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Abstract

The R function regr is a wrapper function that allows for fitting several different types of regression
models by a unified call, and provides more informative numerical and graphical output than the
traditional summary and plot methods. The package regr0 contains the functions that go along
with regr and a number of others. It is written to make data analysis more effective by providing
user-oriented, flexible functions. It is available from R-forge and is still in development.

##

## Attaching package: ’regr0’

## The following object is masked from ’package:stats’:

##

## step

## The following object is masked from ’package:base’:

##

## subset

1 Introduction

Regression models are fitted in the statistical programming environment R by diverse functions, de-

pending on the particular type of model. Outputs obtained by calling the function summary on the

object produced by the fitting function look often quite similar. Graphical output for residual analysis

is obtained by calling plot, but the result is not always informative.

The function regr allows for fitting various regression models with the same statement, provides

a more informative numerical output and enhanced plots for residual analysis.

regr proceeds by checking arguments, then calling the suitable fitting method from standard R or

other packages, collecting useful statistics from the resulting object and a call of summary on it and

adding a few to generate an object of class regr.

In particular, the following models can be fitted by regr:

• ordinary linear models, using Least Squares or robust estimation, by calling lm or lmrob from

the robustbase package,

• generalized linear models, by calling glm,
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• multinomial response models, by calling multinom of package nnet,

• ordered response models, by calling polr of package MASS,

• models for survival data and Tobit regression, by calling survreg or coxph of package survival,

• multivariate ordinary linear models, by calling lm

• nonlinear models, by calling nls

This document presents the main features of the package regr0 and explains the ideas behind

them. It gives no details about the functions. They can be found in the help files.

The package is available from R-forge, e.g. by calling

install.packages("regr0", repos="http://r-forge.r-project.org").

The reason why it is not on CRAN and why it is called regr0 rather than regr is that the author is

still developing additional features and does not yet want to guarantee upward compatibility. It also

means that comments and suggestions are very welcome: stahel stat.math.ethz.ch

2 Numerical Output

The useful numerical output of fitting functions is usually obtained by calling summary on the object

produced by the fitting method. This results, for most functions, in a table showing the estimated

regression coefficients, their standard errors, the value of a test statistic (t or z or deviance) and, for

the ordinary linear model, a p value for the tests for zero coefficients. It is followed by an overall

summary, usually including a test for the hypothesis that all coefficients are zero, and a standard

deviation of the error and coefficient of determination, if applicable.

If there are factors (qualitative explanatory variables) in the model, the coefficients are not always

interpreted adequately, and the respective standard errors, t and p values are of little use and often

misinterpreted. On the other hand, the information whether a factor has a significant effect is not

available from the summary but has to be obtained by calling drop1 on the fit object. (The function

anova, which seems to be suited according to its name, usually does not answer this question.)

This situation cannot be called user friendly. The function regr is meant to provide the results

that are needed without having the user call different functions and select the output that is safe to

be interpreted.

Here is a result of printing a regr object.

data(d.blast)

d.blast$location <- factor(d.blast$location)

r.blast <- regr(logst(tremor) ~ location + log10(distance) + log10(charge),

data = d.blast)

r.blast

##

## Blasting for Tunnel Excavation
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##

## Call:

## regr(formula = logst(tremor) ~ location + log10(distance) + log10(charge),

## data = d.blast)

## Fitting function: lm

##

## Terms:

## coef df ciLow ciHigh R2.x signif p.value p.symb

## (Intercept) 2.995 1 2.772 3.219 . . .

## location . 7 . . 0.102 3.48 0 ***

## log10(distance) -1.506 1 -1.630 -1.382 0.477 -12.13 0 ***

## log10(charge) 0.623 1 0.546 0.699 0.102 8.17 0 ***

## ---

## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

##

## St.dev.error: 0.141 on 352 degrees of freedom

## Multiple R^2: 0.798 Adjusted R-squared: 0.793 AIC: -1409.04

## F-statistic: 155 on 9 and 352 d.f., p.value: 1.55e-116

##

## Effects of factor levels:

## $location

## loc1 loc2 loc3 loc4 loc5 loc6

## -0.0422 * 0.1085 *** 0.0876 *** -0.2078 *** -0.0760 ** 0.0282

## loc7 loc8

## -0.0563 -0.0408

2.1 Standard output for continuous explanatory variables

The “Terms:” table characterizes the effects of the individual terms in the model. For continuous

explanatory variables (the last 2 lines in the example) it shows:

coef, the estimated value of the coefficient;

df, degrees of freedom, = 1 for continuous variables;

ciLow, ciHigh, the limits of the confidence interval;

