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Abstract

This vignette presents the momentfit package, which is an attempt to rebuild the gmm package
using S4 classes and methods. The goal is to facilitate the development of new functionalities.
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1 Single Equation

1.1 An S4 class object for moment based models

We consider models for which the k × 1 coefficient vector θ is identified by the following vector of
moment conditions:

E[gi(θ)] = 0

A model object contains information about the moment function gi(θ), and the characteristics of the
data. The following describes the different possibilities included in the package.

1. The linear model:
Yi = X ′iθ + εi,

with the moment condition E[εi(θ)Zi] = 0, where Xi is k × 1 and Zi is q × 1 with q ≥ k. We
consider four possibilities for the asymptotic variance of

√
nḡi(θ):

a) “iid”: Here we assume no autocorrelation and homoscedastic error with Var(εi|Zi) = σ2,
which implies that the asymptotic variance V is σ2E[ZiZ

′
i] and can be estimated by:

V̂ = σ̂2

(
1

n

n∑
i=1

ZiZ
′
i

)
,

where σ̂2 = 1
n

∑n
i=1 ε̂

2
i , ε̂i = Yi −X ′i θ̂ and θ̂ is a consistent estimator of θ.

b) “MDS”: We assume that gi(θ) ≡ (εiZi) is a martingale difference sequence with no additional
assumption on the conditional variance of the error term. Heteroscedasticity is therefore
allowed. The asymptotic variance is therefore V = E(ε2iZiZ

′
i), and can be estimated by:

V̂ =
1

n

n∑
i=1

ε̂2iZiZ
′
i,

which represents the HC0 version of the heteroscedasticity consistent covariance matrix
(HCCM) estimator.

c) “HAC”: If we assume that gt(θ) (t is used when we have time series) is weakly dependent,
the asymptotic covariance matrix is V = Γ0 +

∑∞
i=1(Γi + Γ′i), with Γi = E(εtεt−iZtZ

′
t−i). It

can be estimated using a kernel estimator:

V̂ =

M∑
i=−M

Kh(i)Γ̂i,

where Kh(i) is a kernel that depends on the bandwidth h, and Γ̂i is an estimator of Γi.

d) “CL”: The sample is clustered. For one dimensional clusters, let ḡi(θ) be the sample mean
of the moment function for cluster i and ni be the number of observations in that cluster.
Then, the clustered covariance matrix of the sample moment

√
nḡ(θ) can be estimated as:

V̂ =
1

n

Ncl∑
i=1

n2i ḡi(θ̂)ḡ
′
i(θ̂)

where Ncl is the number of clusters. For higher dimensional clusters, like cities within
provinces for example, we need to take into account that observations belong to more than
one group. For a more detailed presentation with reference to recent developments, see
Berger et al. (2017).

2. The nonlinear model:
yi(θ) = xi(θ) + εi,

with the moment condition E[εi(θ)Zi] = 0. , where θ is k × 1 and Zi is q × 1 with q ≥ k. The
only difference is that εi(θ) is a nonlinear function of the coefficient vector θ. For this case, the
same three possibilities exist for the asymptotic variance.
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3. The functional or formula case: If we cannot represent the model in a regression format with
instruments, we simply write the moment conditions as E[gi(θ)] with gi(θ) being a continuous
and differentiable function from Rk to Rq, with q ≥ k. Here, we do not distinguish “iid” from
“MDS”. We therefore have two possible cases:

a) “iid” or “MDS”: The asymptotic variance is V = E[gi(θ)gi(θ)
′] and can be estimated by its

sample counterpart.

b) “HAC”: Same as for the linear case with Γi = E[gt(θ)gt−i(θ)
′].

The difference between the two types refer to the method used to express the moments conditions
in R. See below for examples. In particular, a formula type can be used to define a Minimum
Distance Estimator (MDE) model. Moment conditions of MDE models can be written as gi(θ) =
[Ψ(θ)− fi], where Ψ(θ) is a q× 1 vector of functions of θ that do not depend on the data, and fi
is a q × 1 vector of functions of the vector of observations i that do not depend on θ. It is worth
making the distinction because the efficient GMM can be obtained in one step. We will discuss
estimation below.

Since the moment conditions are defined differently, we have four difference classes to represent
the four models. Their common slots are all the arguments that specify V , which may include some
specifications1, the names of the coefficients, the names of the moment conditions, k, q, n, and the
argument “isEndo”, a k logical vector that indicates which regressors in Xi is considered endogenous.
It is considered endogenous if it is not part of Zi. Of course, it makes no sense when gi(θ) is not based
on instruments.

The main difference is the slots that define gi(θ). For “linearModel” class, the slots “modelF” and
“instF” are model.frame’s that define the regression model and the instruments. For “nonlinearModel”,
we have the following slots: “modelF” is a data.frame for the nonlinear regression, “instF” is as for the
linear case, and “fRHS” and “fLHS” are expressions to compute the right and left hand sides of the
nonlinear regression. The function D() can then be used to obtain analytical derivatives. The class
“formulaModel” is similar to the “nonlinearModel” class with the exception that the slots “fRHS” and
“fLHS” are lists of expressions, one element per moment condition, and there is no slot “instF” as
there are no instruments. The additional slot “isMDE” indicates if is it an MDE model. Finally, the
“functionModel” class contains the slot “fct”, which is a function of two arguments, the first being
θ, and returns a n × q matrix with the ith row being gi(θ)

′. The slot “dfct” is an optional function
with the same two arguments which returns the q × k matrix of first derivatives of ḡ(θ). The slot “X”
is whatever is needed as second argument of “fct” and “dfct”. The last two classes also contain the
slot “theta0”, which is mainly used to validate the object. It is also used latter as starting values for
“optim” if no other starting values are provided. For the nonlinear regression, it must be a named
vector.

Consider the following model:

y = θ0 + θ1x1i + θ2x2i + εi

with the instruments Zi = {1, x2i, z1i, z2i}′ and iid errors. We could create an object of class “linar-
Model” as follows:

library(momentfit)

data(simData)

modelF <- model.frame(y~x1+x2, simData)

instF <- model.frame(~x2+z1+z2, simData)

mod1 <- new("linearModel", modelF=modelF, instF=instF, k=3L, q=4L, vcov="iid",

parNames=c("(Intercept)", "x1","x2"), n=50L,

momNames=c("(Intercept)", "x2", "z1", "z2"),

isEndo=c(FALSE, TRUE, FALSE, FALSE), smooth=FALSE)

The print method describes the model.

1The slot “vcovOptions” is a list of options for the HAC, like the kernel or bandwidth, or any other type of covariance
matrix. For example, Cluster covariance matrices also requires some specifications and will be included in that slot.
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mod1

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

Although there is a validity procedure when the object is created, it is not recommended to create
it this way. Small error not detected by the validity method could result in estimation problems. The
constructor is the function momentModel(). The above model can be created as follows2:

mod1 <- momentModel(y~x1+x2, ~x2+z1+z2, data=simData, vcov="iid")

mod1

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

The two other classes of object can be created the same way. Consider the following model:

yi = eθ0+θ1x1i+θ2x2i + εi

using the same instruments. The nonlinear model can be created as follows:

theta0 <- c(theta0=1, theta1=1, theta2=2)

mod2 <- momentModel(y~exp(theta0+theta1*x1+theta2*x2), ~x2+z1+z2, theta0,

data=simData, vcov="iid")

mod2

## Model based on moment conditions

## *********************************

## Moment type: nonlinear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 2

## Sample size: 50

The meaning of the number of endogenous variables in the nonlinear case is slightly different from
linear models. In linear models, it is the number of endogenous variables among the right hand side
variables. For the nonlinear case, variables may appear on both sides, which makes it hard to identify
the response variable. The number reported is therefore the number of variables that are not among
the instruments. In mod2, the endogenous variables are y and x1.

For the functional case, suppose we want to estimate the mean and variance of a normal distribution
using the following moment condition:

E


xi − µ

(xi − µ)2 − σ2

(xi − µ)3

(xi − µ)4 − 3σ4

 = 0

2Notice that “momentModel” is the union class for all moment models described above
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The functions “fct” and “dfct” would be

fct <- function(theta, x)

cbind(x-theta[1], (x-theta[1])^2-theta[2],

(x-theta[1])^3, (x-theta[1])^4-3*theta[2]^2)

dfct <- function(theta, x)

{
m1 <- mean(x-theta[1])

m2 <- mean((x-theta[1])^2)

m3 <- mean((x-theta[1])^3)

matrix(c(-1, -2*m1, -3*m2, -4*m3,

0, -1, 0, -6*theta[2]), 4, 2)

}

The object can than be created:

theta0=c(mu=1,sig2=1)

x <- simData$x3

mod3 <- momentModel(fct, x, theta0, grad=dfct, vcov="iid")

mod3

## Model based on moment conditions

## *********************************

## Moment type: function

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 0

## Sample size: 50

We can also use the non-central moments and write the model as a MDE model using the formula
type. The first four non-central moments are:

E


xi − µ

x2i − (µ2 + σ2)
x3i − (µ3 + 3µσ2)

x4i − (µ4 + 6µ2σ2 + 3σ4)

 = 0

If we name σ2, “sig”, and µ, “mu”, we can create the model as follows.

theta0=c(mu=1,sig=1)

dat <- data.frame(x=x, x2=x^2, x3=x^3, x4=x^4)

gform <- list(x~mu,

x2~mu^2+sig,

x3~mu^3+3*mu*sig,

x4~mu^4+6*mu^2*sig+3*sig^2)

mod4 <- momentModel(gform, NULL, theta0, vcov="MDS", data=dat)

mod4

## Model based on moment conditions

## *********************************

## Moment type: formula

## Covariance matrix: MDS

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 0

## Sample size: 50

We could have created the model as
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dat <- data.frame(x=x)

gform <- list(x~mu,

x^2~mu^2+sig,

x^3~mu^3+3*mu*sig,

x^4~mu^4+6*mu^2*sig+3*sig^2)

mod4 <- momentModel(gform, NULL, theta0, vcov="MDS", data=dat)

But the first approach may speed up estimation quite a bit for large dataset because it reduces the
number of operations.

Covariance matrix options can be modified using the argument “vcovOptions”. For example, if we
want an HAC matrix, several options such as the kernel and bandwidth can be modified. By default,
the HAC is computed using the Quadratic Spectral kernel and the optimal bandwidth of Andrews
(1991). To modify the options, we proceed this way:

mod.hac <- momentModel(y~x1+x2, ~x1+z2+z3, vcov="HAC",

vcovOptions=list(kernel="Bartlett", bw="NeweyWest"),

data=simData)

mod.hac

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: HAC with Bartlett kernel and NeweyWest bandwidth

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

See the help on “vcovHAC” of the sandwich package for more details on all possible parameters.
For clustered covariance, we need to specify the clusters and some other options. Lets consider the
following dataset:

data("InstInnovation", package = "sandwich")

We can use one-way clustering:

mod.cl1 <- momentModel(sales~value, ~value, vcov="CL",

vcovOptions=list(cluster=~company),

data=InstInnovation)

mod.cl1

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: CL

## Clustered based on: company

## Number of regressors: 2

## Number of moment conditions: 2

## Number of Endogenous Variables: 0

## Sample size: 6193

or a two-way clustering:

mod.cl2 <- momentModel(sales~value, ~value, vcov="CL",

vcovOptions=list(cluster=~company+year, multi0=TRUE),

data=InstInnovation)

mod.cl2

## Model based on moment conditions
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## *********************************

## Moment type: linear

## Covariance matrix: CL

## Clustered based on: company and year

## Number of regressors: 2

## Number of moment conditions: 2

## Number of Endogenous Variables: 0

## Sample size: 6193

The clustered covariance is computed using the “meatCL” function of the sandwich package. For
more options, see its help file.

1.1.1 Smoothed moment conditions

In the case of weakly dependent moment conditions, some estimation methods require the conditions
to be smoothed using a kernel approach. In that case, moment conditions are defined as:

gwt (θ) =

m∑
s=−m

w(s)gt+s(θ)

The optimal bandwidth is computed when the model is created, and remains the same during the
estimation process, unless another one is specified. Since we need an estimate of θ to compute the
optimal bandwidth, the one-step GMM using the identity matrix as weighting matrix is used.

The default kernel is the “Truncated” one, and the default bandwidth is based on Andrews (1991).
The bandwidth is not based on the smoothing kernel, but on the implied kernel for the HAC estimation.
Smith (2011) shows that when gt(θ) is replaced by gwt (θ), V̂ =

∑n
i=1 g

w
t (θ)gwt (θ)′/n is an HAC estimator

of the asymptotic covariance matrix of
√
nḡ(θ), with Bartlett kernel when the smoothing kernel is the

Truncated, and with Parzen kernel when the smoothing kernel is the Bartlett. The optimal bandwidth
for the Truncated kernel is therefore based on the Bartlett kernel, and the optimal bandwidth is based
on the Parzen kernel when the smoothing kernel is the Bartlett.

To create a model with smoothed moment conditions, the argument “smooth” of momentModel must
be set to TRUE. In that case, the slot “vcov” is automatically set to “MDS”, because gwt (θ) is assumed
to be a martingale difference sequence, and no other value is allowed. It is possible to modify the
specifications of the kernel and bandwidth through the argument “vcovOptions” (See help(vcovHAC)
from the sandwich package for all possible options). Notice that the kernel type that is passed in
“vcovOptions” is the implied kernel for the HAC estimation, not the smoothing one. The following
shows the default specifications:

smod1 <- momentModel(y~x1+x2, ~x2+z1+z2, data=simData, smooth=TRUE)

smod1

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Smoothing: Truncated kernel and Andrews bandwidth (1.413)

##

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 49

See in the following example that the Parzen kernel is selected, which implies a Bartlett kernel for
the smoothing of gt(θ).

smod2 <- momentModel(y~x1+x2, ~x2+z1+z2, data=simData, smooth=TRUE,

vcovOptions=list(kernel="Parzen", bw="NeweyWest", prewhite=1))
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smod2

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Smoothing: Bartlett kernel and NeweyWest bandwidth (4.736)

##

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 46

The smoothing specifications are stored in the slot “sSpec” of the model object. The slot only
admits objects of class “sSpec”. We can see that a print method for that type of object exists:

smod2@sSpec

## Smoothing: Bartlett kernel and NeweyWest bandwidth (4.736)

The slot “w” is a “tskernel” object from the “stats” package:

smod2@sSpec@w

## unknown

## coef[-4] = 0.03253

## coef[-3] = 0.07673

## coef[-2] = 0.12093

## coef[-1] = 0.16513

## coef[ 0] = 0.20933

## coef[ 1] = 0.16513

## coef[ 2] = 0.12093

## coef[ 3] = 0.07673

## coef[ 4] = 0.03253

The other slots are “bw” for the bandwidth, “bwMet” for the bandwidth method, “kernel” for
the type of kernel, and a two dimentional numeric vector “k”. The elements of “k” are respectively
k1 =

∫∞
−∞ k(s)ds and k2 =

∫∞
−∞ k(s)2ds, where k(s) is the smoothing kernel. The vector is needed

to compute consistent estimators of the asymptotic Jacobian of ḡ(θ), and the asymptotic covariance
matrix of

√
nḡ(θ), using gwt (θ) (See Theorem 2.5 of Smith (2011)). Those estimators are

Ĝ(θ) =
1

nk1

n∑
t=1

dgwt (θ)

dθ

and

V̂ (θ) =
bn
nk2

n∑
t=1

gwt (θ)gwt (θ)′ ,

where bn is the bandwidth.

1.2 Methods for momentModel Classes

• setCoef : A method to validate and to format the vector of coefficients. It is used by most methods
to verify if the vector is correctly specified and to re-format it if needed. Is it particularly useful
to create a vector of initial values. For example, if we want to create a named vector with valid
names for the nonlinear “mod2” model, we can proceed this way:
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setCoef(mod2, 1:3)

## theta0 theta1 theta2

## 1 2 3

The method also reorders the vector to match the order in the model object:

setCoef(mod2, c(theta1=1, theta2=1, theta0=2))

## theta0 theta1 theta2

## 2 1 1

• residuals: Only for “linearModel” and “nonlinearModel”, it returns ε(θ):

theta0 <- c(theta0=1, theta1=1, theta2=2)

e1 <- residuals(mod1, c(1,2,3))

e2 <- residuals(mod2, theta0)

It returns errors if the names are invalid or the number of coefficients is wrong.

