
Reconstructing phenotype specific multi-
omics networks with SmCCNet

W.Jenny Shi ∗1, Laura Saba 1, and Katerina Kechris 1

1University of Colorado Denver|Anschutz Medical Campus
∗wjennyshi@gmail.com

2018-06-20

Abstract

Sparse multiple canonical correlation network analysis (SmCCNet) is a machine learning
technique for integrating multiple omics data on the same subjects, along with a quantitative
phenotype of interest, and reconstructing multi-omics networks that are specific to the
phenotype. While the current version integrates two omics data types in addition to a
phenotype, the framework can be easily generalized to more than two omics data types and
multiple quantitative phenotypes. In this document, we illustrate a standard workflow of
SmCCNet with a synthetic miRNA, mRNA expression dataset.

Contents

1 SmCCNet overview . 2

1.1 Workflow . 2

1.2 SmCCNet package . 2

2 SmCCNet workflow with a synthetic dataset 4

2.1 Synthetic dataset . 4

2.2 Step I: Determine optimal sparsity penalties through CV (optional) . 5

2.3 Step II: Integrate two omics data types and a quantitative phenotype 11

2.4 Step III: Obtain multi-omics modules and plot subnetworks 11

3 Alternative canonical correlation analysis (CCA) methods . . . 12

3.1 SsCCA . 12

3.2 SCCA . 13

4 Session info . 13

5 References . 13

SmCCNet

1 SmCCNet overview

Note: if you use SmCCNet in published research, please cite:
Shi, W.J., Y. Zhuang, P.H. Russell, B.D. Hobbs, M.M. Parker,P.J. Castaldi, P.
Rudra, B. Vestal, C.P. Hersh, L.M. Saba, and K. Kechris, “Unsupervised Discovery
of Phenotype Specific Multi-Omics Networks.” (Submitted)

1.1 Workflow

SmCCNet is a canonical correlation based integration method that reconstructs phenotype-
specific multi-omics networks (Shi et al., submitted). The algorithm is based on sparse multiple
canonical analysis (SmCCA) for two omics data X1, X2 and a quantitative phenotype Y
measured on the same subjects. SmCCA finds the canonical weights w1, w2 that maximize the
(weighted or unweighted) sum of pairwise canonical correlations between X1, X2 and Y , under
some constraints (Equation 1). In SmCCNet, the sparsity constraint functions Ps(·), s = 1, 2,
are the least absolute shrinkage and selection operators (LASSO). The weighted version
corresponds to a, b, c not all equal; the unweighted version corresponds to a = b = c = 1.

(w1, w2)=arg max
w̃1,w̃2

(
aw̃T

1 XT
1 X2w̃2+bw̃T

1 XT
1 Y +cw̃T

2 XT
2 Y

)
,

subject to ‖w̃s‖2 = 1, Ps(w̃s) ≤ cs, s = 1, 2.
1

The sparsity penalties c1, c2 influence how many features will be included in each subnetwork.
With pre-selected sparsity penalties, the SmCCNet algorithm creates a network similarity
matrix based on SmCCA canonical weights from repeated subsampled omics data and the
phenotype, and then finds multi-omics modules that are relevant to the phenotype. The
subsampling scheme improves network robustness by analyzing a subset of omics features
multiple times and forms a final similarity matrix by aggregating results from each subsampling
step. The general workflow (Figure 1) involves three steps:

• Step I: Determine SmCCA sparsity penalties c1, c2. The user can select the penalties for
omics feature selection based on the study purpose and/or prior knowledge. Alternatively,
one can pick sparsity penalties based on a K-fold cross validation (CV) procedure that
minimizes the total prediction error (Figure 2). The K-fold CV procedure ensures
selected penalties to be generalizable to similar independent data sets and prevents
over-fitting.

• Step II: Randomly subsample omics features without replacement, apply SmCCA with
chosen penalties, and compute a feature relationship matrix for each subset. Repeat
the process many times and define the similarity matrix to be the average of all feature
relationship matrices.