R2.x, the coefficient of determination for regressing the explanatory variable in question on the other

terms in the model. This is one of the wellknown collinearity diagnostics.

signif, a significance measure that is > 1 for estimated coefficients differing significantly from 0, see

below for its definition;

p.value, the p value for testing if the coefficient could be zero.
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p.symb, the usual significance symbols.

In fact, 2 more columns are contained in rr$termtable, but they are not printed by default:

se, the standard errors of the estimated coefficients;

stcoef, the estimated standardized coefficient, defined as coef times the standard deviation of the

explanatory variable, divided by the standard deviation of the response (if the response is con-

tinuous as assumed here), see below for its use;

User options. The default for the columns to be printed is set by an option stored in the

UserOptions list and controled by the function userOption in the same way that the usual options

are controled by the function options.

Significance The usual summary output of fitting functions includes the t (or z) values of the

coefficients as a column in the coefficients table. They are simply the ratios of the two preceding

columns. Nevertheless, they provide a kind of strength of the significance of the coefficients. The p

value may also serve as such a measure, but it is less intuitive as it turns tiny for important variables,

making comparisons somewhat more difficult than t values. The significance of t values depends on

the degrees of freedom, but informed users will know that critical values are around ±2, and they

will therefore informally compare t values to ±2. Based on these considerations, we introduce a new

measure of significance here.

The new significance measure is defined as

signif = t value / critical value

where critical value is the critical value qdf of the t distribution and depends on the degrees of

freedom of the residuals.

Confidence Intervals. The standard errors provided by the usual summary tables allow for

calculating confidence intervals for continuous explanatory variables, by the formula coef ± qdf ·
std.error. By default, they are shown in the Terms table. If the table gets too wide, the confidence

limits may be suppressed. They can then be calculated as

coef · (1 ± 1/signif )

This is slightly more complicated for a calculation in the mind than coef±2se, but the formula shows

an additional interpretation of signif in terms of the confidence interval: If the input variable were

scaled such that the confidence interval had half width 1, then the estimate would be signif units

away from zero.

Standardized Coefficients Standardized coefficients are meant to allow for a comparison

of the importance of explanatory variables that have different variances. They are also stored in

rr$termtable as the column stcoef.

names(r.blast$termtable)

## [1] "coef" "se" "ciLow" "ciHigh" "df" "testst" "signif"

## [8] "p.value" "p.symb" "stcoef" "R2.x"
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userOptions(termcolumns=c("coef", "stcoef", "df", "signif", "p.symb"))

r.blast

##

## Blasting for Tunnel Excavation

##

## Call:

## regr(formula = logst(tremor) ~ location + log10(distance) + log10(charge),

## data = d.blast)

## Fitting function: lm

##

## Terms:

## coef stcoef df signif p.symb

## (Intercept) 2.995 . 1 .

## location . . 7 3.48 ***

## log10(distance) -1.506 -0.790 1 -12.13 ***

## log10(charge) 0.623 0.406 1 8.17 ***

## ---

## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

##

## St.dev.error: 0.141 on 352 degrees of freedom

## Multiple R^2: 0.798 Adjusted R-squared: 0.793 AIC: -1409.04

## F-statistic: 155 on 9 and 352 d.f., p.value: 1.55e-116

##

## Effects of factor levels:

## $location

## loc1 loc2 loc3 loc4 loc5 loc6

## -0.0422 * 0.1085 *** 0.0876 *** -0.2078 *** -0.0760 ** 0.0282

## loc7 loc8

## -0.0563 -0.0408

Each of them shows the effect on the response of increasing “its” carrier X(j) by one standard devi-

ation, as a multiple of the response’s standard deviation. This is often a more meaningful comparison

of the relevance of the input variables.

