample
mean, Σ to the sample covariance matrix and γ to a zero skewness vector.

(2) Calculate χ[k] and ψ[k] as a function of α[k] using (4.3).

(3) Use (5.5), (C.3) and (E.1) to calculate the weights η
[k]
i and δ

[k]
i . Average the weights to

get

η̄[k] =
1

n

n
∑

i=1

η
[k]
i and δ̄[k] =

1

n

n
∑

i=1

δ
[k]
i . (5.6)

(4) If an asymmetric model is to be fitted set γ to 0, else set

γ[k+1] =
1

n

∑n
i=1 δ

[k]
i (x̄ − xi)

η̄[k]δ̄[k] − 1
. (5.7)

(5) Update µ and Σ:

µ[k+1] =
1

n

∑n
i=1 δ

[k]
i xi − γ[k+1]

δ̄[k]
(5.8)

Σ[k+1] =
1

n

n
∑

i=1

δ
[k]
i (xi − µ[k+1])(xi − µ[k+1])′ − η̄[k]γ[k+1]γ[k+1] ′. (5.9)

(6) Set Θ[k,2] = (λ[k], α[k], µ[k+1],Σ[k+1], γ[k+1]) and calculate weights η
[k,2]
i , δ

[k,2]
i and ξ

[k,2]
i

using (5.5), (C.4) and (C.3).

(7) Maximize the second summand of (5.2) with density (5.4) with respect to λ, χ and ψ to
complete the calculation of Θ[k,2] and go back to step (2). Note that the objective function
must calculate χ and ψ in dependence of λ and α using relation (4.3).
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6. Applications, comments and references

Even though the GH distribution was initially ivented to study the distribution of the logarithm
of particle sizes, we will focus on applications of the GH distribution family in finance and risk
measurement.

We have seen above that the GH distribution is very flexible in the sense that it nests several
other distributions such as the Student-t (cf. D.1). To give some references and applications
of the GH distribution let us first summarize some of its important properties. Beside of the
above mentioned flexibility, three major facts led to the popularity of GH distribution family
in finance:

(1) The GH distribution features both fat tails and skewness. These properties account for
some of the frequently reported stylized facts of financial returns but also of financial
return volatility (hyperbolic GARCH effects).

(2) The GH family is naturally extended to multivariate distributions1. A multivariate GH
distribution does exhibit some kind of non-linear dependence, for example tail-dependence.
This reflects the fact that extremes mostly occur for several risk-drivers simultaneously in
financial markets. This property is of fundamental importance for risk-management, and
can influence for instance portfolio weights.

(3) The GH distribution is infinitely divisible (cf. Barndorff-Nielsen and Halgreen (1977)).
This is a necessary and sufficient condition to build Lévy processes. Lévy processes are
widespread in finance because of their time-continuity and their ability to model jumps.

Based on these properties one can classify the applications of the GH distributions into
the fields empirical modelling, riks and dependence modelling, Lévy processes & derivatives, and
portfolio selection. In the following, we try to assign papers to each of the classes of applications
mentioned above. Rather than giving summaries and conclusions for each paper, we simply cite
them and refer the interested reader to the articles and the references therein. Note that some
articles deal with special cases of the GH distribution only.

Empirical modelling: Eberlein and Keller (1995); Barndorff-Nielsen and Prause (2001); Fors-
berg and Bollerslev (2002); Davidson (2004); Fergusson and Platen (2006).

Risk and dependence modelling: Eberlein et al. (1998); Breymann et al. (2003); McNeil et al.
(2005); Chen et al. (2005); Kassberger and Kiesel (2006).

Lévy processes & derivatives: Barndorff-Nielsen (1997a,b); Bibby and rensen (1997); Madan
et al. (1998); Raible (2000); Cont and Tankov (2003); Prause (1999).

Portfolio selection: Kassberger (2007).