• Dresiduals: Only for “linearModel” and “nonlinearModel”, it returns the n× k matrix dε(θ)/dθ:

e1 <- Dresiduals(mod1)

theta0 <- setCoef(mod2, c(1,1,2))

e2 <- Dresiduals(mod2, theta0)

Notice that the coefficient θ is not required for linear models, but no error is returned if it is. It is
just not used. For nonlinear regressions, the derivatives are obtained analytically using D() from
the utils package.

• model.matrix : For “linearModel” and “nonlinearModel” only. For both classes, it ca be used to
get the matrix of instruments:

Z <- model.matrix(mod1, type="instruments")

For “linearModel” only, it can be used to get the matrix of regressors X

X <- model.matrix(mod1)

• modelResponse: For linear model only, it returns the vector of response. It is not defined for
“nonlinearModel” classes because the left hand side is not always defined.

Y <- modelResponse(mod1)

• ”[”: It creates a new object of the same class with a subset of moment conditions:

mod1[1:3]

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 3

## Number of Endogenous Variables: 1

## Sample size: 50

mod2[c(1,2,4)]
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## Model based on moment conditions

## *********************************

## Moment type: nonlinear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 3

## Number of Endogenous Variables: 2

## Sample size: 50

mod3[-1]

## Model based on moment conditions

## *********************************

## Moment type: function

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 3

## Number of Endogenous Variables: 0

## Sample size: 50

• as: “linearModel” can be converted into a “nonlinearModel” or “functionModel”. The former is
userful when we impose nonlinear restrictions on the coefficients.

mod4 <- as(mod1, "nonlinearModel")

Notice, however, that coefficient names and the variable names in modelF change in this case. It
is done to avoid invalid variable and parameter names in the expressions. It will happens with
the intercept or if there are interactions or transformations using the identity function I().

mod4@parNames

## [1] "theta1" "theta2" "theta3"

mod4@fLHS

## expression(Y)

mod4@fRHS

## expression(theta1 * X1 + theta2 * X2 + theta3 * X3)

• subset : As for the S3 method, it creates the same class of object with a subset of the sample:

subset(mod1, simData$x1>4)

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 31

• evalMoment : It computes the n× q matrix of moments, with the ith row being gi(θ)
′:

gt <- evalMoment(mod1, 1:3)

• evalDMoment : It computes the p×k matrix of derivatives of the sample mean of gi(θ) (the matrix
G above):
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theta0 <- c(theta0=.1, theta1=1, theta2=-2)

## or ##

theta0 <- setCoef(mod2, c(.1,1,-2))

evalDMoment(mod2, theta0)

## theta0 theta1 theta2

## (Intercept) -471.3350 -5128.568 -245.9807

## x2 -245.9807 -2651.763 -161.5198

## z1 -554.1436 -6026.748 -293.1144

## z2 -180.9458 -1964.310 -103.2112

The optional argument “impProb” is used to replace the uniform weight 1/n by a vector of
probabilities, when the sample mean is computed. The optional argument “lambda” is a q × 1
vector. When provides, it returns an n× k matrix with the ith row being equal to the derivative
of λ′gi(θ) with respect to θ. It is needed by some estimation methods.

• vcov : It computes V̂ using the specification of the model as described in the previous section.
For example, if the model is linear with MDS error, it computes V̂ = 1

n

∑n
i=1 ε̂

2
iZiZ

′
i.

vcov(mod1, theta=c(1,1,1))

## (Intercept) x2 z1 z2

## (Intercept) 11.88167 72.09658 12.31520 16.53273

## x2 72.09658 551.58117 70.55732 127.39265

## z1 12.31520 70.55732 23.13975 12.65932

## z2 16.53273 127.39265 12.65932 37.91734

For smoothed moment condition, vcov uses the formula given in Section 1.1.1.

• momentStrength: For “linearModel” only (for now), it computes the first stage F-test to measure
the strength of the instruments:

momentStrength(mod1)

## $strength

## Stats df1 df2 pv

## x1 4.113798 2 46 0.02271759

##

## $mess

## [1] "Instrument strength based on the F-Statistics of the first stage OLS"

• update: This method is used to modify existing objects. For now, only the covariance structure
can be modified, which includes changing the “smooth” argument. We could, for example, change
the covariance structure of mod1 from “iid” to “MSD”:

update(mod1, vcov="MDS")

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

To change it to “CL”, the vcovOptions must be provided because the cluster identifier is needed.
In the case of conversion to “HAC”, not providing vcovOptions will results in setting the specifi-
cations to the default ones.
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update(mod1, vcov="HAC")

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: HAC with Quadratic Spectral kernel and Andrews bandwidth

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

For more flexibility, update offers more options when the fitted model comes from the gmm4()
function. See Section 1.4.6 below for more details. We can also update the model and redefine it
as smoothed moments:

update(mod1, smooth=TRUE)

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Smoothing: Truncated kernel and Andrews bandwidth (1.413)

##

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 49

Other methods will be presented below as they require to define other classes.

1.3 Restricted models

We can create objects of class “rlinearModel”, “rnonlinearModel”, “rformulaModel” or “rfunction-
Model” using the method restModel and print the restrictions using the printRestrict method.

Lets first create a new model with more regressors:

UR.mod1 <- momentModel(y~x1+x2+x3+z1, ~x1+x2+z1+z2+z3+z4, data=simData)

We can impose restrictions in two ways. Using Rθ = q format:

R1 <- matrix(c(1,1,0,0,0,0,0,2,0,0,0,0,0,1,-1),3,5, byrow=TRUE)

q1 <- c(0,1,3)

R1.mod1 <- restModel(UR.mod1, R1, q1)

R1.mod1

## Model based on moment conditions

## *********************************

## Moment type: rlinear

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 7

## Number of Endogenous Variables: 1

## Sample size: 50

## Constraints:

## (Intercept) + x1 = 0

## 2 x2 = 1

## x3 - z1 = 3

## Restricted regression:

## (y-0.5x2-3x3) = (-(Intercept)+x1)+(x3+z1)
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Or using character vectors. As long as it uses the parameter names, it will work fine.

R2 <- c("x1","2*x2+z1=2", "4+x3*5=3")

R2.mod1 <- restModel(UR.mod1, R2)

printRestrict(R2.mod1)

## Constraints:

## x1 = 0

## 2 x2 + z1 = 2

## 5 x3 = -1

## Restricted regression:

## (y-x2+0.2x3) = (Intercept)+(-0.5x2+z1)

If parameters have special names because of the way the regression is defined, it will also work fine:

UR.mod2 <- momentModel(y~x1*x2+exp(x3)+I(z1^2), ~x1+x2+z1+z2+z3+z4, data=simData)

R3 <- c("x1","exp(x3)+2*x1:x2", "I(z1^2)=3")

R3.mod2 <- restModel(UR.mod2, R3)

printRestrict(R3.mod2)

## Constraints:

## x1 = 0

## exp(x3) + 2x1:x2 = 0

## I(z1^2) = 3

## Restricted regression:

## (y-3I(z1^2)) = (Intercept)+x2+(-2exp(x3)+x1:x2)

For “nonlinearModel”, only character vectors or lists of formulas are allowed. The restriction must
also be written as one coefficient as a function of the others.

R1 <- c("theta1=theta2^2")

restModel(mod2, R1)

## Model based on moment conditions

## *********************************

## Moment type: rnonlinear

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 2

## Sample size: 50

## Constraints:

## theta1 ~ theta2^2

printRestrict(restModel(mod2, theta1~theta2))

## Constraints:

## theta1 ~ theta2

Restrictions can also be imposed on “functionModel”:

restModel(mod3, "mu=0.5")

## Model based on moment conditions

## *********************************

## Moment type: rfunction

## Covariance matrix: iid

## Number of regressors: 1

## Number of moment conditions: 4

## Number of Endogenous Variables: 0

## Sample size: 50
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## Constraints:

## mu ~ 0.5

All methods described in the previous subsections also apply to restricted models. However, when
θ is need, it must be of the right length, which is k minus the number of restrictions. Many of these
methods use the coef method to obtain the unrestricted version of the coefficients and call the method
for unrestricted models.

For example, in the following model

printRestrict(R2.mod1)

## Constraints:

## x1 = 0

## 2 x2 + z1 = 2

## 5 x3 = -1

## Restricted regression:

## (y-x2+0.2x3) = (Intercept)+(-0.5x2+z1)

There are only 2 restricted coefficients, the intercept and the coefficient of (−0.5x2 + z1). Suppose
there are respectively equal to 1.5 and 0.5, then the unrestricted version is

coef(R2.mod1, c(1.5,.5))

## (Intercept) x1 x2 x3 z1

## 1.50 0.00 0.75 -0.20 0.50

It is possible to verify that the length or names are valid by using the setCoef method:

setCoef(R2.mod1, c(1.5,.5))

## (Intercept) (-0.5x2+z1)

## 1.5 0.5

Notice that any restricted class object contains its unrestricted version. For example, “rlinearModel”
is a class that contains a “linearModel” class object plus a few additional slots. We can therefore use
the as method directly to convert a restricted model to its unrestricted counterpart. We can therefore
compute the residuals from the restricted model as follows:

e1 <- residuals(as(R2.mod1, "linearModel"),

coef(R2.mod1, c(1.5,.5)))

It is identical to use the “rlinearModel” method directly:

e2 <- residuals(R2.mod1, c(1.5,.5))

all.equal(e1,e2)

## [1] TRUE

Other methods that behave in the same way include evalMoment and vcov. The methods that
will produce different results include Dresiduals, evalDMoment, model.matrix, and modelResponse.
Restrictions affect derivatives and the left and right hand sides of regression models. Fo example:

R1 <- c("theta1=theta2^2")

R1.mod2 <- restModel(mod2, R1)

evalDMoment(mod2, c(theta0=1, theta1=1, theta2=1))

## theta0 theta1 theta2

## (Intercept) -81045584 -879800997 -763376712

## x2 -763376712 -8146652309 -7316573837

## z1 -67269892 -726185991 -616728543

## z2 -215480202 -2340842161 -2071011945
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## with setCoef:

evalDMoment(R1.mod2, setCoef(R1.mod2, c(1,1)))

## theta0 theta2

## (Intercept) -81045584 -763376712

## x2 -763376712 -7316573837

## z1 -67269892 -616728543

## z2 -215480202 -2071011945

Every method uses the method modelDims to extract the information for a model. For example,
the slot “parNames” of mod2 and R1.mod2 are the same even if theta1 is not present in the restricted
model.

mod2@parNames

## [1] "theta0" "theta1" "theta2"

R1.mod2@parNames

## [1] "theta0" "theta1" "theta2"

When we need the right specifications of the model, we need to extract that information using
modelDims.

modelDims(mod2)$parNames

## [1] "theta0" "theta1" "theta2"

modelDims(mod2)$k

## [1] 3

modelDims(R1.mod2)$parNames

## [1] "theta0" "theta2"

modelDims(R1.mod2)$k

## [1] 2

1.4 Generalized method of moments

In this section, we present the GMM method for fitting the different types of moment based models
described in the previous section. The estimator is defined as

θ̂(W ) = arg min
θ
ḡ(θ)′Wḡ(θ)

Under some regularity conditions (see Hansen, 1982), we have the following result:

√
n
(
θ̂(W )− θ

)
d→ N

(
0, (G′WG)−1G′WVWG(G′WG)−1

)
,

where G = E[dgi(θ)/dθ] and V is the asymptotic variance of
√
nḡ(θ). We can therefore use the following

approximation for inference:

θ̂(W ) ≈ N
(
θ, (Ĝ′WĜ)−1Ĝ′WV̂WĜ(Ĝ′WĜ)−1/n

)
with Ĝ = 1

n

∑n
i=1 dgi(θ̂(W ))/dθ and V̂ is some consistent estimate V . Therefore, the property depends

on the method, which in this case is simply characterized by the choice of the weighting matrix W , and
on the statistical properties of gi(θ). The next section present the different types of W , and introduce
a new class.
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1.4.1 A class object for moment Weights

Now that we have our model classes well defined, we need a way to construct a weighting matrix. We
could simply define W as a matrix and move on to the estimation section, but in an attempt to make
the estimation computationally more efficient and numerically stable, we construct the weights in a
particular way depending on its structure. There is in fact an optimal choice for W that minimizes the
asymptotic variance of the GMM estimator. If W = V −1, the above property becomes:

√
n
(
θ̂(V −1)− θ

)
d→ N

(
0, [G′V −1G]−1

)
,

The new covariance matrix [G′V −1G]−1 is smaller than the one based on other W in the sense that the
difference (the second minust the first) is negative definite. The inverse V −1 may have to be computed
several times for inference or simply for estimation if we use iterative GMM of CUE. It is therefore
worth finding a way to reduce the number of potentially unstable operations. For example, in the linear
or nonlinear model with iid errors, V −1 = [σ2E(ZiZ

′
i)]
−1, and can be estimated by

V̂ =
1

σ̂2

(
1

n

n∑
i=1

ZiZ
′
i

)−1

Therefore two V̂ ’s differ only by their estimates of σ2. It is therefore not necessary to recompute the
second term each time. In fact, it is even not necessary to compute the sum. A more stable way
would be to store the QR decomposition of the n × q matrix Z. The “momentWeights” class store
only what is needed. It can be created by the evalWeights method. It is a method for the union
class “momentModel”, which includes all restricted and unrestricted model classes. The method has
three arguments, the “momentModel”, the vector of coefficients, and the type of weights. The third
argument can be a matrix, if we want to provide our own fixed one, the character ”ident”, to create
an identity matrix or, which is the default, the character ”optimal”. In the latter case, the efficient
weighting matrix is computed based on the characteristics of the “momentModel” specified when the
object was created.

There are two ways of creating an identity. The first way is to use the character ”ident”. In this
case, it is not necessary to provide a vector of coefficients.

model <- momentModel(y~x1, ~z1+z2, data=simData, vcov="iid") ## lets create a simple model

wObj <- evalWeights(model, w="ident")

The show method for the “momentWeights” object prints the matrix as it should look like. If it is
the efficient matrix, the inverse is computed and printed. It is not too efficient but when do we really
need to see it? For the one we just created, we get

wObj

## Moment weights matrix object

## [1] "Identity"

Only a character string is printed because the identity is not actually created. After all, why should
we? If we need to compute G′IG, we do not want to create I and do the operation, but rather compute
G′G. That’s how things are done in the package. For this reason, the second way of creating an identity
weighting matrix is not recommended:

evalWeights(model, w=diag(3))

## Moment weights matrix object

## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 0 1 0

## [3,] 0 0 1
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The optimal matrix at θ can be obtained without specifying w.

wObj <- evalWeights(model, theta=c(1,2))

The type slot indicates how the weighting matrix is stored.

wObj@type

## [1] "qr"

Here the QR decomposition is store because vcov=”iid”. For any “momentModel” including “func-
tionModel” classes, with vcov=”MDS”, the QR decomposition of the n×q matrix of moment conditions
is stored. It avoids having to compute g(θ)′g(θ). For HAC, there is no gain in storing the QR decom-
position. The type is then “chol”, which indicates that the Cholesky upper triangular matrix is stored:

model2 <- momentModel(y~x1, ~z1+z2, data=simData, vcov="HAC")

evalWeights(model2, c(1,2))@type

## [1] "chol"

When the matrix is provided, the type is “weights”, which indicates that no inversion is needed

evalWeights(model, w=diag(3))@type

## [1] "weights"

The weights matrix is used to compute the vector of estimates, its covariance matrix and to do
inference. Most operations ar in the form A′WB for matrices A and B. How do we compute those
knowing that it depends on how W is stored in the object. The method quadra does it for us. Consider
the following optimal weighting matrix, which is stored as a QR decomposition:

wObj <- evalWeights(model, theta=1:2)

Let compute G and ḡ(θ)

G <- evalDMoment(model, theta=1:2)

gbar <- colMeans(evalMoment(model, theta=1:2))

If we need to compute ḡ′Wḡ, which is the objective function that we want to minimize, we do the
following:

quadra(wObj, gbar)

## [1] 0.8478471

To compute G′Wḡ, which is the first order condition of the minimization problem, we proceed as
follows:

quadra(wObj, G, gbar)

## [,1]

## [1,] 0.1316962

## [2,] 0.7043764

If we only want W , we only use the weights as argument.

quadra(wObj)

## [,1] [,2] [,3]

## [1,] 0.11425728 -0.041052353 -0.036112517

## [2,] -0.04105235 0.028230539 0.008474443

## [3,] -0.03611252 0.008474443 0.019640578
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It is what the print method calls before printing the object. Finally, the ”[” method can be used to
create another “momentWeights” object with a subset of the moment conditions. Only one argument
is needed, and the slot “type” of the object is converted into ”weights”.

wObj[1:2]

## Moment weights matrix object

## [,1] [,2]

## [1,] 0.11425728 -0.04105235

## [2,] -0.04105235 0.02823054

We just saw a way of computing the objective function using quadra, but is can also be done using
the evalGmmObj method. In this case, the weights is not necessarily based on the same coefficient as
ḡ, which is often the case in GMM estimations:

theta0 <- 1:2

wObj <- evalWeights(model, theta0)

theta1 <- 3:4

evalGmmObj(model, theta1, wObj)

## [1] 374.6209

Notive that the method returns nḡ′Wḡ.