• Step III: Apply hierarchical tree cutting to the similarity matrix to find the multi-omics
networks. This step simultaneously identifies multiple subnetworks.

1.2 SmCCNet package

The SmCCNet package has the following dependencies:

2

SmCCNet

Figure 1: SmCCNet workflow overview
X1 and X2 are two omics data types for the same set of n subjects. Y indicates a quantitative phenotype
measure for those n subjects.

library(PMA)

library(pbapply)

library(Matrix)

library(igraph)

The SmCCNet package consists of two R scripts:
source("../R/ModifiedPMA.R")

source("../R/SmCCNetSource.R")

The current version of the SmCCNet package includes four (external) functions:
• getRobustPseudoWeights(): Compute aggregated (SmCCA) canonical weights.
• getAbar(): Calculate similarity matrix based on canonical weights.
• getMultiOmicsModules(): Perform hierarchical tree cutting on the similarity matrix

and extract clades with multi-omics features.
• plotMultiOmicsNetwork(): Plot (trimmed or full) multi-omics subnetworks.

More details on above functions can be found in the package manual.

3

SmCCNet

2 SmCCNet workflow with a synthetic dataset

2.1 Synthetic dataset

For the illustration we consider a synthetic data set with 500 genes (X1) and 100 miRNAs
(X2) expression levels measured for 358 subjects, along with a quantitative phenotype (Y).
load("../data/ExampleData.RData")

head(X1[, 1:6])

Gene_1 Gene_2 Gene_3 Gene_4 Gene_5 Gene_6

Samp_1 22.48570 40.35372 31.02575 20.84721 26.69729 30.20545

Samp_2 37.05885 34.05223 33.48702 23.53146 26.75463 31.73594

Samp_3 20.53077 31.66962 35.18957 20.95254 25.01883 32.15723

Samp_4 33.18689 38.48088 18.89710 31.82330 34.04938 38.79989

Samp_5 28.96198 41.06049 28.49496 18.37449 30.81524 24.00454

Samp_6 18.05983 29.55471 32.54002 29.68452 26.19996 26.76684

head(X2[, 1:6])

Mir_1 Mir_2 Mir_3 Mir_4 Mir_5 Mir_6

Samp_1 15.22391 17.54583 15.78472 14.89198 10.34821 9.689755

Samp_2 16.30697 16.67283 13.36153 14.48855 12.66090 11.333613

Samp_3 16.54512 16.73501 14.61747 17.84527 13.82279 11.329333

Samp_4 13.98690 16.20743 16.29308 17.72529 12.30056 9.844108

Samp_5 16.33833 17.39387 16.39792 15.85373 13.38767 10.599414

Samp_6 14.54110 16.51999 14.73958 15.87504 13.21359 10.922393

head(Y)

Pheno

Samp_1 235.0674

Samp_2 253.5450

Samp_3 234.2050

Samp_4 281.0354

Samp_5 245.4478

Samp_6 189.6231

Denote the number of features in X1&X2 as p1&p2 respectively, and the number of subjects
as n.
p1 <- ncol(X1)

p2 <- ncol(X2)

n <- nrow(X1)

AbarLabel <- c(colnames(cbind(X1, X2)))

Although SmCCNet does not require normality, it calculates the Pearson correlation between
linear combinations of omics features and the phenotype, which assumes finite variances and
finite covariance. It is necessary to include a transformation if the data are skewed. The
algorithm also requires the data to be standardizable (i.e. none of the data matrices include a
column with zero variance.)

4

SmCCNet

2.2 Step I: Determine optimal sparsity penalties through CV (op-
tional)

To find the optimal sparsity penalties c1, c2, we apply a K-fold CV on the synthetic data
(Figure 2). Note that under LASSO constraints, 1 ≤ c1 ≤

√
p1s1, 1 ≤ c2 ≤

√
p2s2, where

p1, p2 denote the number of features in omics data X1, X2 respectively, and s1, s2 are the
proportions of X1, X2 features to be sampled every time. The sparse penalties c1, c2 can be
re-parametrized as 0 < l1, l2 ≤ 1, such that c1 = max{1, l1

√
p1s1}, c2 = max{1, l2

√
p2s2}.