1The extension to multivariate distributions is natural because of the mixing structure (see eq. (2.2)).
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A. Shape of the univariate generalized hyperbolic distribution
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Figure A.1: The shape of the univariate generalized hyperbolic density drawn with different shape
parameters (λ, α). The location and scale parameter µ and σ are set to 0 and 1,
respectively. The skewness parameter γ is 0 in the left column and −1 in the right
column of the graphics array.
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B. Modified Bessel function of the third kind

The modified Bessel function of the third kind appears in the GH as well as in the GIG density
(2.5, C.1). This function has the integral representation

Kλ(x) =
1

2

∫ ∞

0
wλ−1 exp



−1

2
x


w + w−1




dw , x > 0. (B.1)

The substitution w = x
√

χ/ψ can be used to obtain the following relation, which facilitates to
bring the GH density (2.5) into a closed-form expression.

∫ ∞

0
wλ−1 exp



−1

2



χ

w
+ wψ



dw = 2



χ

ψ


λ

2

Kλ(
√

χψ) (B.2)

When calculating the densities of the special cases of the GH density we can use the asymtotic
relations for small arguments x.

Kλ(x) ∼ Γ(λ) 2λ−1x−λ as x ↓ 0 and λ > 0 (B.3)

and
Kλ(x) ∼ Γ(−λ) 2−λ−1xλ as x ↓ 0 and λ < 0. (B.4)

(B.4) follows from (B.3) and the observation that the Bessel function is symmetric with respect
to the index λ:

Kλ(x) = K−λ(x) (B.5)

An asymptotic relation for large arguments x is given by

Kλ(x) ∼
√

π

2
x− 1

2 e−x as x → ∞. (B.6)

Also, for λ = 0.5 the Bessel function can be stated explicitely with

K0.5(x) = K−0.5(x) =

√

π

2x
e−x, x > 0. (B.7)

We refer to Abramowitz and Stegun (1972) for further information on Bessel functions.
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Figure B.1: The modified Bessel function of the third kind drawn with different indices λ.
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C. Generalized Inverse Gaussian distribution

The density of a Generalized Inverse Gaussian (GIG) distribution is given as

fGIG(w) =



ψ

χ


λ

2 wλ−1

2Kλ(
√
χψ)

exp



−1

2



χ

w
+ ψw



, (C.1)

with parameters satisfying

χ > 0, ψ ≥ 0, λ < 0
χ > 0, ψ > 0, λ = 0
χ ≥ 0, ψ > 0, λ > 0 .

The GIG density nests the inverse Gaussian (IG) density (λ = −0.5) and contains many special
cases as limits, among others the Gamma (Γ) and Inverse Gamma (IΓ) densities (cf. C.1 and
C.2 below).

The moment generating function of the GIG distribution (cf. Paolella (2007)) is determined
by

MGIG(t) =



ψ

ψ − 2t

λ/2 Kλ(
√

χ(ψ − 2t))

Kλ(
√
χψ)

. (C.2)

The n-th moment of a GIG distributed random variable X can be found to be

E [Xn] =



χ

ψ


n

2 Kλ+n(
√
χψ)

Kλ(
√
χψ)

. (C.3)

Furthermore,

E [lnX] =
dE [Xα]

dα

∣

∣

∣

∣

α=0

. (C.4)

Note that numerical calculations of E [lnX] may be performed with the integral representation
as well. In the R package ghyp the derivative construction is implemented.

C.1. Gamma distribution

When χ = 0 and λ > 0 the GIG distribution reduces to the Gamma (Γ) distribution:

lim
χ↓0

fGIG(x|λ, χ, ψ) = fΓ(x|λ, 1/2ψ), x ∈ R, λ > 0, χ > 0 (C.5)

The density of X ∼ Γ(α, β) is

fΓ(w) =
βα

Γ(α)
wα−1 exp {−βw} . (C.6)

The expected value and the variance are

E [X] =
β

α
and var(X) =

α

β2
, (C.7)

respectively. The expected value of the logarithm is E [lnX] = ψ(α) − ln(β) where ψ(·) is
the digamma function. We will see that this value is not needed to fit a multivariate variance
gamma distribution (cf. E.3).
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C.2. Inverse gamma distribution