1.4.2 The solveGmm Method

The main method to estimate a model for a given W is solveGmm. The methods require a momen-
tWeights object as second argument. For “nonlinearModel”, “functionModel” and “formulaModel”
classes, there are two more optional arguments. The first is “theta0”, which is the starting value to
pass to the minimization algorithm. If not provided, the one stored in the model object is used. The
second is “algo” which specifies which algorithm to use to minimize the objective function. By default,
optim is used. The only other choice for now is nlminb. The default method for optim is “BFGS”, but
all arguments of the algorithm can be modified by specifying them directly in the call of solveGmm.

The method simply minimizes ḡ(θ)′Wḡ(θ) for a given W . For “linearModel” classes, the analytical
solution is used. It is therefore the prefered class to use when it is possible. For all other classes,
the solution is obtained by the selected algorithm. For “nonlinearModel” and “formulaModel”, the
gradian of the objective function, 2nG′Wḡ is passed to the algorithm using the analytical derivative
of the moment conditions (the evalDMoment method). For “functionGMM” classes, G is computed
numerically using numericDeriv unless dfct was provided when the object was created. The solveGmm
method returns a vector of coefficients and a convergence code. The latter is null for linear models and
is the code returned by the algorithm otherwise.

Consider the following linear model:

mod <- momentModel(y~x1, ~z1+z2, data=simData, vcov="MDS")

We can estimate the model using the identity matrix as weights as follows:

wObj0 <- evalWeights(mod, w="ident")

res0 <- solveGmm(mod, wObj0)

res0$theta

## (Intercept) x1

## 0.1049242 0.9553511

For two-step GMM, we just need to recompute the weighting matrix and call the method again.

wObj1 <- evalWeights(mod, res0$theta)

res1 <- solveGmm(mod, wObj1)

res1$theta
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## (Intercept) x1

## 0.1505614 0.9503860

We could iterate and get the iterative GMM estimator. The result may be different if we express
the linear model in a nonlinear way or using a function, which is not recommended.

solveGmm(as(mod, "nonlinearModel"), wObj1)$theta

## theta1 theta2

## 0.1505604 0.9503862

solveGmm(as(mod, "functionModel"), wObj1)$theta

## (Intercept) x1

## 0.1505614 0.9503860

Consider now the above nonlinear model that we repeat here.

theta0 <- c(theta0=0, theta1=0, theta2=0)

mod2 <- momentModel(y~exp(theta0+theta1*x1+theta2*x2), ~x2+z1+z2, theta0,

data=simData, vcov="MDS")

wObj0 <- evalWeights(mod2, w="ident")

res1 <- solveGmm(mod2, wObj0, control=list(maxit=2000))

res1

## $theta

## theta0 theta1 theta2

## 0.43293969 0.20638573 -0.01283577

##

## $convergence

## [1] 0

solveGmm(mod2, wObj0, method="Nelder", control=list(maxit=2000))

## $theta

## theta0 theta1 theta2

## 0.43346444 0.20640255 -0.01293145

##

## $convergence

## [1] 0

solveGmm(mod2, wObj0, algo="nlminb", control=list(iter.max=2000))

## $theta

## theta0 theta1 theta2

## 0.43293961 0.20638574 -0.01283576

##

## $convergence

## [1] 0

Notice that there is no signature for restricted models. However, it is not needed since they inherit
from their unrestricted counterpart and the same procedure is needed to estimate them. Suppose, for
example, that we want to impose the restriction θ1 = θ22.

R1 <- c("theta1=theta2^2")

rmod2 <- restModel(mod2, R1)

res2 <- solveGmm(rmod2, wObj0, control=list(maxit=2000))

res2

## $theta

## theta0 theta2
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## 2.2589972 -0.1167958

##

## $convergence

## [1] 0

The unrestricted version can be extracted using coef.

coef(rmod2, res2$theta)

## theta0 theta1 theta2

## 2.25899717 0.01364125 -0.11679576

1.4.3 GMM Estimation: the gmmFit method

For most users, what we presented above will rarely be used. What they want is a way to estimate their
models without worrying about how it is done. The gmmFit method is the main method to estimate
models. The only requirement is to first create a “momentModel”. Before going into all the details,
the most important arguments to set is the object, which is a “momentModel” class, and a type of
GMM. The different types are: (1) “twostep” for two-step GMM, which is the default, (2) “iter” for
iterative GMM, (3) “cue” for continuously updated GMM , or (4) “onestep” for the one-step GMM.

In this package, the one-step GMM means the estimation using the identity matrix as W . It is
therefore not an efficient GMM. The two-step GMM, without any other argument is computed as
follows:

1. Define W0 as being the identity matrix.

2. Get θ̂1 ≡ θ̂(W0)

3. Compute W1 = [V̂ (θ̂1)]−1.

4. Get θ̂2 ≡ θ̂(W1).

For the iterative GMM we proceed as follows:

1. Define W0 as being the identity matrix.

2. Get θ̂1 ≡ θ̂(W0)

3. Compute W1 = [V̂ (θ̂1)]−1.

4. Get θ̂2 ≡ θ̂(W1).

5. If ‖θ̂1 − θ̂2‖/(1 + ‖θ̂1‖) < itertol, where itertol is a user defined tolerance level, stop. Otherwise,

set θ̂1 = θ̂2 and go back to 3. By default, itertol = 10−7.

CUE is a one step efficient GMM method in which W = V̂ (θ). The solution is obtained by minimizing
nḡ(θ)[V̂ (θ)]−1ḡ(θ).

There are two special cases that are worth mentioning. The first case applies to all “momentModel”.
If q = k, the model is just-identified. In that case, in theory, the choice of W has no effect on the
solution. Therefore, by default, gmmFit will automatically set W to the identity and return the one-
step GMM solution. Setting the argument type to another value will therefore have no effect on the
result. For nonlinear models, however, the weighting matrix may affect the ability of the algorithm to
find the solution. If we consider, for example, the model in which parameters of a normal distribution
are estimated using non-central moments by the MDE method. In that case, the different scales of
the moment conditions complicates the problem. The gmmFit method allows the user to provide
a weighting matrix, in which case, the solution is obtained by minimizing nḡ(θ)′Wḡ(θ) instead of
nḡ(θ)′ḡ(θ). We will give an example below.

Second, when “vcov” is set to “iid” in either a linearGMM or a “nonlinearModel” model, the
matrices W1 and W2 are proportional to each other. They therefore lead to the same solution. As a
result, the two-step GMM, iterative GMM and CUE produce identical solution. In particular, if the
model is linear, the solution corresponds to the two-stage least squares solution. In fact, gmmFit calls
the method tsls in that case. We will look at the method below.
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The gmmFit method returns the S4 class object “gmmfit”. The object contains the vector of
coefficient estimates, the “momentWeights” used to obtain it, the model object and other information
about the method and convergence. We will cover its methods in the next section. The only one
we introduce now is the show method which prints the model info, the estimation method and the
coefficient estimates. To avoid printing the model, we can set the argument “model” of print to
FALSE.

mod <- momentModel(y~x1, ~z1+z2, data=simData, vcov="MDS")

gmmFit(mod, type="onestep")

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Number of regressors: 2

## Number of moment conditions: 3

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: One-Step GMM with fixed weights

## coefficients:

## (Intercept) x1

## 0.1049242 0.9553511

print(gmmFit(mod, type="twostep"), model=FALSE)

##

## Estimation: Two-Step GMM

## coefficients:

## (Intercept) x1

## 0.1505614 0.9503860

print(gmmFit(mod, type="iter"), model=FALSE)

##

## Estimation: Iterated GMM

## Convergence Iteration: 0

## coefficients:

## (Intercept) x1

## 0.1604345 0.9487049

For nonlinear models, it is possible to pass arguments to optim and to set a different starting value
with the argument “theta0”.

theta0 <- c(theta0=0, theta1=0, theta2=0)

mod2 <- momentModel(y~exp(theta0+theta1*x1+theta2*x2), ~x2+z1+z2, theta0,

data=simData, vcov="MDS")

res1 <- gmmFit(mod2)

print(res1, model=FALSE)

##

## Estimation: Two-Step GMM

## Convergence Optim: 0

## coefficients:

## theta0 theta1 theta2

## 0.61713001 0.18549461 -0.01975427

theta0 <- c(theta0=0.5, theta1=0.5, theta2=-0.5)

res2 <- gmmFit(mod2, theta0=theta0, control=list(reltol=1e-8))

print(res2, model=FALSE)
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##

## Estimation: Two-Step GMM

## Convergence Optim: 0

## coefficients:

## theta0 theta1 theta2

## 0.61712992 0.18549462 -0.01975426

For the iterative GMM, we can control the tolerance level and the maximum number of iterations
with the arguments “itertol” and “itermaxit”. The argument “weights” is equal to the character
string “optimal”, which implies that by default W is set to the estimate of V −1. If “weights” is set
to “ident”, gmmFit returns the one-step GMM. Alternatively, we can provide gmmFit with a fixed
weighting matrix. It could be a matrix or a “momentWeights” object. When the weighting matrix
is provided, it returns a one-step GMM based on that matrix. The “gmmfit” object contains a slot
“efficientGmm” of type logical. It is TRUE if the model has been estimated by efficient GMM. By
default it is TRUE, since “weights” is set to “optimal”. If “weights” takes any other value or if “type”
is set to “onestep”, it is set to FALSE. There is one exception. It is set to TRUE if we provide the
method with a weighting matrix and we set the argument “efficientWeights” to TRUE. For example,
the optimal weighting matrix of the minimum distance method does not depend on any coefficient. It
is probably a good idea in this case to compute it before and pass it to the gmmFit method. The value
of the “efficientGmm” slot will be used by the vcov method to determine whether it should return the
sandwich covariance matrix.

There is a specific gmmFit method for “formulaModel” classes. It behaves differently only if
“weights” is set to “optimal” and the slot “isMDE” of the object is TRUE. The momentModel con-
structor detects if the right-hand-side or the left-hand-side of each moment condition depends on the
coefficient. If they don’t, “isMDE” is set to TRUE. For that case, the method computes the effi-
cient weighting matrix object, which does not depend on the coefficients, and call the general gmmFit
method with a fixed weights. The method is called Efficient MDE, which is a one-step method. If we
look at the example we presented above, the model is

theta0=c(mu=1,sig=1)

x <- rnorm(2000, 4, 5)

dat <- data.frame(x=x, x2=x^2, x3=x^3, x4=x^4)

gform <- list(x~mu,

x2~mu^2+sig,

x3~mu^3+3*mu*sig,

x4~mu^4+6*mu^2*sig+3*sig^2)

mod4 <- momentModel(gform, NULL, theta0, vcov="MDS", data=dat)

mod4@isMDE

## [1] TRUE

print(gmmFit(mod4), model=FALSE)

##

## Estimation: One-Step Efficient M.D.E.

## Convergence Optim: 0

## coefficients:

## mu sig

## 4.059809 24.797339

If the model is just identified, the weighting matrix is also used to scale the moment function and
help the algorithm to find the solution. However, since in theory the weighting does not affect the
solution, the method is simply called one-step GMM.

print(gmmFit(mod4[1:2]), model=FALSE)

##

## Estimation: One-Step, Just-Identified
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## Convergence Optim: 0

## coefficients:

## mu sig

## 4.029623 25.101534

1.4.4 Methods for “gmmfit” classes

• meatGmm: It returns the meat of the sandwich covariance matrix. The only other argument
is “robust”. A non robust meat assumes that W = V −1, which is true if the model has been
estimated by efficient GMM. Since W is usually a first step weighting matrix, it is not numerically
identical to the estimate of V −1 based on the final estimate. However, it is a common practice
to ignore it. The meat will in this case be equal to (G′V̂ −1G). If “robust” is TRUE, we do not
assume that W = V −1 and the meat becomes (G′WV̂WG).

• bread : It returns the bread of the sandwich covariance matrix, (G′WG)−1, where W is the
weighting matrix used to get the final estimate..

• vcov : It returns the covariance matrix of the coefficient. By default, it returns a sandwich matrix
if the argument “efficienGmm” of the object is FALSE or if the model is just identified, and a
non sandwich estimator otherwise. Here are all the possibilities:

– Efficient and over-identified GMM: (G′V̂ −1G)−1/n

– Just-identified GMM: G−1V̂ G−1
′
/n

– Any other sandwich estimator: (G′WG)−1G′WV̂WG(G′WG)−1/n.

– The argument “breadonly” is set to TRUE: (G′WG)−1/n. For efficient GMM, it is asymptot-
ically equivalent to (G′V̂ −1G)−1/n. It is particularly useful for efficient and fixed weighting
matrices.

The method is flexible enough that you may end up with a non-valid covariance matrix if not
careful. For example, setting “sandwich” to FALSE would lead to non valid covariance matrix
if the model was not estimated by efficient GMM. It is important to remember that the method
assumes that the specifications of the model are valid. If you falsely set “vcov” to iid, the default
fit would not be efficient GMM, which implies that a sandwich matrix would be required. But
event if you set “sandwich” to TRUE, it will not solve the problem because the meat will be
computed assuming the errors are iid. You can, however, set the argument “modelVcov” to
“MDS” which will set “sandwich” to TRUE and compute the meat properly.

The argument “df.adj” can be set to TRUE if degrees of freedom adjustment is needed. In that
case, the covariance matrix is multiplied by n/(n − k). It is only included in the package to
reproduce textbook examples. This adjustment is not really justified in the GMM context.