Large penalty values correspond to more features in each subnetwork, while small penalties
correspond to fewer features. Here is the list of parameters that need to be specified:

• K: Number of folds in CV. Typically a 5-fold CV is sufficient. If the training set contains
too few (e.g. < 30) samples, or the test or training set becomes unscalable, then choose
a smaller K.

• CCcoef : Optional coefficients, (a, b, c) in Equation 1 , for the weighted SmCCA. If
CCcoef = NULL (default), then a = b = c = 1, and the objective function is the
unweighted total sum of all pairwise canonical correlations.

• s1, s2: Proportions of feature subsampling from X1, X2. Default values are s1 =
0.7, s2 = 0.9.

• SubsamplingNum: Number of subsamples.
• P1P2: A penalty option matrix for X1, X2. Each row of P1P2 is a pair of penalty

options (l1, l2), where 0 < l1, l2 < 1. Larger penalties correspond to more features to
be included in each subnetwork. Typically, it is not necessary to search the entire range
(0, 1), and a smaller grid (e.g. 0 < l1, l2 < .3) may be sufficient.

Figure 2: SmCCNet K-fold CV
The best penalty pairs are chosen based on the smallest total prediction error.

5

SmCCNet

K <- 3 # Number of folds in K-fold CV.

CCcoef <- NULL # Unweighted version of SmCCNet.

s1 <- 0.7; s2 <- 0.9 # Feature sampling proportions.

SubsamplingNum <- 500 # Number of subsamples.

Create sparsity penalty options.

pen1 <- seq(.05, .3, by = .05)

pen2 <- seq(.05, .3, by = .05)

P1P2 <- expand.grid(pen1, pen2)

Map (l1, l2) to (c1, c2).

c1 <- sqrt(p1 * s1) * P1P2[, 1]; c1[c1] <- 1

c2 <- sqrt(p2 * s2) * P1P2[, 2]; c2[c2 < 1] <- 1

Based on prior knowledge we may assume that there are at least as many genes

as miRNAs in each network.

P1P2 <- P1P2[which(c1>c2),]

Set a CV directory.

CVDir <- "Example3foldCV/"

dir.create(CVDir)

2.2.1 Create test and training data sets.

First, we need to split the data (X1, X2, Y) into test and training sets (Figure 2, Step I.1).
All CCA methods require data sets to be standardized (centered and scaled) by columns
(e.g. features). We have included the standardization step within the SmCCNet algorithm.
However, for the CV procedure, we recommend to standardize the training and test sets
upfront, since this helps to choose the number of CV folds K. If any data set can not be
standardized, we recommend to reduce K. In the code below, we show how to create CV
data sets and check if all data sets are valid (i.e. standardizable). The standardized training
and test data sets will be saved under the CV directory.
set.seed(12345) # Set random seed.

foldIdx <- split(1:n, sample(1:n, K))

for(i in 1:K){

iIdx <- foldIdx[[i]]

x1.train <- scale(X1[-iIdx,])

x2.train <- scale(X2[-iIdx,])

yy.train <- scale(Y[-iIdx,])

x1.test <- scale(X1[iIdx,])

x2.test <- scale(X2[iIdx,])

yy.test <- scale(Y[iIdx,])

Check if standardized data sets are valid.

if(is.na(min(min(x1.train), min(x2.train), min(yy.train), min(x1.test),

min(x2.test), min(yy.test)))){

stop("Invalid scaled data. At least one of the data matrices include a

column with zero variance.")