When ψ = 0 and λ < 0 the GIG distribution reduces to the Inverse Gamma (IΓ) distribution:

lim
ψ↓0

fGIG(x|λ, χ, ψ) = fIΓ(x| − λ, 1/2χ), x ∈ R, λ < 0, ψ > 0 (C.8)

The density of X ∼ IΓ(α, β) is

fX(w) =
βα

Γ(α)
w−α−1 exp



− β

w



. (C.9)

The expected value and the variance are

E [X] =
β

α− 1
and var(X) =

β2

(α− 1)2(α− 2)
, (C.10)

and exist provided that α > 1 and α > 2, respectively. The expected value of the logarithm is
E [lnX] = ln(β)−ψ(α). This value is required in order to fit a symmetric multivariate Student-t
distribution by means of the MCECM algorithm (cf. E.2).

0.0 0.5 1.0 1.5 2.0

−
2

−
1

0
1

2

α

λ

0.0 0.5 1.0 1.5 2.0

α

Density and log−density of the generalized inverse gaussian distribution

Figure C.1: The density and the log-density of the generalized inverse gaussian distribution drawn
with different shape parameters (λ, α). See (4.3) for the transformation from α to
(χ, ψ).
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D. Densities of the special cases of the GH distribution

As mentioned in section 3 the GH distribution contains several special and limiting cases. In
what follows the densities of the limiting cases are derived. In the case of a hyperbolic or normal
NIG we simply fix the parameter λ either to (d+ 1)/2 or −0.5.

D.1. Student-t distribution

With relation (B.4) it can be easily shown that when ψ → 0 and λ < 0 the density of a GH
distribution results in

fX(x) =
χ−λ(γ′Σ−1γ)

d

2
−λ

(2π)
d

2 |Σ| 1

2 Γ(−λ)2−λ−1
×

Kλ− d

2

(
√

(χ+ Q(x))γ′Σ−1γ)e(x−µ)′Σ−1γ

(
√

(χ+ Q(x))γ′Σ−1γ)
d

2
−λ

. (D.1)

As γ → 0 we obtain again with relation (B.4) the symmetric multivariate Student-t density

fX(x) =
χ−λΓ(−λ+ d

2)

π
d

2 |Σ| 1

2 Γ(−λ)
× (χ+ Q(x))λ− d

2 . (D.2)

We switch to the Student-t parametrization and set the degree of freedom ν = −2λ 2. Because
ψ = 0 the transformation of α to χ and ψ (cf. 4.3) reduces to

χ = α
Kλ(α)

Kλ+1(α)
α→0−→ 2 (−λ− 1) = ν − 2. (D.3)

Plugging in the values for λ and ν, the densities take the form

fX(x) =
(ν − 2)

ν

2 (γ′Σ−1γ)
ν+d

2

(2π)
d

2 |Σ| 1

2 Γ(ν2 )2
ν

2
−1

×
K ν+d

2

(
√

(ν − 2 + Q(x))γ′Σ−1γ) e(x−µ)′Σ−1γ

(
√

(ν − 2 + Q(x))γ′Σ−1γ)
ν+d

2

(D.4)

and for the symmetric case as γ → 0

fX(x) =
(ν − 2)

ν

2 Γ(ν+d
2 )

π
d

2 |Σ| 1

2 Γ(ν2 )(ν − 2 + Q(x))
ν+d

2

. (D.5)

It is important to note that the variance does not exist in the symmetric case for ν ≤ 2 while
for the asymmetric case the variance does not exist for ν ≤ 4. This is because the variance
of an asymmetric GH distribution involves the variance of the mixing distribution. In case
of a Student-t distribution, the mixing variable w is inverse gamma distributed and has finite
variance only if β > 2 which corresponds to λ < −2, i.e. ν > 4 (cf. C.10). Alternatively, in the
univariate case, this can be seen by the fact that the Student-t density has regularly varying
tails. For x → ∞, one obtains

fX(x) = L(x)x−ν−1, for γ = 0 (D.6)

fX(x) = L(x)x− ν

2
−1, for γ > 0, (D.7)

where L(x) denotes a slowly varying function at ∞. The asymptotic relation for the modified
Bessel function of the third kind (B.6) was applied to (D.4) to arrive at (D.7).

