| AC.index | Assignment Confidence (AC) index | 
| Achlioptas.hclustering | Multiple Hierarchical clusterings using Achlioptas random projections | 
| Achlioptas.hclustering.tree | Multiple Hierarchical clusterings using Achlioptas random projections | 
| Achlioptas.random.projection | Achlioptas random projection | 
| Average.Contraction | Distortion measures: Max., min, and average expansion and contraction | 
| Average.Expansion | Distortion measures: Max., min, and average expansion and contraction | 
| Cluster.validity | Validity indices computation | 
| Cluster.validity.from.similarity | Validity indices computation | 
| Do.similarity.matrix | Functions to compute a pairwise similarity matrix. | 
| Do.similarity.matrix.partition | Functions to compute a pairwise similarity matrix. | 
| Generate.clusters | Multiple clusterings generation from the corresponding trees | 
| generate.sample.h1 | Two-levels hierarchical cluster generator. | 
| generate.sample.h2 | Three-level hierarchical cluster generator. | 
| generate.sample.h3 | Two-levels hierarchical cluster generator. | 
| generate.sample0 | Sample0 generator of synthetic data | 
| generate.sample1 | Sample1 generator of synthetic data | 
| generate.sample2 | Sample2 generator of synthetic data | 
| generate.sample3 | Sample3 generator of synthetic data | 
| generate.sample4 | Sample4 generator of synthetic data | 
| generate.sample5 | Sample5 generator of synthetic data | 
| generate.sample6 | Sample6 generator: multivariate normally distributed data synthetic generator | 
| generate.sample7 | Sample7 generator: multivariate normally distributed data synthetic generator | 
| generate.uniform | Uniform bidimensional data generator | 
| generate.uniform.random | Uniform bidimensional random data generator. | 
| JL.predict.dim | Dimension of the subspace or the distortion predicted according to the Johnson Lindenstrauss lemma | 
| JL.predict.dim.multiple | Dimension of the subspace or the distortion predicted according to the Johnson Lindenstrauss lemma | 
| JL.predict.distortion | Dimension of the subspace or the distortion predicted according to the Johnson Lindenstrauss lemma | 
| Max.Contraction | Distortion measures: Max., min, and average expansion and contraction | 
| Max.Expansion | Distortion measures: Max., min, and average expansion and contraction | 
| Max.Min.Contraction | Distortion measures: Max., min, and average expansion and contraction | 
| Max.Min.Expansion | Distortion measures: Max., min, and average expansion and contraction | 
| Min.Expansion | Distortion measures: Max., min, and average expansion and contraction | 
| Multiple.Random.fuzzy.kmeans | Multiple Random fuzzy-k-means clustering | 
| Multiple.Random.hclustering | Multiple Random hierarchical clustering | 
| Multiple.Random.kmeans | Multiple Random k-means clustering | 
| Multiple.Random.PAM | Multiple Random PAM clustering | 
| Norm.hclustering | Multiple Hierarchical clusterings using Normal random projections | 
| Norm.hclustering.tree | Multiple Hierarchical clusterings using Normal random projections | 
| norm.random.projection | Normal random projections | 
| Plus.Minus.One.random.projection | Plus-Minus-One (PMO) random projections | 
| PMO.hclustering | Multiple Hierarchical clusterings using Plus Minus One (PMO) random projections | 
| PMO.hclustering.tree | Multiple Hierarchical clusterings using Plus Minus One (PMO) random projections | 
| rand.norm.generate | Random generation of normal distributed data | 
| rand.norm.generate.full | Random generation of normal distributed data | 
| random.component.selection | Function to randomly select the indices of the variables selected by the random subspace projection | 
| Random.fuzzy.kmeans.validity | Fuzzy-k-means clustering and validity indices computation using random projections of data | 
| Random.hclustering.validity | Random hierarchical clustering and validity index computation using random projections of data. | 
| Random.kmeans.validity | k-means clustering and validity indices computation using random projections of data | 
| Random.PAM.validity | PAM clustering and validity indices computation using random projections of data | 
| random.subspace | Random Subspace (RS) projections | 
| RS.hclustering | Multiple Hierarchical clusterings using RS random projections | 
| RS.hclustering.tree | Multiple Hierarchical clusterings using RS random projections | 
| Transform.vector.to.list | Vector to list transformation of cluster representation | 
| Validity.indices | Function to compute the validity index of each cluster. |