Note, however, that increasing one X(j) without also changing others may not be possible in a

given application, and therefore, an interpretation of coefficients can always be tricky. Furthermore,

for binary input variables, increasing the variable by one standard deviation is impossible, since an

increase can only occur from 0 to 1, and therefore, the standardized coeffient is somewhat counter-

intuitive in this case.
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2.2 Factors

For factors with more than two levels, (location in the example), there are several coefficients to be

estimated. Their values depend on the scheme for generating the dummy variables characterizing the

factor, which is determined by the contrasts option (or argument) in use. We come back to this

point below (“Contrasts”).

Note that for factors with only two levels, the problem does not arise, since the single coefficient can

be interpreted in the straightforward manner as for continuous explanatory variables. regr therefore

treats binary factors in the same way as continuous explanatory variables.

The test performed for factors with more than two levels, which is shown in the Terms table by

the p.value entry, is the F test for the whole factor (hypothesis: all coefficients are 0). It is obtained

by calling drop1. The significance measure is defined as

signif =
√
F value / qdf1,df2

where qdf1,df2 is the critical value of the F distribution. It reduces to the former one for binary factors.

The collinearity measure R2.x for factors is a formal generalization of R2.x for terms with one

degree of freedom, determined by applying the relationship with the “variance inflation factor”, R2.x=

1/(1 − vif) to the generalized vif. [More explanation planned.]

All coefficients for factors. The usual contrast option contrasts="contr.treatment" gives

the coefficients of the dummy variables a clear interpretation: they estimate the difference of the

response between level k and level 1 for k > 1. Another popular setting is contrasts="contr.sum",

for which the kth coefficient estimates the effect of the kth level in such a way that the sum of all

coefficients is 0. For this setting, the last of these effects is not given in the vector of coefficients,

rr$coef.

In order to avoid ambiguities, the regr output lists the estimated effects for all levels of the factors

after the term table. Even though the interpretation of significance and confidence intervals of the

individual effects of the levels is delicate, regr objects include a full table, similar to the term table

explained above, for each factor. By default, however, only the estimated effects ar shown, together

with the “star symbols” for their significance.

Contrasts. An advantage of contr.sum over the usual contr.treatment contrasts is that it

avoids the (often unconscientious) choice of a reference level – the first level – and allows, for each

level, to assess immediately how large its effect is as compared to an overall average effect. An even

more important advantage appears when interactions between factors are included in the model: The

main effects of one factor, including its significance, may still be interpreted (with caution) as average

effects over the levels of the other factor.

The contr.sum setting is not well adapted to unbalanced factors, since the unweighted sum of

coefficients is forced to be 0. This leads to large standard errors when one of the levels has a low

frequency. The regr0 package provides the option contr.wsum for which the sum of coefficients

weighted with the frequencies of the levels is zero. This type of contrasts is the default in regr0.

6



2.3 Model summary

The last paragraph of the output gives the summary statistics. For ordinary linear models, the

estimated standard deviation or the error term is given first. (It is labelled “Standard error of residual”

in the lm output, which we would label a misnomer.) The Multiple R^2 is given next, together with

its “adjusted” version, followed by the overall F test for the model.

For generalized linear models, the deviance test for the model is given. If applicable, a test for

overdispersion based on residual deviance is also added.

2.4 Model Comparisons

When model development is part of the statistical analysis, it is useful to compare the terms that

occur in different models under consideration. There is a function called modelTable that collects

coefficients, p values, and other useful information, and a format and print method for showing the

information in a useful way.

names(d.blast)

## [1] "no" "datetime" "device" "charge" "distance" "tremor"

## [7] "location"

r.blast2 <-

regr(logst(tremor) ~ ( location + log10(distance) + log10(charge) )^2,

data=d.blast)

## modelTable(c("r.blast","r.blast2"))

2.5 Model Selection

The well-known functions drop1 and add1 are adapted by providing additional methods. The function

drop1 has a useful default for the argument (scope): It incluses all terms that can be sendsibly dropped

from the model. This is not provided for the base version of add1. This latter function is very useful to

check whether squared continuous variables or interactions between variables should be included into

the model. Therefore, our version of add1 provides this default scope (calculated by terms2order),

and both drop1 and add1 calculate F tests in addition to AIC.

Since drop1 and add1 methods are available, step can be used to select a model automatically.