• specTest : It tests the null hypothesis E[gi(θ)] = 0 using the J-test. The statistics is nḡ′V̂ −1ḡ and
it is asymptotically distributed as a χ2

q−k under the null. The model must have been estimated
by efficient GMM for this test to be valid. The method returns an S4 class object.

mod <- momentModel(y~x1, ~z1+z2+z3, data=simData, vcov="MDS")

res <- gmmFit(mod)

specTest(res)

##

## J-Test

## Statistics df pvalue

## Test E(g)=0: 1.0333 2 0.5965

It is also possible to test subsets of instruments. Suppose we suspect z2 to be invalid. We would
estimate the model without z2 and compute the difference between the J-tests (J1 − J2), where
J1 is the J-test with z2 and J2 is the test without. The distribution is the number of instruments
that we want to test, which is one in this example. To test it using the specTest method, we
specify which instrument we want to test (z2 is the third instrument if we include the intercept):
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specTest(res, 3)

##

## Testing the following subset of moments:

## {z2}

## Statistics df pvalue

## Test E(g)=0: 1.023 1 0.3118

• summary : It computes important information about the estimated model. It is an S4 class object
with a print method that shows the results in the usual way.

summary(res)

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: Two-Step GMM

## Sandwich vcov: FALSE

## coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.17154 0.51304 0.3344 0.7381

## x1 0.94690 0.10072 9.4011 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## J-Test

## Statistics df pvalue

## Test E(g)=0: 1.0333 2 0.5965

##

##

## Instrument strength based on the F-Statistics of the first stage OLS

## x1 : F( 3 , 46 ) = 7.603642 (P-Vavue = 0.0003126709 )

The argument “...” can be used to pass options to the vcov method. For example, we can used
the bread only to compute the standard errors:

summary(res, breadOnly=TRUE)@coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.1715368 0.5188364 0.3306183 7.409328e-01

## x1 0.9469048 0.1018860 9.2937705 1.489173e-20

• hypothesisTest : Method to perform hypothesis tests on the coefficients. Consider the following
unrestricted model:

mod <- momentModel(y~x1+x2+x3+z1, ~x1+x2+z1+z2+z3+z4, data=simData, vcov="iid")

res <- gmmFit(mod)

We want to test the hypothesis

R <- c("x1=1", "x2=x3", "z1=-0.7")

rmod <- restModel(mod, R)

printRestrict(rmod)
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## Constraints:

## x1 = 1

## x2 - x3 = 0

## z1 = -0.7

## Restricted regression:

## (y-x1+0.7z1) = (Intercept)+(x2+x3)

There are three ways to do it. The Wald test only requires us to estimate the unrestricted model.
It is performed as follows:

hypothesisTest(object.u=res, R=R)

## Wald Test

## ***********

## The Null Hypothesis:

## x1 = 1

## x2 - x3 = 0

## z1 = -0.7

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 15.97411 0.001147931

The statistics is (Rθ̂−q)′[RΩ̂R′]−1(Rθ̂−q), where Ω̂ is the covariance matrix of θ̂, and is distributed
as a chi-square with degrees of freedom equal to the number of restrictions. Here R and q are
given in the restricted model:

rmod@cstLHS

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0 1 0 0 0

## [2,] 0 0 1 -1 0

## [3,] 0 0 0 0 1

rmod@cstRHS

## [1] 1.0 0.0 -0.7

We can also test it using the LM test, which test if the score of the GMM objective is close enough
to zero when evaluated at the restricted coefficient estimates. The statistics is

nḡ(θ̃)′V̂ −1G̃Ω̂G̃′V̂ −1ḡ(θ̃),

where the tilde implies that it is evaluated at the restricted coefficient estimates. The asymptotic
distribution is the same as the Wald test. To perform the test, we need to estimate the restricted
model.

res.r <- gmmFit(rmod)

Then, we perform the test

hypothesisTest(object.r=res.r)

## LM Test

## ***********

## The Null Hypothesis:

## x1 = 1

## x2 - x3 = 0

## z1 = -0.7

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 11.58521 0.008947939
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The LR test, compares the values of the GMM objective function at the restricted and unrestriced
coefficient estimates. It is in fact the restricted minus the unrestricted one. The distribution is
also the same in large samples. We therefore need both the restricted and unrestricted model:

hypothesisTest(object.r=res.r, object.u=res)

## Wald Test

## ***********

## The Null Hypothesis:

## x1 = 1

## x2 - x3 = 0

## z1 = -0.7

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 15.97411 0.001147931

Alternatively, we can give both model and specify the test.

hypothesisTest(object.r=res.r, object.u=res, type="LM")

hypothesisTest(object.r=res.r, object.u=res, type="Wald")

hypothesisTest(object.r=res.r, object.u=res, type="LR")

• coef : Returns the coefficient estimate.

coef(res.r)

## (Intercept) (x2+x3)

## 1.24288790 -0.09512986

• residuals: Returns the residuals. Only for “linearModel” and “nonlinearModel”.

e <- residuals(res)

e.r <- residuals(res.r)

• DWH : It performs the Durbin-Wu-Hausman test. In general, the purpose of the test is to compare
an efficient estimator, θ̂, with an inefficient one, θ̃. Under the null hypothesis, both are consistent
estimators of θ and under the alternative only θ̃ is consistent. It is well known in the linear GMM
setup as a way of comparing OLS with GMM. We want to test if it is worth instrumenting the
suspected endogenous vaiables among th regressors. The method with signature {gmmfit, lm}
performs such test.

mod <- momentModel(y~x1, ~z1+z2, data=simData, vcov="iid")

res1 <- gmmFit(mod)

res2 <- lm(y~x1, simData)

DWH(res1,res2)

##

## Hausman Test

## Statistics df pvalue

## Hausman Test: 1.1039 2 0.57581

Used this way, the test is defined as (θols − θgmm)′Σ(θols − θgmm), where Σ is the generalized

inverse of [ ̂Var(θgmm) − ̂Var(θols)]. The degrees of freedom is the rank of difference between
the two covariance matrices. The argument “tol” is the tolerance level for the Moore-Penrose
generalized inverse (for singular values less than “tol”, their inverse is set to zero). The degrees
of freedom should be 1 here because there is only one endogenous variable. That approach is
therefore not too stable. Below, we consider a regression approach. The method with signature
{gmmfit, gmmfit} is used to compare two GMM estimators applied on the same regression
model, using the same approach.
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For the signature {gmmfit,missing}, the test is done using an auxiliary regression. The fitted
endogenous regressors are added to the regression model and a joint significance test on their
coefficients is performed. For the example we have here, we would regress x1 on z1 and z2 with
an intercept, regress y on x1 and the fitted value x̂1 and test the coefficient of x̂1. Using DWH
we obtain:

DWH(res1)

##

## Durbin-Wu-Hausman Test

## Statistics df pvalue

## DWH Test: 1.1983 1 0.27367

Notice that the Wald test is robust in the sense that the covariance matrix is based on the
specification of the “momentModel”. For example, if “vcov” was set to “MDS”, an HCCM
covariance matrix would be used.

• confint The method contruct confidence intervals for the coefficients.

confint(res1, level=0.99)

##

## Wald type confidence interval

## 0.005 0.995

## (Intercept) -1.1261 1.745

## x1 0.6515 1.201

For confidence region, we have to select two coefficients and add the option “area=TRUE”

mod <- momentModel(y~x1+x2+z1, ~x1+z1+z2+z3, data=simData, vcov="iid")

res2 <- gmmFit(mod)

ci <- confint(res2, 2:3, area=TRUE)

ci

## Wald type confidence region

## ***************************

## Level: 0.95

## Number of points: 50

## Variables:

## Range for x1: [0.9225, 1.16]

## Range for x2: [-0.2019, 0.09545]

It creates an object of class “mconfint”, and its plot produces the confidence region:
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plot(ci, col="lightblue", density=20, Pcol=2, bg=2)
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• update The method is used to re-fit a model with different specifications. It is also possible to
modify the model. Here is a few examples:

res <- gmmFit(mod1)

res

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: Two-Stage Least Squares

## coefficients:

## (Intercept) x1 x2

## 1.2973364 0.8533126 -0.1019401

update(res, vcov="MDS") ## changing only the model

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: Two-Step GMM

## coefficients:
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## (Intercept) x1 x2

## 1.3147426 0.8522578 -0.1027073

update(res, vcov="MDS", type="iter")

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: Iterated GMM

## Convergence Iteration: 0

## coefficients:

## (Intercept) x1 x2

## 1.3186524 0.8517084 -0.1028189

1.4.5 The tsls method

This method is to estimate linear models with two-stage least squares. It returns a “tsls” class object
which inherits from “gmmfit”. Most “gmmfit” methods are the same with the eception of bread,
meatGmm and vcov. They just use the structure of 2LSL to make them more computationally efficient.
They may be removed in future version and included in the main “gmmfit” methods.

If the model has iid error, gmmFit and tsls are numerically identical. In fact, the function is called by
gmmFit in that case. The main reason for using it is if we have a more complex variance structure but
want to avoid using a fully efficient GMM, which may have worse small sample properties. Therefore,
“sandwich” is set to TRUE in the vcov method for “tsls” objects. In the following example, errors are
assumed heteroscedastic, and the model is estimated by 2SLS. The summary method returns, however,
robust standard errors because “sandwich=TRUE” is the default in the vcov method of “tsls”.

mod <- momentModel(y~x1, ~z1+z2+z3, data=simData, vcov="MDS")

res <- tsls(mod)

summary(res)@coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.3310664 0.5240580 0.6317361 5.275593e-01

## x1 0.9218663 0.1024185 9.0009738 2.237243e-19

1.4.6 gmm4 : A function to fit them all

If you still think that the gmmFit method is not simple enough because you have to create a model
first, the gmm4 function will do everything for you. It is the function that looks the most like its
ancestor function gmm from the gmm package. It is still required to specify the structure of variance
for the moment conditions. In fact, it combines all arguments of the momentModel constructor and
gmmFit method. Here are a few examples.

You want to estimate
y = θ0 + θ1x1 + θ2x2 + ε

using the instruments {x2, z1, z2, z3}. We do not want to assume homoscedasticity, so we want to set
“vcov” to “MDS”. We want to estimate the model by two-step GMM.

res1 <- gmm4(y~x1+x2, ~x2+z1+z2+z3, type="twostep", vcov="MDS", data=simData)

res1
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## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Number of regressors: 3

## Number of moment conditions: 5

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: Two-Step GMM

## coefficients:

## (Intercept) x1 x2

## 1.12231930 0.87408142 -0.09146589

We want to compare it with iterative GMM:

res2 <- gmm4(y~x1+x2, ~x2+z1+z2+z3, type="iter", vcov="MDS", data=simData)

Now, we want to estimate the model with the restrictions θ1 = θ2

res1.r <- gmm4(y~x1+x2, ~x2+z1+z2+z3, type="twostep", vcov="MDS",

data=simData, cstLHS="x1=x2")

res1.r

## Model based on moment conditions

## *********************************

## Moment type: rlinear

## Covariance matrix: MDS

## Number of regressors: 2

## Number of moment conditions: 5

## Number of Endogenous Variables: 1

## Sample size: 50

## Constraints:

## x1 - x2 = 0

## Restricted regression:

## y = (Intercept)+(x1+x2)

##

## Estimation: Two-Step GMM

## coefficients:

## (Intercept) (x1+x2)

## 4.70393880 0.02575094

Since the function returns a “gmmfit” object, all methods work with the output. We for example
test the restriction:

hypothesisTest(res1, res1.r, type="LR")

## LR Test

## ***********

## The Null Hypothesis:

## x1 - x2 = 0

## Distribution: Chi-square with 1 degrees of freedom

## Statistics Pvalue

## 1 126.9516 0

There is also a tsls method for “formula”, which works the same way:

res3 <- tsls(y~x1+x2, ~x2+z1+z2+z3, vcov="MDS", data=simData)

res3
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## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: MDS

## Number of regressors: 3

## Number of moment conditions: 5

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: Two-Stage Least Squares

## coefficients:

## (Intercept) x1 x2

## 1.14484351 0.87623904 -0.09597286

It is still important to specify the variance structure in order to obtain the appropriate coefficient
standard errors. To estimate a nonlinear model, gmm4 will recognize it by the way the formula is set
along with the named vector “theta0”.

res3 <- gmm4(y~theta0+exp(theta1*x1+theta2*x2), ~x2+z1+z2+z3+z4, vcov="iid",

theta0=c(theta0=1, theta1=0, theta2=0), data=simData)

res3

## Model based on moment conditions

## *********************************

## Moment type: nonlinear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 6

## Number of Endogenous Variables: 2

## Sample size: 50

##

## Estimation: Two-Step GMM

## Convergence Optim: 0

## coefficients:

## theta0 theta1 theta2

## 1.25158662 0.23850834 -0.02834336

The update method, when the model is fitted using gmm4() or tsls, allows any of the arguments to
be modified. In fact, it simply calls the update method of the “stats” package. For example, we can
change the dataset:

update(res3, data=simData[1:45,])

## Model based on moment conditions

## *********************************

## Moment type: nonlinear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 6

## Number of Endogenous Variables: 2

## Sample size: 45

##

## Estimation: Two-Step GMM

## Convergence Optim: 0

## coefficients:

## theta0 theta1 theta2

## 1.74585029 0.23117986 -0.04524183

To change the instruments, or impose a retriction on the coefficient, it is as simple as:
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update(res3, x = ~x2+z1+z2+z3, cstLHS="theta1=theta2")

## Model based on moment conditions

## *********************************

## Moment type: rnonlinear

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 5

## Number of Endogenous Variables: 2

## Sample size: 50

## Constraints:

## theta1 ~ theta2

##

## Estimation: Two-Step GMM

## Convergence Optim: 0

## coefficients:

## theta0 theta2

## 3.19722663 0.02302585

1.5 Textbooks Applications

In this section, we cover a few examples from major textbooks. Since it is meant to help users who
care less about the structure of the package, we use, when possible, the quicker functions that we just
intruduced in the last section.

1.5.1 Stock-Watson

In this section, we cover examples from Stock and Watson (2015). In Chapter 12, the demand for
cigarettes is estimated for 1985 using a panel. The following data change is required

data(CigarettesSW)

CigarettesSW$rprice <- with(CigarettesSW, price/cpi)

CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi)

CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi)

c1985 <- subset(CigarettesSW, year == "1985")

c1995 <- subset(CigarettesSW, year == "1995")

In equation 12.15, the demand is estimated using sales tax as an instrument for price. In order to
get the same standard errors, we need to assume “MDS”, and use a sandwich matrix with degrees of
freedom adjustment.

res1 <- gmm4(log(packs)~log(rprice)+log(rincome),

~log(rincome)+tdiff, data = c1995, vcov="MDS")

summary(res1, sandwich=TRUE, df.adj=TRUE)@coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.4306583 1.2593926 7.4882595 6.979292e-14

## log(rprice) -1.1433751 0.3723027 -3.0710902 2.132787e-03

## log(rincome) 0.2145153 0.3117469 0.6881071 4.913853e-01

Equation 12.16, for which both cigarettes and sales taxes are used as instruments, can be reproduced
using the same specifications. We also have to set “centeredVcov” to FALSE. We have not seen that
argument yet. When set to TRUE, the moments are centered before computing the weights. For more
details on when it should be centered, see Hall (2005).

res2<- tsls(log(packs)~log(rprice)+log(rincome),

~log(rincome)+tdiff+I(tax/cpi), data = c1995,
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Model 1 Model 2 Model 3

(Intercept) −0.12 −0.02 −0.05
(0.07) (0.07) (0.06)

dP −0.94∗∗∗ −1.34∗∗∗ −1.20∗∗∗

(0.21) (0.23) (0.20)
dInc 0.53 0.43 0.46

(0.34) (0.30) (0.31)

J-test Statistics 4.29
J-test p-value 0.04
First Stage F-stats(dP) 33.67 107.18 88.62
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Table 12.1 of Stock and Watson textbook

centeredVcov=FALSE, vcov="MDS")

summary(res2, sandwich=TRUE, df.adj=TRUE)@coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.8949555 0.9592169 10.315660 5.986874e-25

## log(rprice) -1.2774241 0.2496100 -5.117680 3.093166e-07

## log(rincome) 0.2804048 0.2538897 1.104436 2.694041e-01

In Table 12.1, the long-run demand elasticity is estimated over a 10 year period. They compare a
model with only sales tax as instrument, a model with cigarettes tax only and one with both.

data <- data.frame(dQ=log(c1995$pack/c1985$pack),

dP=log(c1995$rprice/c1985$rprice),

dTs=c1995$tdiff-c1985$tdiff,

dT=c1995$tax/c1995$cpi-c1985$tax/c1985$cpi,

dInc=log(c1995$rincome/c1985$rincome))

res1 <- tsls(dQ~dP+dInc, ~dInc+dTs, vcov="MDS", data=data)

res2 <- tsls(dQ~dP+dInc, ~dInc+dT, vcov="MDS", data=data)

res3 <- tsls(dQ~dP+dInc, ~dInc+dTs+dT, vcov="MDS", data=data)

You can print the summary to see the result, but I use the texreg package of Leifeld (2013),with
an home made extact method (see Appendix), to make it more compact and more like Table 12.1 of
the textbook. Table 1 presents the results. There is a small difference in the first stage F-test, which
could be explained by the way they compute the covariance matrix. We cannot figure out our to get
the same first two digits. Using lm manually and “HC1” type of HCCM, the test is identical to what
we get here and it is the closest we can get from their results. It is the same for the other two F-tests.