2Note that the (λ, α, µ, Σ, γ) parametrization yields to a slightly different Student-t parametrization: In this
package the parameter Σ denotes the variance in the multivariate case and the standard deviation in the
univariate case. Thus, set σ =

√

ν/(ν − 2) in the univariate case to get the same results as with the
standard R implementation of the Student-t distribution.
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D.2. Variance gamma distribution

Relation (B.3) can be used again to show that for χ → 0 and λ > 0 the density of the GH
distribution results in

fX(x) =
ψλ(ψ + γ′Σ−1γ)

d

2
−λ

(2π)
d

2 |Σ| 1

2 Γ(λ)2λ−1
×

Kλ− d

2

(
√

Q(x)(ψ + γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

Q(x)(ψ + γ′Σ−1γ))
d

2
−λ

. (D.8)

In the case of a variance gamma distribution the transformation of α to χ and ψ (cf. 4.3)
reduces to

ψ = α
Kλ+1(α)

Kλ(α)
= 2λ (D.9)

Thus, the density is

fX(x) =
2λλ(2λ+ γ′Σ−1γ)

d

2
−λ

(2π)
d

2 |Σ| 1

2 Γ(λ)
×

Kλ− d

2

(
√

Q(x)(2λ+ γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

Q(x)(2λ+ γ′Σ−1γ))
d

2
−λ

. (D.10)

A limiting case arises when Q(x) → 0, that is when x − µ → 0. As long as λ− d
2 > 0 relation

(B.3) can be used to verify that the density reduces to

fX(x) =
ψλ(ψ + γ′Σ−1γ)

d

2
−λ Γ(λ− d

2)

2d π
d

2 |Σ| 1

2 Γ(λ)
. (D.11)

By replacing ψ with 2λ the limiting density is obtained in the (λ, α, µ,Σ, γ)-parametrization. 3

For λ− d
2 ≤ 0 the density diverges. 4

E. Conditional density of the mixing variable W

Performing the E-Step of the MCECM algorithm requires the calculation of the conditional
expectation of wi given xi. In this section the conditional density is derived.

3The numeric implementation in R uses spline interpolation for the case where λ −
d

2
> 0 and Q(x) < ϵ.

4The current workaround in R simply sets observations where Q(x) < ϵ to ϵ when λ −
d

2
≤ 0.
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E.1. Generalized hyperbolic, hyperbolic and NIG distribution

The mixing term w is GIG distributed. By using (2.5) and (C.1) the density of wi given xi can

be calculated to be again the GIG density with parameters


λ− d
2 ,Q(x) + χ, ψ + γ′Σ−1γ



.

fw♣x(w) =
fX,W (x, w)

fX(x)

=
fX♣W (x)fGIG(w)

∫∞
0 fX♣W (x)fGIG(w)dw

=



γ′Σ−1γ + ψ

Q(x) + χ

0.5(λ− d

2
)

×

wλ− d

2
−1 exp



−1
2



Q(x)+χ
w + w (γ′Σ−1γ + ψ)



2Kλ− d

2

(
√

(Q(x) + χ) (γ′Σ−1γ + ψ))
(E.1)

E.2. Student-t distribution

The mixing term w is IΓ distributed. Again, the conditional density of wi given xi results in
the GIG density. The equations (2.5) and (C.9) were used. The parameters of the GIG density
are (λ − d

2 ,Q(x) + χ, γ′Σ−1γ). When γ becomes 0 the conditional density reduces to the IΓ

density with parameters



d
2 − λ, Q(x)+χ

2



.

fw♣x(w) =
fX,W (x, w)

fX(x)

=
fX♣W (x)fIΓ(w)

∫∞
0 fX♣W (x)fIΓ(w)dw

=



γ′Σ−1γ

Q(x) + χ

0.5(λ− d

2
)