}

6

SmCCNet

subD <- paste0(CVDir, "CV_", i, "/")

dir.create(subD)

save(x1.train, x2.train, yy.train, x1.test, x2.test, yy.test,

s1, s2, P1P2, p1, p2, SubsamplingNum, CCcoef,

file = paste0(subD, "Data.RData"))

}

2.2.2 Run K-fold CV

For each of the K-fold we compute the prediction error for each penalty pair option (Figure 2,
Step I.2). For computational efficiency, we recommend utilizing parallel computing for K-fold
CV. As an illustration, we will use the R package parallel. The R code below can be easily
modified into a for loop if multiple cords/threads are not available.
library(parallel)

cl <- makeCluster(K, type = "FORK") # Create K parallel threads.

clusterExport(cl = cl, "CVDir") # Pass on variable CVDir to each thread.

parSapply(cl, 1:K, function(CVidx){

Reload source code files for each thread.

source("../R/ModifiedPMA.R")

source("../R/SmCCNetSource.R")

Create a result directory for each thread.

subD <- paste0(CVDir, "CV_", CVidx, "/")

load(paste0(subD, "Data.RData"))

dir.create(paste0(subD, "SmCCA/"))

RhoTrain <- RhoTest <- DeltaCor <- rep(0, nrow(P1P2))

for(idx in 1:nrow(P1P2)){

Consider one pair of sparsity penalties at a time.

l1 <- P1P2[idx, 1]

l2 <- P1P2[idx, 2]

Run SmCCA on the subsamples (Figure 1, Step II)

Ws <- getRobustPseudoWeights(x1.train, x2.train, yy.train, l1, l2,

s1, s2, NoTrait = FALSE,

FilterByTrait = FALSE,

SubsamplingNum = SubsamplingNum,

CCcoef = CCcoef)

Aggregate pseudo-canonical weights from the subsamples.

meanW <- rowMeans(Ws)

v <- meanW[1:p1]

u <- meanW[p1 + 1:p2]

Compute the prediction error for given CV fold and sparsity penalties.

if(is.null(CCcoef)){CCcoef <- rep(1, 3)} # Unweighted SmCCA.

rho.train <- cor(x1.train %*% v, x2.train %*% u) * CCcoef[1] +

cor(x1.train %*% v, yy.train) * CCcoef[2] +

7

SmCCNet

cor(x2.train %*% u, yy.train) * CCcoef[3]

rho.test <- cor(x1.test %*% v, x2.test %*% u) * CCcoef[1] +

cor(x1.test %*% v, yy.test) * CCcoef[2] +

cor(x2.test %*% u, yy.test) * CCcoef[3]

RhoTrain[idx] <- round(rho.train, digits = 5)

RhoTest[idx] <- round(rho.test, digits = 5)

DeltaCor[idx] <- abs(rho.train - rho.test)

Periodically save results in a temporary file.

if(idx %% 10 == 0){

save(P1P2, RhoTrain, RhoTest, DeltaCor, idx,

file = paste0(subD, "temp.RData"))

}

}

Record prediction errors for given CV fold and all sparsity penalty

options.

DeltaCor.all <- cbind(P1P2, RhoTrain, RhoTest, DeltaCor)

colnames(DeltaCor.all) <- c("l1", "l2", "Training CC", "Test CC",

"CC Pred. Error")

write.csv(DeltaCor.all,

file = paste0(subD, "SmCCA/PredictionError.csv"))

Remove the temporary file.

system(paste0("rm ", subD, "temp.RData"))

return(CVidx)

})

Close cluster

stopCluster(cl)

2.2.3 Extract penalty pair with the smallest total prediction error

Finally, we extract the total prediction errors (Figure 2, Step I.3) and conclude the best penalty
pair as the pair with the smallest error (Figure 2, Step I.4).
Combine prediction errors from all K folds and compute the total prediction

error for each sparsity penalty pair.

testCC <- predError <- NULL

for(j in 1:K){

resultT <- paste0(CVDir, "CV_", j, "/SmCCA/PredictionError.csv")

dCorT <- read.csv(resultT)[, -1]

testCC <- cbind(testCC, abs(dCorT[, 4]))

predError <- cbind(predError, dCorT[, 5])

}

S1 <- rowMeans(testCC)

S2 <- rowMeans(predError)

T12 <- dCorT[, -3]; T12[, 3] <- S1; T12[, 4] <- S2

write.csv(T12, file = paste0(CVDir, "TotalPredictionError.csv"))

8

SmCCNet

Table 1 shows the total prediction error (CC.Pred.Error) for all penalty options. Note that in
this example, we are only including 26 optional penalty pairs, and we require that there are
at least as many genes as miRNAs in each multi-omics module (i.e., c1 ≥ c2). The fourth
column (Test.CC) records the aggregated pseudo canonical correlations for the test data set.