The default regr version chooses “both” directions, bakward and forward, and extends the scope as

in add1.

add1(r.blast)

## Single term additions

##

## Model:
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## logst(tremor) ~ location + log10(distance) + log10(charge)

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 6.99 -1409

## I(log10(distance)^2) 1 0.003 6.98 -1407 0.15 0.700

## I(log10(charge)^2) 1 0.143 6.84 -1415 7.35 0.007 **

## location:log10(distance) 7 0.726 6.26 -1435 5.72 2.8e-06 ***

## location:log10(charge) 7 0.112 6.87 -1401 0.80 0.585

## log10(distance):log10(charge) 1 0.000 6.99 -1407 0.01 0.929

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r.step <- step(r.blast, k=5)

formula(r.step)

## logst(tremor) ~ location + log10(distance) + log10(charge)

## <environment: 0x561272232868>

The usual stopping rule for stepwise model selection relies on the AIC criterion. Note that there

is a funny argument for this choice: The former stopping rule, which aimed at keeping only formally

“significant” terms in the model has been criticized because of the multiplicity problem: The retained

terms appear more significant than they are, because they are the most significant of an unspecified

number of candidates. Thus, the formal significance tests for the terms are liberal to an unknown

degree, and the selected models tend to be too large.

Therefore, a new criterion was introduced, the AIC (or the BIC). Its justification is based on

optimization of a prediction error sum of squares. It should be noted that it leads to larger models

than the significance criterion. Thus, one should expect to see non-significant terms in the selected

model, even based on the liberal formal tests provided in regression outputs.

Unfortunately, it is not possible to specify the stopping criterion in step. However, setting its

argument k=4, one usually obtains a model with formally significant terms, for which every additional

regressor would be non-signifcant.

(AIC(k) is 2L + kdf, where L is the log likelihood. When dropping a single regressor from model 1

to obtain model 2, 2(L1 − L2) has a chisquared distribution with 1 degree of freedom, for which the

critical value is 3.84. Thus, AIC
(3.84)
2 − AIC

(3.84)
1 < 0, if and only if 2(L1 − L2) < 3.84, i.e., the test is

non-significant, and the regressor will be dropped.)

Missing values. The regr methods for drop1 and step behave more flexibly than in basic R

when there are missing values:

drop1 drop the rows in data that contain a missing value for the regressors in the current model and

proceed, rather than complaining about a variable number of missing observations.

add1 drops the rows with any missings in the variable used by the scope before calculations.

step uses these two functions for the two directions. This may lead to unexpected AIC differences in

different models.
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3 Residual Analysis

The residual plots that are produced by plotting an lm or glm object are:

• The Tukey-Anscombe plot showing residuals against fitted values, which is certainly the most

important single diagnostic tool for assessing model assumptions;

• The Scale plot, which shows square-root transformed absolute values of residuals against fitted

values and helps to spot unequal variances (if these depend on the expected value of the response).

• The normal quantile-quantile plot, which makes sense only for ordinary linear models and in

some cases for generalized linear models. It is not essential since skewness and outliers can also

be seen in the Tukey-Anscombe plot if they are relevant;

• The leverage plot, displaying residuals against leverage values. This plot is useful to detect

influential observations.

3.1 What plot.regr does

The plotting method for regr objects has many addtional features, to be described in more detail in

the following subsections.

• The set of plots that is shown by default is adjusted to the type of model. A normal QQ-plot of

residuals is only shown if appropriate. If weights are used, the residuals divided by the weight

are also plotted against the weights, which helps to see if the weighting rule was adequate.

• Most importantly, residuals are plotted against explanatory variables. This can also be achieved

by calling termplot for other fit objects, but experience shows that this is often neglected by

average users.

Residuals can be plotted easily against the index (sequence number) of the observation, since

this may show trends or correlations of errors in time, if the sequence reflects time.

• The plots are augmented by a smooth line fitted to them – which is also available in the classical

R functions – and two additional smooth lines that allow to judge the scale dependence on

the variable shown. In addition, simulated smooths are added in order to assess an informal

“significance” of curvature in the smooth of the data. Furthermore, a reference line is given,

which helps finding an appropriate modification of the model if significant curvature is found.