For the J-test, the difference is a little larger. But, we have to notice that if we assume “MDS”,
2SLS is not efficient and the J-test is not valid. If we estimate the model by efficient GMM, the J-test
gets closer to what the authors get.

res4 <- gmm4(dQ~dP+dInc, ~dInc+dTs+dT, vcov="MDS", data=data)

specTest(res4)

##

## J-Test

## Statistics df pvalue

## Test E(g)=0: 4.8726 1 0.027286

res4 <- gmm4(dQ~dP+dInc, ~dInc+dTs+dT, vcov="MDS", data=data)
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1.5.2 Greene

In this section, we want to reproduce results from Greene (2012).
In Example 13.7, the author estimates a nonlinear model with (1) the method of moments, one-step

GMM and efficient GMM. To reproduce the results, we first need to create a dataset for 1988 remove
zero income observations, and scale income.

data(HealthRWM)

dat88 <- subset(HealthRWM, year==1988 & hhninc>0)

dat88$hhninc <- dat88$hhninc/10000

The model is

hhninc = exp[b0 + b1age+ b2educ+ b3female] + ε

We want to reproduce Table 13.2. The NLS estimates shows that we have the same data used by
the author.

thet0 <- c(b0=log(mean(dat88$hhninc)),b1=0,b2=0,b3=0)

g <- hhninc~exp(b0+b1*age+b2*educ+b3*female)

res0 <- nls(g, dat88, start=thet0, control=list(maxiter=100))

summary(res0)$coef

## Estimate Std. Error t value Pr(>|t|)

## b0 -1.693313455 0.0441023913 -38.395049 4.621653e-279

## b1 0.002066690 0.0006060923 3.409861 6.557065e-04

## b2 0.047916518 0.0024693626 19.404408 1.332311e-80

## b3 -0.006581608 0.0137357205 -0.479160 6.318482e-01

The second column is the method of moment (or just identified GMM), using the regressors as
instruments.

h1 <- ~age+educ+female

model1 <- momentModel(g, h1, thet0, vcov="MDS", data=dat88)

res1 <- gmmFit(model1, control=list(reltol=1e-10, abstol=1e-10))

The third column is first step GMM using the instruments {age, educ, female, hstat,married}.

h2 <- ~age+educ+female+hsat+married

model2 <- momentModel(g, h2, thet0, vcov="MDS", data=dat88)

res2 <- gmmFit(model2, type="onestep")

The third is efficient GMM using the same instruments.

res3 <- gmmFit(model2)

The results (column 2 to 4 of Table 13.2) are presented in Table 2. The results are not identical,
which is expected since results from nonlinear models depends on how the optimizer used is tuned. Only
the last column cannot be explained by rounding errors or optimizer tuning. We have tried different
tuning parameters in optim and it never gets closer. Even if we start with the author’s solution, optim
finds a solution with smaller value of the objective function.

In the Example 8.7, the author computes the Hausman test for a consumption function. The
efficient estimator is the OLS estimator and the inefficient but consistent is 2SLS with lag income and
consumption as instruments. We first estimate the models:

data(ConsumptionG)

Y <- ConsumptionG$REALDPI

C <- ConsumptionG$REALCONS

n <- nrow(ConsumptionG)
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Model 1 Model 2 Model 3

b0 −1.69258∗∗∗ −1.45552∗∗∗ −1.61908∗∗∗

(0.04214) (0.10102) (0.04156)
b1 0.00178∗∗ −0.00028 0.00097

(0.00057) (0.00100) (0.00056)
b2 0.04861∗∗∗ 0.03731∗∗∗ 0.04688∗∗∗

(0.00262) (0.00518) (0.00261)
b3 0.00069 −0.02205 −0.01487

(0.01384) (0.01445) (0.01357)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 2: Attempt to reproduce Table 13.2 from Greene (2012)

Y1 <- Y[-n]; Y <- Y[-1]

C1 <- C[-n]; C <- C[-1]

dat <- data.frame(Y=Y,Y1=Y1,C=C,C1=C1)

model <- momentModel(C~Y, ~Y1+C1, data=dat, vcov="iid")

We then estimate them with OLS and 2SLS.

res1 <- tsls(model)

res2 <- lm(C~Y)

Result of the test from Example 8.7-2:

DWH(res1)

##

## Durbin-Wu-Hausman Test

## Statistics df pvalue

## DWH Test: 8.811 1 0.0029942

The difference is explained by rounding errors. We get the same as the author if we square the t
ratio using only three digits. For example 8.7-1, we first try to adjust the covariance for the degrees of
freedom.

DWH(res1, res2, df.adj=TRUE)

##

## Hausman Test

## Statistics df pvalue

## Hausman Test: 8.0659 1 0.0045106

The result is a little different (the author reports 8.481). To reproduce the same results we need to
specify the variance.

X <- model.matrix(model)

Xhat <- qr.fitted(res1@wObj@w, X)

s2 <- sum(residuals(res2)^2)/(res2$df.residual)

v1 <- solve(crossprod(Xhat))*s2

v2 <- solve(crossprod(X))*s2

DWH(res1, res2, v1=v1, v2=v2)

##

## Hausman Test

## Statistics df pvalue

## Hausman Test: 8.4814 1 0.003588
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What we do above is to assume that the variance of the 2SLS and OLS coefficients are respectively
σ̂2(X̂ ′X̂)−1 and σ̂2(X ′X)−1, where X̂ is the fitted values of the regression of X on the instruments
and σ̂2 is the estimated variance of the error terms using the unbiased OLS estimator. We therefore
need the same estimate to obtain the same results.

1.5.3 Wooldridge

In this section, we want to reproduce results from Wooldridge (2016).

2 Systems of Equations

We consider two type of system of equations. The linear system:

Yji = X ′jiθj + εji

or
Yji(θj) = Xji(θj) + εji

for j = 1, ...,m, the number of equations, and i = 1, ..., n, the number of observations, with θj being
a kj × 1 vector. We assume that for each equation j, there is a qj × 1 vector of instruments Zji that
satisfies E[εjiZji] = 0. The moment conditions can therefore be written as:

E[gi(θ)] ≡ E


ε1iZ1i

ε2iZ2i

ε3iZ3i

...
εmiZmi

 = 0

The model is just-identified if kj = qj for all j, and it is over-identified if kj < qj for ar least one j.
For now, we offer two possible variance structures. We refer to “iid” models in which the errors are
conditionally homoscedastic. In that case, the asymptotic variance of the moment condition is: 1

V ar[
√

(n)ḡ(θ)]
p→ S ≡


σ2
1E[Z1iZ

′
1i] σ12E[Z1iZ

′
2i] · · · σ1mE[Z1iZ

′
mi]

σ21E[Z2iZ
′
1i] σ2

2E[Z2iZ
′
2i] · · · σ2mE[Z2iZ

′
mi]

...
...

...
...

σm1E[ZmiZ
′
1i] σm2E[ZmiZ

′
2i] · · · σ2

mE[ZmiZ
′
mi]


We can estimate E[ZliZ

′
ji] by 1

n

∑n
i=1 ZliZ

′
ji and σlj by 1

n

∑n
i=1 ε̂liε̂ji. We label this estimate Ŝ. If

Zli = Zji for all l and j, which implies that all equations have the same instruments, we can simplify
the expression. Let Σ = E[εiε

′
i], where εi = {ε1i, ..., εmi}′ and Zi = Zji for all j = 1, ...,m. The

asymptotic variance can be written as:

V ar[
√

(n)ḡ(θ)]
p→ S ≡ Σ⊗ E[ZiZ

′
i],

where ⊗ is the kronecker product. S can be estimated by Ŝ = Σ̂ ⊗
[
1
n

∑n
i=1 ZiZ

′
i

]
, where Σ̂ =

1
n

∑n
i=1 ε̂iε̂

′
i. If we relax the homoscedasticity, the variance structure is labeled “MDS”. In that case,

the asymptotic variance of the moments are:

V ar[
√

(n)ḡ(θ)]
p→ S ≡


E[ε21iZ1iZ

′
1i] E[ε1iε2iZ1iZ

′
2i] · · · E[ε1iεmiZ1iZ

′
mi]

E[ε2iε1iZ2iZ
′
1i] E[ε22iZ2iZ

′
2i] · · · E[ε2iεmiZ2iZ

′
mi]

...
...

...
...

E[εmiε1iZmiZ
′
1i] E[εmiε2iZmiZ

′
2i] · · · E[ε2miZmiZ

′
mi]
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It can be estimated by

Ŝ =
1

n

n∑
i=1


ε̂21iZ1iZ

′
1i ε̂1iε̂2iZ1iZ

′
2i · · · ε̂1iε̂miZ1iZ

′
mi

ε̂2iε̂1iZ2iZ
′
1i ε̂22iZ2iZ

′
2i · · · ε̂2iε̂miZ2iZ

′
mi

...
...

...
...

ε̂miε̂1iZmiZ
′
1i ε̂miε̂2iZmiZ

′
2i · · · ε̂2miZmiZ

′
mi


Another type of systems considered in the package are the ones in which each equation has the same
instruments and that these instruments are the union of all regressors from all equations. This is
called the SUR assumption (Seemingly Unrelated Regressions). We will compare the estimation of the
different models below. Notice that there is no function type of system yet because we don’t see any
specific applications. Suggestions are welcome if you have examples in mind.

2.1 A class object for System of Equations

The two classes are “slinearModel” and “snonlinearModel” and the union class is “smomentModel”.
For most, the slots are the same with the exception that they are lists. The other difference is that
the whole data.frame for all equations is store in the slot “data”. For “slinearModel”, the equations
and instruments are defined in the slots “modelT” and “instT”, the latter being also the format for
“snonlinearModel” classes. They are lists of terms for each formula. There are two extra slots in system
classes, “eqnNames”, which labels each equation, and “SUR”, which is TRUE if the SUR assumption
is satisfied.The constructor is sysMomentModel and works as the momentModel constructor. A show
method prints the most important specification of the system of equations. Here is an example.

data(simData)

g <- list(Supply=y1~x1+z2, Demand1=y2~x1+x2+x3, Demand2=y3~x3+x4+z1)

h <- list(~z1+z2+z3, ~x3+z1+z2+z3+z4, ~x3+x4+z1+z2+z3)

smod1 <- sysMomentModel(g, h, vcov="iid", data=simData)

smod1

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

If we do not name the equations as we did, the default names Eqnj for j = 1, ...,m will be given.
As for single equations, the “vcov” argument defines the assumption we make on the structure of the
moment conditions variance. “snonlinearModel” are constructed the same way with the exception that
“theta0”, a list of named starting coefficient vectors, must be provided. If we only provide one formula
for the instruments, the same instruments will be used in all equations.

smod2 <- sysMomentModel(g, ~x2+x4+z1+z2+z3+z4, vcov="iid", data=simData)

smod2

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=7, number of Endogenous: 1

## Demand1: coefs=4, moments=7, number of Endogenous: 2

## Demand2: coefs=4, moments=7, number of Endogenous: 1

## Sample size: 50
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To impose the SUR assumption, we just ignore the instrument argument. In that case, instruments
will be constructed using the union of all regressors.

smod3 <- sysMomentModel(g, vcov="iid", data=simData)

smod3

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=7, number of Endogenous: 0

## Demand1: coefs=4, moments=7, number of Endogenous: 0

## Demand2: coefs=4, moments=7, number of Endogenous: 0

## Sample size: 50

There is one other way to create a system classes. If one tries to create a “linearModel” class using
a matrix as the left hand side of the regression, the model will automatically converted to a system of
equation with the same regressors and same instruments. Here is an example using simulated data.

dat <- list(y=matrix(rnorm(150),50,3),

x=rnorm(50), z1=rnorm(50),

z2=rnorm(50))

mod <- momentModel(y~x, ~z1+z2, data=dat, vcov="iid")

mod

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Eqn1: coefs=2, moments=3, number of Endogenous: 1

## Eqn2: coefs=2, moments=3, number of Endogenous: 1

## Eqn3: coefs=2, moments=3, number of Endogenous: 1

## Sample size: 50

We could therefore create a multivariate regression in the following way:

mod <- momentModel(y~x, ~x, vcov="iid", data=dat)

2.2 Methods for “smomentModel” classes

The methods are very similar to the ones described above for “momentModel” classes. Here, we briefly
describe the difference.

• setCoef : As for single-equation models, it validate and organize the list of coefficients. It is very
helpful for large systems. In the “smod1” system, we have 11 coefficients. We can create the list
using a simple vector:

setCoef(smod1, 1:11)

## $Supply

## (Intercept) x1 z2

## 1 2 3

##

## $Demand1

## (Intercept) x1 x2 x3

## 4 5 6 7

##

## $Demand2

## (Intercept) x3 x4 z1

## 8 9 10 11
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If it is a named list of names vectors, the method match the order of the model. Or course, it
also make sure the dimensions and names are valid.

• [ : The method has two arguments. The first is an vector of integers to select the equations, and
the second is a list of integers to select the instruments in each of the selected equation. For
example, the following creates a system of equations from the “smod1” object with the first two
equations, and using the first 3 instruments in the first equation and the first 4 for the second.

smod1[1:2, list(1:3,1:4)]

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=3, number of Endogenous: 1

## Demand1: coefs=4, moments=4, number of Endogenous: 2

## Sample size: 50

If the second argument is missing, all instruments are selected. If only one equation is selected, the
object if converted to a single equation class. We can therefore estimate each equation separately.

gmmFit(smod1[1])

## Model based on moment conditions

## *********************************

## Moment type: linear

## Covariance matrix: iid

## Number of regressors: 3

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

##

## Estimation: Two-Stage Least Squares

## coefficients:

## (Intercept) x1 z2

## 1.0080239 0.8349503 -0.1696884

• model.matrix and modelResponse. The methods return the model.matrix and modelResponse of
each equation in a list. Basically, the following are equivalent:

mm <- model.matrix(smod1)

mm <- lapply(1:3, function(i) model.matrix(smod1[i]))

• evalMoment, evalDMoment, Dresiduals: The methods are applied to each equation and returned
in a list. Notice that theta must be stored in a list.

theta <- list(1:3, 1:4, 1:4)

gt <- evalMoment(smod1, theta)

• residuals: It returns a n×m matrix of residuals. We can therefore estimate Σ directly:

Sigma <- crossprod(residuals(smod1, theta))/smod1@n

• vcov : It returns the Q × Q matrix Ŝ, where Q =
∑m
j=1 qj . The way it is computed depends on

the structure of the variance as described above.

• merge: The method is used to merge single equations into a system class, or to add equations to
an already created system class. The “smod1” object could have been created this way.
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eq1 <- momentModel(g[[1]], h[[1]], data=simData, vcov="iid")

eq2 <- momentModel(g[[2]], h[[2]], data=simData, vcov="iid")

eq3 <- momentModel(g[[3]], h[[3]], data=simData, vcov="iid")

smod <- merge(eq1,eq2,eq3)

smod

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Eqn1: coefs=3, moments=4, number of Endogenous: 1

## Eqn2: coefs=4, moments=6, number of Endogenous: 2

## Eqn3: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

We can also add an equation to “smod1”.

eq1 <- momentModel(y~x1, ~x1+z4, data=simData, vcov="iid")

merge(smod1, eq1)

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Eqn4: coefs=2, moments=3, number of Endogenous: 0

## Sample size: 50

Notice that the equations are merged to the first argument. It the “vcov” differes, the one from
the first argument is kept.

2.3 Restricted models

As for the single equation case, we can create an object with restrictions imposed on the coefficients. It
is possible to impose linear and nonlinear restrictions on systems of linear and nonlinear equations. The
classes are “rslinearModel” and “rsnonlinearModel”, and they contain their unrestricted counterparts.
Restrictions are imposed differently on linear and nonlinear models. For systems of linear equations it
is like imposing restrictions on single equation models. We can impose cross-equation restrictions, or
simply impose restrictions equation by equation.