Table 1: Total Prediction Error from a 3-fold CV for the synthetic dataset

X l1 l2 Test.CC CC.Pred..Error
1 0.10 0.05 1.653380 0.2164767
2 0.15 0.05 1.625990 0.2207548
3 0.20 0.05 1.587710 0.2230805
4 0.25 0.05 1.541390 0.2731577
5 0.30 0.05 1.479960 0.3446770
6 0.10 0.10 1.653170 0.2220495
7 0.15 0.10 1.625370 0.2194567
8 0.20 0.10 1.594123 0.2224069
9 0.25 0.10 1.545233 0.2726456

10 0.30 0.10 1.497150 0.3245182
11 0.10 0.15 1.609257 0.2476096
12 0.15 0.15 1.582933 0.2989744
13 0.20 0.15 1.529037 0.3657604
14 0.25 0.15 1.500757 0.4044987
15 0.30 0.15 1.453507 0.4586189
16 0.15 0.20 1.534180 0.4173106
17 0.20 0.20 1.488540 0.4832922
18 0.25 0.20 1.448607 0.5262836
19 0.30 0.20 1.400920 0.5834178
20 0.15 0.25 1.465967 0.5563104
21 0.20 0.25 1.435200 0.5928120
22 0.25 0.25 1.409617 0.6214640
23 0.30 0.25 1.349440 0.6840775
24 0.20 0.30 1.389823 0.6790695
25 0.25 0.30 1.355420 0.7179057
26 0.30 0.30 1.308063 0.7662127

We can visualize the total prediction errors with a contour plot (Figure 3).
library(plotly)

library(reshape2)

f1 <- list(

family = "Arial, sans-serif",

size = 20,

color = "black"

)

f2 <- list(

family = "Old Standard TT, serif",

size = 20,

color = "black"

)

a <- list(

9

SmCCNet

title = "l1",

titlefont = f1,

showticklabels = TRUE,

tickfont = f2

)

b <- list(

title = "l2",

titlefont = f1,

showticklabels = TRUE,

tickfont = f2

)

hmelt <- melt(T12[, -3], id.vars = c("l1", "l2"))

contourPlot <- plot_ly(hmelt, x = ~l1, y = ~l2, z = ~value, type = "contour") %>%

layout(xaxis = a, yaxis = b, showlegend = TRUE, legend = f1)

export(contourPlot, file = paste0(CVDir, "TotalPredictionError.pdf"))

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.05

0.1

0.15

0.2

0.25

0.3

0.3

0.4

0.5

0.6

0.7

value

l1

l2

Figure 3: Total prediction error contour plot
The x- and y-axes indicate LASSO penalties considered for mRNA and miRNA, respectively. Blue to yellow
scale indicates increasing total prediction error.

For the synthetic data set, the optimal penalty pair that gives the smallest prediction error is
(l1, l2) = (0.1, 0.05).
pen <- which(S2 == min(S2))

l1 <- T12$l1[pen]; l2 <- T12$l2[pen]

print(paste0("Optimal penalty pair (l1, l2): (", l1, ",", l2, ")"))

[1] "Optimal penalty pair (l1, l2): (0.1,0.05)"

10

SmCCNet

2.3 Step II: Integrate two omics data types and a quantitative
phenotype

With a pre-selected penalty pair, we apply SmCCA to subsampled features of X1, X2 and
Y , and repeat the process to generate a robust similarity matrix (Figure 1, Step II). If the
penalties were selected through a K-fold CV, the subsampling proportions s1, s2 need to be
consistent with what was used in the CV. As for the number of subsamples, a larger number
of subsamples leads to more accurate results, while a smaller number of subsamples is faster
computationally. We use 500 in this example. In general, we recommend to subsample 1000
times or more.
Ws <- getRobustPseudoWeights(X1, X2, Y, l1, l2, s1, s2,