×
wλ− d

2
−1 exp



−1
2



Q(x)+χ
w + w γ′Σ−1γ



2Kλ− d

2

(
√

(Q(x) + χ) γ′Σ−1γ)
(E.2)
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E.3. Variance gamma distribution

The mixing term w is Γ distributed. By using (2.5) and (C.6) the density of wi given xi can be

calculated to be again the GIG density with parameters


λ− d
2 ,Q(x), ψ + γ′Σ−1γ



.

fw♣x(w) =
fX,W (x, w)

fX(x)

=
fX♣W (x)fΓ(w)

∫∞
0 fX♣W (x)fΓ(w)dw

=



γ′Σ−1γ + ψ

Q(x)

0.5(λ− d

2
)

× (E.3)

wλ− d

2
−1 exp



−1
2



Q(x)
w + w (γ′Σ−1γ + ψ)



2Kλ− d

2

(
√

Q(x) (γ′Σ−1γ + ψ))
(E.4)

F. Distribution objects

In the package ghyp we follow an object-oriented programming approach and introduce distri-
bution objects. There are mainly four reasons for that:

1. Unlike most distributions the GH distribution involves at least 5 parameters which have
to fulfill some consistency requirements. Consistency checks can be performed once for
all when an object is initialized. In addition, constructors for different parametrizations
can be added easily and do not necessitate a change of all the function headers.

2. Once initialized the common functions belonging to a distribution can be called conve-
niently by passing the distribution object. A repeated input of the parameters is avoided.

3. Distribution objects returned from fitting procedures can be directly passed to, e.g., the
density function since fitted distribution objects add information to the distribution object
and consequently inherit from the class of the distribution object.

4. Generic method dispatching can be used to provide a uniform interface to, e.g., calculate
the expected value mean(distribution.object). Additionally, one can take advantage
of generic programming since R provides virtual classes and some forms of polymorphism.

See appendix H for several examples and H.2 for particular examples concerning the object-
oriented approach.

G. Constructors

Before giving examples on how GH distribution objects can be initialized, let us list the con-
structor functions for different distributions and parametrizations. Note that the constructors
below are used to initialize both, univariate and multivariate distributions.
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Parametrization

Distribution (λ, χ, ψ, µ,Σ, γ) (λ, α, µ,Σ, γ) (λ, α, µ,∆, δ,βββ)

GH ghyp(...) ghyp(..., alpha.bar=x) ghyp.ad(...)

hyp hyp(...) hyp(..., alpha.bar=x) hyp.ad(...)

NIG NIG(...) NIG(..., alpha.bar=x) NIG.ad(...)

Student-t student.t(..., chi=x) student.t(...) student.t.ad(...)

VG VG(..., psi=x) VG(...) VG.ad(...)

Apparently, the same constructor functions are used for the (λ, χ, ψ, µ,Σ, γ) and the (λ, α, µ,Σ, γ)
parametrization.

In case of the GH, hyp, and NIG distribution, the idea is that as long as the parame-
ter alpha.bar is not submitted the (λ, χ, ψ, µ,Σ, γ) parametrization is used. Conversely, if
alpha.bar is submitted, the (λ, α, µ,Σ, γ) parametrization will be used and the parameters χ
and ψ are neglected. Thus, typing either ghyp(), hyp(), or NIG() initializes an distribution
object in the (λ, χ, ψ, µ,Σ, γ) parametrization.

This is different for the Student-t and the VG distribution. Per default, these distributions
are initialized in the (λ, α, µ,Σ, γ) parametrization. In case of the Student-t distribution, the
(λ, χ, ψ, µ,Σ, γ) parametrization is choosen as soon as a χ (chi) is submitted which does not
satisfy eq. D.3 In case of the VG distribution, the (λ, χ, ψ, µ,Σ, γ) parametrization is choosen
as soon as a ψ (psi) is submitted which does not satisfy eq. D.9

To get the standard Student-t parametrization (i.e. the R-core implementation) use
student.t(nu = nu, chi = nu).

H. Examples

This section provides examples of distribution objects and the object-oriented approach as well
as fitting to data and portfolio optimization.