System of linear equations

The method restModel is used to create the restricted models. In the following example, restrictions
are imposed equation by equation.

R1 <- list(c("x1=-12*z2"), character(), c("x3=0.8", "z1=0.3"))

rsmod1 <- restModel(smod1, R1)

rsmod1

## System of Equations Model

## *************************

## Moment type: rlinearModel

## Covariance matrix: iid

## Supply: coefs=2, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=2, moments=6, number of Endogenous: 0
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## Sample size: 50

## **Equation by Equation restrictions**

## **Supply**

## Constraints:

## x1 + 12z2 = 0

## Restricted regression:

## y1 = (Intercept)+(-12x1+z2)

##

## **Demand2**

## Constraints:

## x3 = 0.8

## z1 = 0.3

## Restricted regression:

## (y3-0.8x3-0.3z1) = (Intercept)+x4

R is a list of the same length as the number of equations. For equations with no restrictions, an
empty character vector must be provided. (Eventually, we will allow R to be a named list with the
names being the equation names.) For cross-equation restrictions, we need to add to the coefficient
names the equation names.

R2<- c("Supply.x1=1", "Demand1.x3=Demand2.x3")

rsmod1.ce <- restModel(smod1, R2)

rsmod1.ce

## System of Equations Model

## *************************

## Moment type: rlinearModel

## Covariance matrix: iid

## combinedEqns: coefs=9, moments=16, number of Endogenous: 2

## Sample size: 150

## Constraints:

## Supply.x1 = 1

## Demand1.x3 - Demand2.x3 = 0

Notice that the model contains only one equation in the print output. That’s because we can no
longer consider equations to be distinct. All methods that exist for “sGmmModels” can also be applied
to “rslinearModel” objects. When a vector of coefficient is required, the dimension of theta must reflect
the new number of coefficients implied by the restrictions. For example, in “rsmod1” there are only
two coefficients in the restricted supply and demand2 equations.

e <- residuals(rsmod1, theta=list(1:2, 1:4, 1:2))

dim(e)

## [1] 50 3

Notice that in order to compute the residuals in restricted models, the method converts the restricted
coefficients in their unrestricted format and calls the residuals method for the unrestricted model.
The method coef is used to do the conversion. We could therefore reproduce what the method for
“rslinearGMM” computes as follows:

(b <- coef(rsmod1, theta=list(1:2, 1:4, 1:2)))

## $Supply

## (Intercept) x1 z2

## 1 -24 2

##

## $Demand1

## (Intercept) x1 x2 x3

## 1 2 3 4
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##

## $Demand2

## (Intercept) x3 x4 z1

## 1.0 0.8 2.0 0.3

e <- residuals(as(rsmod1, "slinearModel"), b)

The same is done for all methods that can be computed using the converted coefficient vector.
These methods include evalMoment and vcov. All derivatives methods, however, reflect the change in
the models. For example, evalDMoment will produce lists of matrices with different dimensions:

evalDMoment(rsmod1, theta=list(1:2,1:4,1:2))[[1]]

## (Intercept) (-12x1+z2)

## (Intercept) -1.0000000 59.47345

## z1 -1.0364874 75.33542

## z2 -1.3914491 70.58468

## z3 0.1586131 -16.66339

The method Dresiduals will also be affected the same way. Of course, the methods model.matrix
and modelResponse are also affected by the restrictions because the latter modify the left and/or the
right hand sides of the equations.

When cross-equation restrictions are imposed, we treat the object as being a system with one
equation by providing a list with one single coefficient vector. However, the output of the methods
will be the one implied by the system of equations by converting the retricted coefficient vector into
its unrestricted counterpart. It is the case of residuals and vcov. For example, the residuals:

e <- residuals(rsmod1.ce, theta=list(1:9))

e[1:3,]

## Supply Demand1 Demand2

## 1 -1.633415 -22.81319 1.645366

## 2 -9.492418 -79.40969 -3.076222

## 3 -6.127287 -71.84968 10.935640

is an n×m matrix, one column for each equation. As to the case with no cross-equation restriction,
the residuals can be computed this way:

(b <- coef(rsmod1.ce, theta = list(1:9)))

## $Supply

## (Intercept) x1 z2

## 1 1 2

##

## $Demand1

## (Intercept) x1 x2 x3

## 3 4 5 7

##

## $Demand2

## (Intercept) x3 x4 z1

## 6 7 8 9

e <- residuals(as(rsmod1.ce, "slinearModel"), b)

The methods evalDMoment, Dresiduals, model.matrix and modelResponse outputs are, however,
lists with ony one element, the combined equations.

G <- evalDMoment(rsmod1.ce, list(1:9))

names(G)
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## [1] "combinedEqns"

dim(G[[1]])

## [1] 16 9

The ”[” method works the same way. We can therefore get the first equation as a “rlinearModel”
object as follows:

rsmod1[1]

## Model based on moment conditions

## *********************************

## Moment type: rlinear

## Covariance matrix: iid

## Number of regressors: 2

## Number of moment conditions: 4

## Number of Endogenous Variables: 1

## Sample size: 50

## Constraints:

## x1 + 12z2 = 0

## Restricted regression:

## y1 = (Intercept)+(-12x1+z2)

Systems of nonlinear equations

It is easier to impose restrictions on nonlinear models because the names of the coefficients are different
across equations. We can start by converting the above system of linear equations to an “snonlinear-
Model” object:

nsmod <- as(smod1, "snonlinearModel")

nsmod

## System of Equations Model

## *************************

## Moment type: nonlinearModel

## Covariance matrix: iid

## Eqn1: coefs=3, moments=4, number of Endogenous: 1

## Eqn2: coefs=4, moments=6, number of Endogenous: 2

## Eqn3: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

This conversion method is particularly useful to impose nonlinear restrictions on the coefficients of
linear models. We use it here to illustrate how to impose restrictions. The parameters of the model
are:

nsmod@parNames

## [[1]]

## [1] "theta1" "theta2" "theta3"

##

## [[2]]

## [1] "theta4" "theta5" "theta6" "theta7"

##

## [[3]]

## [1] "theta8" "theta9" "theta10" "theta11"

We can use the setCoef method to create valid vectors:
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setCoef(nsmod, 1:11)

## $Eqn1

## theta1 theta2 theta3

## 1 2 3

##

## $Eqn2

## theta4 theta5 theta6 theta7

## 4 5 6 7

##

## $Eqn3

## theta8 theta9 theta10 theta11

## 8 9 10 11

Creating a restricted model with and without cross-equation restrictions is identical. The restricted
models are created using the restModel method, an R is either a vector of characters or a list of
formulas. There is no need to specify the equation names because the coefficient names are unique.
The following are two types of restrictions, the first being equation by equation and the second involving
a cross-equation restriction.

R1 <- c("theta1=-12*theta2","theta9=0.8", "theta11=0.3")

R2<- c("theta1=1", "theta6=theta10")

(rnsmod1 <- restModel(nsmod, R1))

## System of Equations Model

## *************************

## Moment type: rnonlinearModel

## Covariance matrix: iid

## Eqn1: coefs=2, moments=4, number of Endogenous: 1

## Eqn2: coefs=4, moments=6, number of Endogenous: 2

## Eqn3: coefs=2, moments=6, number of Endogenous: 0

## Sample size: 50

## (The number of endogenous variables is unreliable)

## Constraints:

## Involving equation: Eqn1

## theta1 ~ -12 * theta2

## Involving equation: Eqn3

## theta9 ~ 0.8

## theta11 ~ 0.3

(rnsmod2 <- restModel(nsmod, R2))

## System of Equations Model

## *************************

## Moment type: rnonlinearModel

## Covariance matrix: iid

## Eqn1: coefs=2, moments=4, number of Endogenous: 1

## Eqn2: coefs=3, moments=6, number of Endogenous: 2

## Eqn3: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

## (The number of endogenous variables is unreliable)

## Constraints:

## Involving equation: Eqn1

## theta1 ~ 1

## Involving equations: Eqn2 and Eqn3

## theta6 ~ theta10
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2.4 Genelarized method of moments

2.4.1 A class for moment weights

As for the single equation case, the weighting matrices must have a particular class in order to work
with all model fitting methods. The constructor is the method evalWeights. The class for system of
equations is “sysMomentWeights”. The simplest weighting matrix is the identity matrix and can be
created as follows:

wObj1 <- evalWeights(smod1, w="ident")

wObj1

## Moment weights matrix object

## [1] "Identity"

The object contains slots with information about the type of moments. When the slot “sameMom”
is TRUE, it indicates that all instruments are the same in each equation.

wObj1@sameMom

## [1] FALSE

This information allows the different methods to treat the weighting matrix in a more efficient way.
The other slots are:

wObj1@type

## [1] "weights"

which also help to choose an efficient way to do operations, and

wObj1@eqnNames

## [1] "Supply" "Demand1" "Demand2"

wObj1@momNames

## [[1]]

## [1] "(Intercept)" "z1" "z2" "z3"

##

## [[2]]

## [1] "(Intercept)" "x3" "z1" "z2" "z3"

## [6] "z4"

##

## [[3]]

## [1] "(Intercept)" "x3" "x4" "z1" "z2"

## [6] "z3"

There are two slots to store the weighting matrix, “w” and “Sigma”. The way it is stored depends on
the “vcov” type of the “sysGmmModels” object and on the value of the argument “w” of evalWeights.
If we provide a fixed matrix, it must be Q×Q:

wObj2 <- evalWeights(smod1, w=diag(16))

In that case, “Sigma” is NULL and the slot “w” is equal to the provided weighting matrix. Also,
the “type” slot is equal to “weights”, which indicates that operations like G′WG will be computed
without having to do additional oparations on W . If the argument “w” is set to “optimal”, which is
the default, the optimal weights matrix is computed based on the slot “vcov” of the model.

If “vcov” is equal to “MDS”, we obtain the following.
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smod1 <- sysMomentModel(g,h,vcov="MDS", data=simData)

wObj <- evalWeights(smod1, theta=list(1:3,1:4,1:4))

is(wObj@w)

## [1] "qr"

wObj@Sigma

## NULL

In that case, there is no benefit of computing Σ̂. The slot “w” is the QR decomposition of the n×Q
matrix g(θ)/

√
n so that R′R = Ŝ ≡ 1

n

∑n
i=1 gi(θ)g

′
i(θ), where R is the upper triangular matrix from

the decomposition. Stored this way, it is easy to compute, for example, G′Ŝ−1G.
When “vcov” is set to “iid”, the format of the slot “w” depends on whether the instruments are

the same across equations or not. In any case, the slot “Sigma” is equal to Σ̂. When the instruments
are not the same, there is no benefit of storing a QR decomposition because it cannot be used to
invert the weighting matrix. In that case, the slot “w” is Z ′Z/n, where Z is a n × Q matrix that
contains all instruments for all equations. If all instruments are the same, “w” is equal to the QR
decomposition of the n×q1 matrix Z1/

√
n, which facilitates the computation of, for example, G′WG =

G′[Σ̂−1⊗(Z ′1Z1/n)−1]G. Also, it is possible to set the “wObj” argument of evalWeights to a previously
estimated object to avoid recomputing the slot “w”. It is particularly usefull in iterative GMM or CUE.

As for the single equation case, any operation A′WB are done using the quadra method. We can
therefore compute the value of the objective function using the following operation:

gt <- evalMoment(smod1, theta=list(1:3, 1:4, 1:4)) ## this is a list

gbar <- colMeans(do.call(cbind, gt))

obj <- smod1@n*quadra(wObj, gbar)

obj

## [1] 47.87927

An easier way to compute the objective function is to use the evalGmmObj method.

evalGmmObj(smod1, theta=list(1:3,1:4,1:4), wObj=wObj)

## [1] 47.87927

2.4.2 The solveGmm method for systems of equations

The method computes the GMM estimates for a given weighting matrix. A two-step GMM can be
obtained manually this way:

smod1 <- sysMomentModel(g,h,vcov="MDS", data=simData)

wObj1 <- evalWeights(smod1, w="ident")

theta0 <- solveGmm(smod1, wObj1)$theta

wObj2 <- evalWeights(smod1, theta=theta0)

solveGmm(smod1, wObj2)

## $theta

## $theta$Supply

## (Intercept) x1 z2

## 0.56967887 0.90211804 -0.09465356

##

## $theta$Demand1

## (Intercept) x1 x2 x3

## 1.3965328 1.9181508 -0.1077914 -0.1265638

##

## $theta$Demand2
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## (Intercept) x3 x4 z1

## 3.9449762 0.1213295 -0.2315603 -0.6483119

##

##

## $convergence

## NULL

The method also applies to restricted models.

R1 <- list(c("x1=-12*z2"), character(), c("x3=0.8", "z1=0.3"))

rsmod1 <- restModel(smod1, R1)

wObj1 <- evalWeights(rsmod1, w="ident")

theta0 <- solveGmm(rsmod1, wObj1)$theta

wObj2 <- evalWeights(rsmod1, theta=theta0)

theta1 <- solveGmm(rsmod1, wObj2)$theta

theta1

## $Supply

## (Intercept) (-12x1+z2)

## 0.77168040 -0.06976301

##

## $Demand1

## (Intercept) x1 x2 x3

## 0.98101095 1.96328515 -0.07861969 -0.09507590

##

## $Demand2

## (Intercept) x4

## 2.8454840 -0.3158484

We can recover the values of the coefficients of the original equations using the coef method.

coef(rsmod1, theta1)

## $Supply

## (Intercept) x1 z2

## 0.77168040 0.83715613 -0.06976301

##

## $Demand1

## (Intercept) x1 x2 x3

## 0.98101095 1.96328515 -0.07861969 -0.09507590

##

## $Demand2

## (Intercept) x3 x4 z1

## 2.8454840 0.8000000 -0.3158484 0.3000000

The way we estimate models with cross-equation restrictions, is identical, but the result is a list
with one element, all coefficients in a single vector.

R2<- c("Supply.x1=1", "Demand1.x3=Demand2.x3")

rsmod1<- restModel(smod1, R2)

wObj1 <- evalWeights(rsmod1, w="ident")

theta0 <- solveGmm(rsmod1, wObj1)$theta

wObj2 <- evalWeights(rsmod1, theta=theta0)

theta1 <- solveGmm(rsmod1, wObj2)$theta

theta1

## $combinedEqns

## Supply.Intercept Supply.z2 Demand1.Intercept

## -0.15063318 0.04773087 0.65820272

## Demand1.x1 Demand1.x2 Demand2.Intercept
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## 1.97884902 -0.04182288 4.02036885

## (Demand1.x3+Demand2.x3) Demand2.x4 Demand2.z1

## -0.05775232 -0.22495580 -0.66896061

Again, we can recover the equation by equation coefficients:

coef(rsmod1, theta1)

## $Supply

## (Intercept) x1 z2

## -0.15063318 1.00000000 0.04773087

##

## $Demand1

## (Intercept) x1 x2 x3

## 0.65820272 1.97884902 -0.04182288 -0.05775232

##

## $Demand2

## (Intercept) x3 x4 z1

## 4.02036885 -0.05775232 -0.22495580 -0.66896061

The method also applies to restricted system of nonlinear equations (with and without cross-
equation restrictions). It is important to provide good starting values to the minimization algorithm if
we want the method to converge to the global minimum. In the following, a vector of 0’s is used to get
the first-step estimate, but in practice it is recommended to find a better strategy. The starting values
for the second-step estimate is the first-step estimate. It is the ideal starting values provided that the
first-step method converged.