NoTrait = FALSE, FilterByTrait = FALSE,

SubsamplingNum = SubsamplingNum, CCcoef = CCcoef)

Abar <- getAbar(Ws, AbarLabel)

2.4 Step III: Obtain multi-omics modules and plot subnetworks

From the similarity matrix obtained in the last step, we can get multi-omics modules by
applying hierarchical tree cutting and plotting the reconstructed networks (Figure 1). The
edge signs are recovered from pairwise feature correlations.
Modules <- getMultiOmicsModules(Abar, p1)

save(Ws, Abar, Modules, file = paste0(CVDir, "SmCCNetWeights.RData"))

The trimmed module (edge cut = 0.1) is shown below. If a full module does not contain any
edge that passes the cut threshold, a message “No edge passes threshold” will be produced.
To see all complete module, set edgeCut = 0.
bigCor <- cor(cbind(X1, X2))

edgeCut <- 0.1

for(idx in 1:length(Modules)){

filename <- paste0(CVDir, "Net_", idx, ".pdf")

plotMultiOmicsNetwork(Abar = Abar, CorrMatrix = bigCor,

multiOmicsModule = Modules, ModuleIdx = idx, P1 = p1,

EdgeCut = edgeCut, FeatureLabel = AbarLabel,

SaveFile = filename)

}

11

SmCCNet

●

Gene_1

Gene_2
Gene_6

Gene_7

Gene_10

Mir_2

Figure 4: Trimmed module 1
The strength of the node connections is indicated by the thickness of edges. Red edges and gray edges are
for negative and positive connections, respectively.

3 Alternative canonical correlation analysis (CCA)
methods

The function getRobustPseudoWeights() (see Section 2.3) includes two other CCA methods
(sparse supervised CCA (SsCCA) and sparse CCA (SCCA)), both of which are also coupled
with subsampling scheme for more robust results. Users should pick the appropriate CCA
method according to their studies.

3.1 SsCCA

SsCCA prioritizes omics features according to the correlation to the phenotype. This approach
can be useful when the phenotype is not quantitative. To choose SsCCA, set NoTrait =
FALSE and FilterByTrait = TRUE.

12

SmCCNet

3.2 SCCA

If the study purpose is to integrate two omics data type without any phenotype information,
one can choose SCCA. To choose SCCA, set NoTrait = TRUE.

4 Session info

sessionInfo()

R version 3.5.0 (2018-04-23)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: macOS High Sierra 10.13.5

##

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

##

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] BiocStyle_2.8.2

##

loaded via a namespace (and not attached):

[1] compiler_3.5.0 backports_1.1.2 bookdown_0.7 magrittr_1.5

[5] rprojroot_1.3-2 tools_3.5.0 htmltools_0.3.6 yaml_2.1.19

[9] Rcpp_0.12.17 stringi_1.2.3 rmarkdown_1.10 knitr_1.20

[13] xfun_0.2 stringr_1.3.1 digest_0.6.15 evaluate_0.10.1

warnings()

5 References

Shi, W.J., Y. Zhuang, P.H. Russell, B.D. Hobbs, M.M. Parker,P.J. Castaldi, P.
Rudra, B. Vestal, C.P. Hersh, L.M. Saba, and K. Kechris, “Unsupervised Discovery
of Phenotype Specific Multi-Omics Networks.” (Submitted)

13

	1 SmCCNet overview
	1.1 Workflow
	1.2 SmCCNet package

	2 SmCCNet workflow with a synthetic dataset
	2.1 Synthetic dataset
	2.2 Step I: Determine optimal sparsity penalties through CV (optional)
	2.3 Step II: Integrate two omics data types and a quantitative phenotype
	2.4 Step III: Obtain multi-omics modules and plot subnetworks

	3 Alternative canonical correlation analysis (CCA) methods
	3.1 SsCCA
	3.2 SCCA

	4 Session info
	5 References