H.1. Initializing distribution objects

This example shows how GH distribution objects can be initialized by either using the (λ, χ, ψ, µ,Σ, γ),
the (λ, α, µ,Σ, γ) or the (λ, α, µ,∆, δ,βββ)-parametrization.

> ## Load the package "ghyp" and the data "smi.stocks" first

> library(ghyp)

> ## Initialized a univariate GH distribution object with

> ## the lambda/alpha.bar parametrization

> ghyp(lambda=-2, alpha.bar=0.5, mu=10, sigma=5, gamma=1)

Asymmetric Generalized Hyperbolic Distribution:

Parameters:

lambda alpha.bar mu sigma gamma

-2.0 0.5 10.0 5.0 1.0

> ghyp.ad(lambda=-2, alpha=1, beta = 0.5, mu=10, delta=1)
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Asymmetric Generalized Hyperbolic Distribution:

Parameters:

lambda alpha delta beta mu

-2.0 1.0 1.0 0.5 10.0

> ## Initialized a multivariate GH distribution object with

> ## the lambda/chi/psi parametrization

> ghyp(lambda=-2, chi=5, psi=0.1, mu=10:11, sigma=diag(5:6), gamma=-1:0)

Asymmetric Generalized Hyperbolic Distribution:

Parameters:

lambda chi psi

-2.0 5.0 0.1

mu:

[1] 10 11

sigma:

[,1] [,2]

[1,] 5 0

[2,] 0 6

gamma:

[1] -1 0

H.2. Object-oriented approach

First of all a GH distribution object is initialized and a consistency check takes place. The
second command shows how the initialized distribution object is passed to the density function.
Then a Student-t distribution is fitted to the daily log-returns of the Novartis stock. The fitted
distribution object is passed to the quantile function. Since the fitted distribution object inherits
from the distribution object this constitutes no problem.
The generic methods hist, pairs, coef, plot, lines, transform, [., mean and vcov are defined for
distribution objects inheriting from the class ghyp.
The generic methods logLik, AIC and summary are added for the class mle.ghyp, inheriting
from the class ghyp.

## Consistency check when initializing a GH distribution object.

## Valid input:

univariate.ghyp.object <- student.t(nu = 3.5, mu = 10,

sigma = 5, gamma = 1)

## Passing a distribution object to the density function

dghyp(10:14,univariate.ghyp.object)
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## Passing a fitted distribution object to the quantile function

fitted.ghyp.object <- fit.tuv(smi.stocks[,"Novartis"], silent = TRUE)

qghyp(c(0.01,0.05),fitted.ghyp.object)

## Generic method dispatching: the histogram method

hist(fitted.ghyp.object, legend.cex = 0.7)

## Generic programming:

mean(fitted.ghyp.object) ## fitted.ghyp.object is of class

## "mle.ghyp" which extends "ghyp"

vcov(univariate.ghyp.object)

H.3. Fitting generalized hyperbolic distributions to data

A multivariate NIG distribution is fitted to the daily returns of three swiss blue chips: Credit
Suisse, Nestle and Novartis. A pairs plot is drawn in order to do some graphical diagnostics of
the accuracy of the fit.

> data(smi.stocks)

> fitted.returns.mv <- fit.NIGmv(data=smi.stocks[1:500,c("CS","Nestle","Novartis")],

+ silent=TRUE)

> pairs(fitted.returns.mv, cex=0.5, nbins=20)
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In the following part daily log-returns of the SMI are fitted to the hyperbolic distribution.
Again, some graphical verification is done to check the accuracy of the fit.

> fitted.smi.returns <- fit.hypuv(data=smi.stocks[,c("SMI")],silent=TRUE)

> par(mfrow=c(1,3))

> hist(fitted.smi.returns,ghyp.col="blue",legend.cex=0.7)

> hist(fitted.smi.returns,log.hist=T,nclass=30,plot.legend=F,ghyp.col="blue")

> qqghyp(fitted.smi.returns,plot.legend=T,legend.cex=0.7)
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