### Without cross-equation restrictions

wObj1 <- evalWeights(rnsmod1, w="ident")

theta0 <- solveGmm(rnsmod1, wObj1, theta0=rep(0, 8))$theta

wObj2 <- evalWeights(rnsmod1, theta=theta0)

theta1 <- solveGmm(rnsmod1, wObj2, theta0=theta0)$theta

### Verify that the restrictions are correctly imposed:

printRestrict(rnsmod1)

## Constraints:

## Involving equation: Eqn1

## theta1 ~ -12 * theta2

## Involving equation: Eqn3

## theta9 ~ 0.8

## theta11 ~ 0.3

coef(rnsmod1, theta1)

## $Eqn1

## theta1 theta2 theta3

## -1.88657922 0.15721493 0.04547368

##

## $Eqn2

## theta4 theta5 theta6 theta7

## 0.142902102 0.760349113 0.912922813 -0.005478983

##

## $Eqn3

## theta8 theta9 theta10 theta11

## 0.066313148 0.800000000 -0.007864006 0.300000000

### With cross-equation restrictions

wObj1 <- evalWeights(rnsmod2, w="ident")

theta0 <- solveGmm(rnsmod2, wObj1, theta0=rep(0, 9))$theta

wObj2 <- evalWeights(rnsmod2, theta=theta0)
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theta1 <- solveGmm(rnsmod2, wObj2, theta0=theta0)$theta

### Verify that the restrictions are correctly imposed:

printRestrict(rnsmod2)

## Constraints:

## Involving equation: Eqn1

## theta1 ~ 1

## Involving equations: Eqn2 and Eqn3

## theta6 ~ theta10

coef(rnsmod2, theta1)

## $Eqn1

## theta1 theta2 theta3

## 1.0000000 0.8206836 -0.1814822

##

## $Eqn2

## theta4 theta5 theta6 theta7

## 1.3657291 2.0919115 -0.2726982 -0.1486612

##

## $Eqn3

## theta8 theta9 theta10 theta11

## 3.2224790 -0.0388589 -0.2726982 -0.1400441

2.4.3 The gmmFit method for system of equations

This is the main algorithm to obtain GMM estimates of systems of equations. The method returns an
object of class “sgmmfit”. The latter has a show method that print the essential of the model fit. We
can estimate a system by two step GMM as follows:

smod1 <- sysMomentModel(g,h,vcov="MDS", data=simData)

gmmFit(smod1, type="twostep")

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: MDS

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Two-Step GMM

## coefficients:

## Supply:

## (Intercept) x1 z2

## 0.56967887 0.90211804 -0.09465356

##

## Demand1:

## (Intercept) x1 x2 x3

## 1.3965328 1.9181508 -0.1077914 -0.1265638

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.9449762 0.1213295 -0.2315603 -0.6483119

If “vcov” is “iid” and the instruments differ across equations, we obtain the FIVE estimator (Full-
Information Instrumental Variable Efficient).
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smod1 <- sysMomentModel(g,h,vcov="iid", data=simData)

gmmFit(smod1, type="twostep")

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Full-Information Instrumental Variables Efficient

## coefficients:

## Supply:

## (Intercept) x1 z2

## 0.628525314 0.865621252 -0.008753291

##

## Demand1:

## (Intercept) x1 x2 x3

## 0.55815808 2.00337671 -0.04895639 -0.10295591

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.6553507 0.0336418 -0.4139044 -0.4141462

If “vcov” is “iid”, the instruments are the same and first step weights are obtained using an equation
by equation 2SLS, it returns the 3SLS estimates.

smod1 <- sysMomentModel(g,~z1+z2+z3+z4+z5,vcov="iid", data=simData)

gmmFit(smod1, type="twostep", initW="tsls")

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=6, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 3

## Demand2: coefs=4, moments=6, number of Endogenous: 2

## Sample size: 50

##

## Estimation: Two-Step GMM

## coefficients:

## Supply:

## (Intercept) x1 z2

## 0.54015729 0.90271025 -0.08044127

##

## Demand1:

## (Intercept) x1 x2 x3

## -0.110276952 2.029106112 0.038818975 -0.008191462

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.7535684 0.7354099 -1.5225474 -0.4584757

If, on top of that, the instruments are the union of all regressors, we get the SUR estimates.

smod1 <- sysMomentModel(g, vcov="iid", data=simData)

gmmFit(smod1, type="twostep", initW="tsls")
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## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=7, number of Endogenous: 0

## Demand1: coefs=4, moments=7, number of Endogenous: 0

## Demand2: coefs=4, moments=7, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Two-Step GMM

## coefficients:

## Supply:

## (Intercept) x1 z2

## -0.19348394 1.02109118 0.01528935

##

## Demand1:

## (Intercept) x1 x2 x3

## 0.54220198 2.02617101 -0.06557172 -0.08227634

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.66017017 0.03142988 -0.39036984 -0.42055399

It is also possible to obtain the first step weighting matrix using the equation by equation efficient
GMM estimates

smod1 <- sysMomentModel(g,h,vcov="MDS", data=simData)

res <- gmmFit(smod1, type="twostep", initW="EbyE")

As for the single equation case, a type “onestep” is a one step with the identity matrix, which is
the same as setting the argument “weights” to “ident”. If the argument “weights” is set to a matrix or
a “sysMomentWeights” object, the method will return a one step GMM with a fixed weighting matrix.
Finally, we can obtain the equation by equation estimtes that uses a specific type, initW and weights.
In the latter case, it is possible to inform the method that the weighting matrix is optimal by setting
the argument “efficientWeights” to TRUE.

Finally, it is possible to obtain an equation by equation GMM estimates. The estimates are obtained
using the same argument provided. For example, the following is a two-step efficient equation by
equation GMM estimates:

gmmFit(smod1, EbyE=TRUE) ## type is 'twostep' by default

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: MDS

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Equation by Equation Two-Step GMM

## coefficients:

## Supply:

## (Intercept) x1 z2

## 1.0087826 0.8327111 -0.1668389

##

## Demand1:

## (Intercept) x1 x2 x3
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## 0.13604759 2.00220300 0.01956147 -0.07244969

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.7030449 0.1483739 -0.1614735 -0.5243800

As another example, the following is an equation by equation one-step GMM.

res <- gmmFit(smod1, EbyE=TRUE, weights="ident")

Restricted models are estimated in exactly the same way.

R1 <- list(c("x1=-12*z2"), character(), c("x3=0.8", "z1=0.3"))

rsmod1 <- restModel(smod1, R1)

gmmFit(rsmod1)@theta

## $Supply

## (Intercept) (-12x1+z2)

## 0.77168040 -0.06976301

##

## $Demand1

## (Intercept) x1 x2 x3

## 0.98101095 1.96328515 -0.07861969 -0.09507590

##

## $Demand2

## (Intercept) x4

## 2.8454840 -0.3158484

R2<- c("Supply.x1=1", "Demand1.x3=Demand2.x3")

rsmod1<- restModel(smod1, R2)

gmmFit(rsmod1)@theta

## $combinedEqns

## Supply.Intercept Supply.z2 Demand1.Intercept

## -0.15063318 0.04773087 0.65820272

## Demand1.x1 Demand1.x2 Demand2.Intercept

## 1.97884902 -0.04182288 4.02036885

## (Demand1.x3+Demand2.x3) Demand2.x4 Demand2.z1

## -0.05775232 -0.22495580 -0.66896061

The following are the estimation of the two above restricted systems of nonlinear equations (the
vector of 0’s is used again as starting values because the initial values included in the model object
does a poor job):

theta0 <- setCoef(rnsmod1, rep(0,8))

gmmFit(rnsmod1, theta0=theta0)@theta

## $Eqn1

## theta2 theta3

## 0.15721493 0.04547368

##

## $Eqn2

## theta4 theta5 theta6 theta7

## 0.142902102 0.760349113 0.912922813 -0.005478983

##

## $Eqn3

## theta8 theta10

## 0.066313148 -0.007864006

theta0 <- setCoef(rnsmod2, rep(0,9))

gmmFit(rnsmod2, theta0=theta0)@theta
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## $Eqn1

## theta2 theta3

## 0.8206836 -0.1814822

##

## $Eqn2

## theta4 theta5 theta7

## 1.3657291 2.0919115 -0.1486612

##

## $Eqn3

## theta8 theta9 theta10 theta11

## 3.2224790 -0.0388589 -0.2726982 -0.1400441

2.4.4 The tsls and ThreeSLS methods

A system of equation can be estimated by 2SLS equation by equation using the tsls method.

smod1 <- sysMomentModel(g,h,vcov="MDS", data=simData)

res <- tsls(smod1)

res

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: MDS

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Equation by Equation Two-Stage Least Squares

## coefficients:

## Supply:

## (Intercept) x1 z2

## 1.0080239 0.8349503 -0.1696884

##

## Demand1:

## (Intercept) x1 x2 x3

## 0.172446231 2.013394313 0.005950135 -0.072060387

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.61876967 0.04268109 -0.44315266 -0.37700899

It is also possible to estimate a system of equations using the ThreeSLS method. This is only
possible if all instruments are the same.

smod2 <- sysMomentModel(g,~z1+z2+z3+z4+z5,vcov="MDS", data=simData)

res <- ThreeSLS(smod2)

If the instruments are the union of the regressors, the function returns the SUR estimates.

smod2 <- sysMomentModel(g,,vcov="MDS", data=simData)

res <- ThreeSLS(smod2)

The difference between the 3SLS and SUR using ThreeSLS instead of gmmFit is that the latter is
an efficient GMM, while the former will only be efficient if the “vcov” of the model is “iid”. Since the
“vcov” of the above model is set to “MDS”, the 3SLS and SUR are not efficient GMM estimates. As
a result, the covariance matrix of the coefficient estimates will be computed using a sandwich matrix
by deafult. If vcov is set to “iid”, the following produce identical results.
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smod2 <- sysMomentModel(g,~z1+z2+z3+z4+z5,vcov="iid", data=simData)

gmmFit(smod2, initW="tsls")@theta

## $Supply

## (Intercept) x1 z2

## 0.54015729 0.90271025 -0.08044127

##

## $Demand1

## (Intercept) x1 x2 x3

## -0.110276952 2.029106112 0.038818975 -0.008191462

##

## $Demand2

## (Intercept) x3 x4 z1

## 3.7535684 0.7354099 -1.5225474 -0.4584757

ThreeSLS(smod2)@theta

## $Supply

## (Intercept) x1 z2

## 0.54015729 0.90271025 -0.08044127

##

## $Demand1

## (Intercept) x1 x2 x3

## -0.110276952 2.029106112 0.038818975 -0.008191462

##

## $Demand2

## (Intercept) x3 x4 z1

## 3.7535684 0.7354099 -1.5225474 -0.4584757

The tsls method returns an object of class “stsls” which inherits from “sgmmfit”, and ThreeSLS
returns an object of class “sgmmfit”.

2.4.5 Methods for “sgmmfit” class objects

• meatGmm: It returns the K ×K matrix G′WV̂WG, where G is the block diagonal matrix with
the jth block being the qj × kj matrix Gj = 1

n

∑n
i=1 dgji(θ̂j)/dθj for j = 1, ...,m. As for single

equation models, if the argument “robust” is FALSE, it is assumed that W = V −1 and it returns
G′V̂ −1G/n, where V is the covariance matrix computed using the final coefficient estimates. If
TRUE, is returns G′WV̂WG, with V̂ computed with the coefficient estimates and W being the
weigthing matrix used to get it.

• bread : It returns (G′WG)−1, where W is the last weights used to compute the final coefficient
estimates. If the model is estimated by efficient GMM, the bread is a consistent estimator of the
covariance matrix of the coefficients.

• vcov : It returns the covariance matrix of the vectorized coefficients. It is therefore K ×K. As
for single equation, it returns the sandwich matrix (G′WG)−1G′WV̂WG(G′WG)−1/n (or the
robust one) if the model was not estimated by efficient GMM, and (G′V̂ −1G)−1/n otherwise.
Alternatively, it is possible to force vcov to return a sandwich matrix by setting the argument
“sandwich” to TRUE, or to force it to not be a sandwich by setting the argument to FALSE. It
is also possible to change the specification of the model by setting the argument “modelVcov” to
another “vcov” type. If different from the fitted model, a sandwich is automatically computed. It
is also possible to adjust the covariance matrix for the degrees of freedom by setting the argument
“adj.df” to TRUE, which multiplies the covariance matrix by n/(n−K), or to compute only the
bread by setting the argument “breadOnly” to TRUE.

• specTest : As for single equation, it tests the null hypothesis that E[gi(θ)] = 0. The degrees of
freedom is Q−K, where Q =

∑m
i=1 qi and K =

∑m
i=1 ki. It returns an object of class “specTest”

which has its own show and print methods. For the test to be valid, the model must be estimated
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by efficient GMM. The only signature available for now is (“sgmmfit”, “missing”), so we cannot
test subsets of the instruments.

smod1 <- sysMomentModel(g, h, vcov="iid", data=simData)

res <- gmmFit(smod1)

specTest(res)

##

## J-Test

## Statistics df pvalue

## Test E(g)=0: 34.937 5 1.5491e-06

• summary : Summarizes the estimation results with an equation by equation coefficient matrix,
the specTest result and an equation by equation first stage F-test. It returns an object of class
“summarySysGmm” with its own show and print methods.

summary(res)

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: iid

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Full-Information Instrumental Variables Efficient

## Sandwich vcov: FALSE

## coefficients:

##

## Supply:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.6285253 0.8913480 0.7051 0.4807

## x1 0.8656213 0.1388769 6.2330 4.576e-10 ***

## z2 -0.0087533 0.1774090 -0.0493 0.9606

##

## Instrument strength based on the F-Statistics of the first stage OLS

## x1 : F( 2 , 46 ) = 3.761398 (P-Vavue = 0.03069289 )

##

## Demand1:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.558158 0.794222 0.7028 0.4822

## x1 2.003377 0.106229 18.8590 <2e-16 ***

## x2 -0.048956 0.062138 -0.7879 0.4308

## x3 -0.102956 0.148744 -0.6922 0.4888

##

## Instrument strength based on the F-Statistics of the first stage OLS

## x1 : F( 4 , 44 ) = 3.209718 (P-Vavue = 0.02136437 )

## x2 : F( 4 , 44 ) = 10.04988 (P-Vavue = 7.243974e-06 )

##

## Demand2:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.655351 0.266694 13.7061 < 2e-16 ***

## x3 0.033642 0.172851 0.1946 0.84568

## x4 -0.413904 0.163711 -2.5283 0.01146 *

## z1 -0.414146 0.189369 -2.1870 0.02874 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## J-Test

## Statistics df pvalue

## Test E(g)=0: 34.937 5 1.5491e-06

The method works also for restricted models.

smod1 <- sysMomentModel(g,h,vcov="iid", data=simData)

R1 <- list(c("x1=-12*z2"), character(), c("x3=0.8", "z1=0.3"))

rsmod1 <- restModel(smod1, R1)

summary(gmmFit(rsmod1))@coef

## $Supply

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.96992584 0.570211480 1.700993 8.894427e-02

## (-12x1+z2) -0.06787761 0.009262412 -7.328287 2.331139e-13

##

## $Demand1

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.0890126761 0.74734568 0.11910509 9.051921e-01

## x1 2.0356106953 0.10258712 19.84275096 1.272987e-87

## x2 0.0006860502 0.05863956 0.01169944 9.906654e-01

## x3 -0.0241290806 0.14362398 -0.16800176 8.665819e-01

##

## $Demand2

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.8746969 0.1974970 14.555647 5.377437e-48

## x4 -0.4452847 0.1804412 -2.467755 1.359632e-02

R2<- c("Supply.x1=1", "Demand1.x3=Demand2.x3")

rsmod1<- restModel(smod1, R2)

summary(gmmFit(rsmod1))@coef

## $combinedEqns

## Estimate Std. Error t value Pr(>|t|)

## Supply.Intercept -0.315174361 0.13515839 -2.33188903 1.970653e-02

## Supply.z2 0.179626282 0.07878680 2.27990329 2.261342e-02

## Demand1.Intercept -0.549969735 0.39631864 -1.38769587 1.652297e-01

## Demand1.x1 2.107668969 0.05257402 40.08955609 0.000000e+00

## Demand1.x2 0.045496733 0.03670660 1.23947004 2.151715e-01

## Demand2.Intercept 3.555754012 0.16204230 21.94336862 1.001986e-106

## (Demand1.x3+Demand2.x3) 0.004203493 0.08090442 0.05195628 9.585635e-01

## Demand2.x4 -0.422872679 0.09497077 -4.45266116 8.481254e-06

## Demand2.z1 -0.315744677 0.11924248 -2.64792116 8.098841e-03

• hypothesisTest : For hypothesis testing, the method can test any linear restriction using either
LM, LR or Wald tests. Consider the following unrestricted and restricted models.

smod1 <- sysMomentModel(g, h, vcov="MDS", data=simData)

res.u <- gmmFit(smod1)

R1 <- list(c("x1=-12*z2"), character(), c("x3=0.8", "z1=0.3"))

rsmod1 <- restModel(smod1, R1)

res.r <- gmmFit(rsmod1)

The methods works as for single equations. We can just provide the unrestricted model and the
R and q to get the Wald test, provide only the restricted fit for the LR test, or provide both and
choose among the three tests by setting the argument “type” to the appropriate value. We only
show the latter case.
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hypothesisTest(res.u, res.r, type="Wald")

## Wald Test

## ***********

## The Null Hypothesis:

## Supply.x1 + 12Supply.z2 = 0

## Demand2.x3 = 0.8

## Demand2.z1 = 0.3

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 30.84396 9.168458e-07

It is as easy to test cross-equation restrictions.

R2<- c("Supply.x1=1", "Demand1.x3=Demand2.x3")

rsmod1<- restModel(smod1, R2)

res2.r <- gmmFit(rsmod1)

hypothesisTest(res.u, res2.r, type="LR")

## LR Test

## ***********

## The Null Hypothesis:

## Supply.x1 = 1

## Demand1.x3 - Demand2.x3 = 0

## Distribution: Chi-square with 2 degrees of freedom

## Statistics Pvalue

## 1 4.226464 0.1208468

For the nonlinear model, it works in a very similar way. First we estimate the unrestricted model
and the two restricted ones.

R1 <- c("theta1=-12*theta2","theta9=0.8", "theta11=0.3")

R2<- c("theta1=1", "theta6=theta10")

rnsmod1 <- restModel(nsmod, R1)

rnsmod2 <- restModel(nsmod, R2)

theta0 <- setCoef(nsmod, rep(0,11))

fit <- gmmFit(nsmod, theta0=theta0)

theta0 <- setCoef(rnsmod1, rep(0,8))

rfit1 <- gmmFit(rnsmod1, theta0=theta0)

theta0 <- setCoef(rnsmod2, rep(0,9))

rfit2 <- gmmFit(rnsmod2, theta0=theta0)

Then, we test the two restrictions using the different options:

hypothesisTest(object.u=fit, R=R1)

## Wald Test

## ***********

## The Null Hypothesis:

## theta1 ~ -12 * theta2

## theta9 ~ 0.8

## theta11 ~ 0.3

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 196.1257 0

hypothesisTest(object.u=fit, object.r=rfit1, type="LR")

## LR Test

## ***********
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## The Null Hypothesis:

## theta1 ~ -12 * theta2

## theta9 ~ 0.8

## theta11 ~ 0.3

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 3509.091 0

hypothesisTest(object.u=fit, object.r=rfit1, type="LM")

## LM Test

## ***********

## The Null Hypothesis:

## theta1 ~ -12 * theta2

## theta9 ~ 0.8

## theta11 ~ 0.3

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 247.2541 0

hypothesisTest(object.u=fit, R=R2)

## Wald Test

## ***********

## The Null Hypothesis:

## theta1 ~ 1

## theta6 ~ theta10

## Distribution: Chi-square with 2 degrees of freedom

## Statistics Pvalue

## 1 3.33079 0.1891159

hypothesisTest(object.u=fit, object.r=rfit2, type="LR")

## LR Test

## ***********

## The Null Hypothesis:

## theta1 ~ 1

## theta6 ~ theta10

## Distribution: Chi-square with 2 degrees of freedom

## Statistics Pvalue

## 1 0.3350465 0.845757

hypothesisTest(object.u=fit, object.r=rfit2, type="LM")

## LM Test

## ***********

## The Null Hypothesis:

## theta1 ~ 1

## theta6 ~ theta10

## Distribution: Chi-square with 2 degrees of freedom

## Statistics Pvalue

## 1 3.728194 0.1550361

2.4.6 Direct estimation with gmm4

Again, we can do everything at once using the gmm4 function. For example, if we want to estimate a
model by two-step GMM with “MDS” errors, we proceed as follows:
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res <- gmm4(g, h, type="twostep", vcov="MDS", data=simData)

res

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: MDS

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Two-Step GMM

## coefficients:

## Supply:

## (Intercept) x1 z2

## 0.56967887 0.90211804 -0.09465356

##

## Demand1:

## (Intercept) x1 x2 x3

## 1.3965328 1.9181508 -0.1077914 -0.1265638

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.9449762 0.1213295 -0.2315603 -0.6483119

It produces an object of class “sgmmfit” so all of its methods can be apply to the output. The
function gmm4 recognizes that it is a system because the first argument is a list of formulas. You can
estimate it equation by equation by setting the argument “EbyE” to TRUE:

res <- gmm4(g, h, type="twostep", vcov="MDS", EbyE=TRUE, data=simData)

res

## System of Equations Model

## *************************

## Moment type: linearModel

## Covariance matrix: MDS

## Supply: coefs=3, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=4, moments=6, number of Endogenous: 0

## Sample size: 50

##

## Estimation: Equation by Equation Two-Step GMM

## coefficients:

## Supply:

## (Intercept) x1 z2

## 1.0087826 0.8327111 -0.1668389

##

## Demand1:

## (Intercept) x1 x2 x3

## 0.13604759 2.00220300 0.01956147 -0.07244969

##

## Demand2:

## (Intercept) x3 x4 z1

## 3.7030449 0.1483739 -0.1614735 -0.5243800

To estimate a model by 3SLS, or SUR, we just need the right model:

60



res <- gmm4(g, ~z1+z2+z3+z4+z5, type="twostep", vcov="iid", initW="tsls", data=simData) #3SLS

res <- gmm4(g, NULL, type="twostep", vcov="iid", initW="tsls", data=simData) #SUR

To estimate a restricted model, simply add the restrictions

R1 <- list(c("x1=-12*z2"), character(), c("x3=0.8", "z1=0.3"))

res <- gmm4(g, h, data=simData, cstLHS=R1) #two-step by default

res

## System of Equations Model

## *************************

## Moment type: rlinearModel

## Covariance matrix: iid

## Supply: coefs=2, moments=4, number of Endogenous: 1

## Demand1: coefs=4, moments=6, number of Endogenous: 2

## Demand2: coefs=2, moments=6, number of Endogenous: 0

## Sample size: 50

## **Equation by Equation restrictions**

## **Supply**

## Constraints:

## x1 + 12z2 = 0

## Restricted regression:

## y1 = (Intercept)+(-12x1+z2)

##

## **Demand2**

## Constraints:

## x3 = 0.8

## z1 = 0.3

## Restricted regression:

## (y3-0.8x3-0.3z1) = (Intercept)+x4

##

##

## Estimation: Full-Information Instrumental Variables Efficient

## coefficients:

## Supply:

## (Intercept) (-12x1+z2)

## 0.96992584 -0.06787761

##

## Demand1:

## (Intercept) x1 x2 x3

## 0.0890126761 2.0356106953 0.0006860502 -0.0241290806

##

## Demand2:

## (Intercept) x4

## 2.8746969 -0.4452847

It is the same for nonlinear systems. Notice that theta0 that needs to be provided is for the
unrestricted model even if impose restriction. gmm4 first creates the unrestricted model with theta0
and use restModel after to created the restricted model.

h <- list(~z1+z2+z3, ~x3+z1+z2+z3+z4, ~x3+x4+z1+z2+z3)

nlg <- list(Supply=y1~theta0+theta1*x1+theta2*z2,

Demand1=y2~alpha0+alpha1*x1+alpha2*x2+alpha3*x3,

Demand2=y3~beta0+beta1*x3+beta2*x4+beta3*z1)

theta0 <- list(c(theta0=0,theta1=0,theta2=0),

c(alpha0=0,alpha1=0,alpha2=0, alpha3=0),

c(beta0=0,beta1=0,beta2=0,beta3=0))

fit <- gmm4(nlg, h, theta0,data=simData)

## the restricted estimation (:
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R2<- c("theta1=1", "alpha1=beta2")

fit2 <- gmm4(nlg, h, theta0,data=simData, cstLHS=R2)

2.5 Textbooks Applications

2.5.1 Greene

In this section, we kind of reproduce results from Greene (2012). Textbook with GMM estimation of
systems of equations are not common.

In Table 10.3, the author estimates the following system of equations:

sk = βk + δkk log

(
pk
pm

)
+ δkl log

(
pl
pm

)
+ δke log

(
pe
pm

)
+ uk

sl = βl + δlk log

(
pk
pm

)
+ δll log

(
pl
pm

)
+ δle log

(
pe
pm

)
+ ul

se = βe + δek log

(
pk
pm

)
+ δel log

(
pl
pm

)
+ δee log

(
pe
pm

)
+ ue

where k, l, e and m stand for capital, labor, energy and materials. The dependent variables are
shares and the regressors are prices. The equation for materials is omitted because it is equal to
one minus the sum of the other three. The system with all four would be singular. Without any
restriction, this is just a multivariate regression in which all equation are just identified. Any GMM
estimation would therefore be identical to OLS. If we impose restrictions on the coefficients, however,
some equations become over-identified and GMM deviates from OLS. In particular, if we assume iid
errors, efficient GMM becomes SUR since all regressors are considered exogenous. It turns out that
the theory behind the model implies that δkl = δlk, δle = δel and δke = δek. SUR estimation of the
restricted model should lead to results that are close to Table 10.3 which were generated by restricted
feasible GLS.

First, we normalize the prices and take the log.

data(ManufactCost)

price <- c("Pk","Pl","Pe")

ManufactCost[,price] <- log(ManufactCost[,price]/ManufactCost$Pm)

In the dataset, the shares are labeled K, L and E. The unrestricted model can be defined as follows.

g <- list(Sk=K~Pk+Pl+Pe,

Sl=L~Pk+Pl+Pe,

Se=E~Pk+Pl+Pe)

mod <- sysMomentModel(g, NULL, data=ManufactCost, vcov="iid")

Notice that the second argument is NULL because we want the instruments to be the regressors.
We can now create the restricted model by adding the equation names to each coefficient names.

R <- c("Sk.Pl=Sl.Pk", "Sk.Pe=Se.Pk", "Sl.Pe=Se.Pl")

rmod <- restModel(mod, R=R)

We can then estimate the model and print the coefficient matrix:

res <- gmmFit(rmod)

summary(res)@coef

## $combinedEqns

## Estimate Std. Error t value Pr(>|t|)

## Sk.Intercept 5.681333e-02 0.0007665237 74.118169295 0.000000e+00

## Sk.Pk 2.975632e-02 0.0033356685 8.920645298 4.635791e-19
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## Sl.Intercept 2.535064e-01 0.0011932910 212.443067147 0.000000e+00

## (Sk.Pl+Sl.Pk) -7.430699e-06 0.0021781330 -0.003411499 9.972780e-01

## Sl.Pl 7.496081e-02 0.0038499869 19.470407357 1.957090e-84

## Se.Intercept 4.378201e-02 0.0004872093 89.862834309 0.000000e+00

## (Sk.Pe+Se.Pk) -8.089997e-03 0.0019566454 -4.134625927 3.555333e-05

## (Sl.Pe+Se.Pl) -3.152070e-03 0.0013012146 -2.422406259 1.541810e-02

## Se.Pe 3.057416e-02 0.0030667212 9.969655943 2.069445e-23

We can also test the restriction:

res.u <- gmmFit(mod)

hypothesisTest(res.u, res)

## Wald Test

## ***********

## The Null Hypothesis:

## Sk.Pl - Sl.Pk = 0

## Sk.Pe - Se.Pk = 0

## Sl.Pe - Se.Pl = 0

## Distribution: Chi-square with 3 degrees of freedom

## Statistics Pvalue

## 1 16.56175 0.0008696287

In Table 10.5, the author estimates the macro model of Klein (1950):

Ct = θc0 + θc1Pt + θc2Pt−1 + θc3(W p
t +W g

t ) + εct

It = θi0 + θi1Pt + θi2Pt−1 + θi3Kt−1 + εit

WD
t = θw0 + θw1Xt + θw2Xt−1 + θw3At + εwt

The exogenous and predetermined variables that are used as instruments in each equation are Zt =
{Gt, Tt,W g

t , At,Kt−1, Pt−1, Xt−1}. The data are annual observations from 1920 to 1941. We therefore
have only 22 observations (21 because of the lags).

The table reports the results for many estimation method. We can reproduce 2SLS and 3SLS, but
we only consider the latter because we have covered 2SLS cases in Section 1.5. First we arrange the
data to get lags and At.

data(Klein)

Klein1 <- Klein[-22,]

Klein <- Klein[-1,]

dimnames(Klein1) <- list(rownames(Klein), paste(colnames(Klein),"1",sep=""))

Klein <- cbind(Klein, Klein1)

Klein$A <- (Klein$YEAR-1931)

We can then estimate it by 3SLS. To reproduce the same standard errors, we need to use the bread
only. In other words, using the final estimate to compute the weights leads to slightly different standard
errors. In other words, the covariance matrix must be estimated using[

G′
(

Σ̃−1 ⊗ (Z ′Z/n)−1
)
G
]−1

/n,

where Σ̃ is computed using the 2SLS estimates. By default, the package updates Σ̃ using the final
estimates. The following is identical to Table 10.5, section 3SLS of Greene (2012).

g <- list(C=C~P+P1+I(WP+WG),

I=I~P+P1+K1,

Wp=WP~X+X1+A)

h <- ~G+T+WG+A+K1+P1+X1

res <- ThreeSLS(g, h, vcov="iid", data=Klein)

summary(res, breadOnly=TRUE)@coef
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## $C

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 16.4407901 1.30454876 12.602664 2.041306e-36

## P 0.1248905 0.10812905 1.155013 2.480850e-01

## P1 0.1631441 0.10043819 1.624323 1.043068e-01

## I(WP + WG) 0.7900809 0.03793791 20.825634 2.535479e-96

##

## $I

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 28.17784687 6.79377017 4.14760084 3.359775e-05

## P -0.01307918 0.16189624 -0.08078744 9.356110e-01

## P1 0.75572396 0.15293313 4.94153209 7.751106e-07

## K1 -0.19484825 0.03253069 -5.98967376 2.102624e-09

##

## $Wp

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.7972177 1.11585498 1.610619 1.072627e-01

## X 0.4004919 0.03181341 12.588774 2.434243e-36

## X1 0.1812910 0.03415878 5.307304 1.112584e-07

## A 0.1496741 0.02793524 5.357897 8.419628e-08
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Appendix

A Some extra codes

A.1 The Extract method

library(texreg)

setMethod("extract", "gmmfit",

function(model, includeJTest=TRUE, includeFTest=TRUE, ...)

{
s <- summary(model, ...)

spec <- modelDims(model@model)

coefs <- s@coef

names <- rownames(coefs)

coef <- coefs[, 1]

se <- coefs[, 2]

pval <- coefs[, 4]

n <- model@model@n

gof <- numeric()

gof.names <- character()

gof.decimal <- logical()

if (includeJTest) {
if (spec$k == spec$q)

{
obj.fcn <- NA

obj.pv <- NA

} else {
obj.fcn <- s@specTest@test[1]

obj.pv <- s@specTest@test[3]

}
gof <- c(gof, obj.fcn, obj.pv)

gof.names <- c(gof.names, "J-test Statistics", "J-test p-value")

gof.decimal <- c(gof.decimal, TRUE, TRUE)

}
if (includeFTest) {

str <- s@strength$strength

if (is.null(str))

{
gof <- c(gof, NA)

gof.names <- c(gof.names, "First Stage F-stats")

gof.decimal <- c(gof.decimal, TRUE)

} else {
for (i in 1:nrow(str))

{
gof <- c(gof, str[i,1])

gofn <- paste("First Stage F-stats(",

rownames(str)[i], ")", sep="")

gof.names <- c(gof.names, gofn)

gof.decimal <- c(gof.decimal, TRUE)

}
}

}
tr <- createTexreg(coef.names = names, coef = coef, se = se,

pvalues = pval, gof.names = gof.names, gof = gof,

gof.decimal = gof.decimal)

return(tr)
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