• Finally, plotting methods are defined for models for which no useful methods are available in

the basic R packages, notably ordered response regression and censored responses.

The number of plots produced by calling plot on a regr object may be elevated. The arguments

plotselect and xvars allow for requiring or deselecting any of them. The arguments to plot.regr

are numerous and allow for varying many features, including those for which the default behavior is

discussed below.
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The plotting pages are marked in the right lower corner by the date and a project title and step la-

bel, if available from options. (This stamp can be suppressed by setting userOptions(stamp=FALSE).)

The default plotting character is a plus sign. Its size is adjusted to the number of points.

The usual set of plots can be seen by executing the examples on help(’plot.regr’). A single

plot is shown here for easy reference in the following descriptions.

3.2 Extreme Residuals

If there are one or a few outliers in any plot, the structure of the majority of the data becomes more

difficult to grasp. Therefore, the plot method first flags outliers in the residuals. If there are any, the

range of the vertical axis is split into an “ordinary plotting range”, where the non-outliers appear as

usual, and an “outlier margin”, where the outliers are shown on a highly nonlinear scale that maps

the range from the limit of the ordinary range to infinity to this margin.

In order to ease identification, a suitable number of most extreme residuals are labeled with their

row.names (by default).

3.3 Smooths

Fitting a smooth (blue dashed line in the Figure) to a residual scatterplot helps to spot a potential

nonlinearity of the relationship between the response and the variable shown in the plot – the fitted

values or a single explanatory variable. The smooth used by default is loess with a span depending

on the number of observations (currently = 5n−0.3 for ordinary regression, and twice this number for

generalized linear regression; do not ask why). Such a smooth is more essential for generalized linear

models than for ordinary ones, since artefacts of the residuals may make it impossible to see curved

relationships from a display of the residuals.

It is difficult to decide if a smooth line is curved “significantly”, such that searching for a better

model should be helpful instead of most probably leading to overfitting the data. In order to help

judging the “natural curvature”, 19 sets of data are generated by re-randomizing the residuals. The

smooths obtained for these sets are also shown (in light blue in the Figure – I hope that this can be

seen in all versions of this document). If the smooth determined from the data is clearly the most

extreme in some aspect, one may conclude that the model does not fit adequately. The number 19

is chosen to correspond to a “significance level” of 5%. Up to now, such simulated datasets are only

generated for ordinary linear and for generalized linear regression.

In addition to the smooth line that fits the center of the residuals, there is a line characterizing the

two other quartiles. It is obtained by first calculating the deviations from the smooth line, then fitting

a smooth line each through the positive and through the negative deviations, and finally adding the

central smooth back to these two fits. These lines facilitate to check the overall symmetry and the

homoscekasticity of the residuals.

3.4 Augmented Tukey-Anscombe Plot

The plot of residuals against fitted values is the most important diagnostic tool to assesss the validity

of model assumptions. It allows for detecting deviations from linearity, homoscedasticity, symmetry
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and normal distribution of the random deviations.

If there is curvature, one remedy may be to transform the response variable. This can help only

if the relation between fitted and response values is monotone – otherwise, quadratic terms are the

most straightforward modification of the model. Monotonicity is easy to see if the response is plotted

on the vertical axis instead of the residuals. This display can also be requested from plot.regr (by

setting plotselect=c(yfit=3)).

In order to avoid the necessity to either call plot again or to ask for the plot of response against

fitted values routinely, a reference line (green dot-dashed line in the Figure) is shown in the Tukey-

Anscombe plot. It connects points with equal response values. Since the response can be determined

by adding the two coordinates of the plot – fitted plus residual – lines of equal response values have

slope -1. The reference line shown is such a line, the one going through the center of the points

in the plot. If the smooth never gets steeper than the reference line, then the suggested relation

between fitted and response values is monotone, and a transformation of the response may remove the

non-linearity.

One might argue that a plot of the response on the fit is more straightforwardly interpreted than

the Tukey-Anscombe plot with the reference line. We think that the Tukey-Anscombe plot can show

the deviations from model assumptions more clearly and should therefore be preferred, and that the

reference line, after a short learning period, will be easy enough to work with and helps avoiding an

additional display. Of course, some users may disagree.

3.5 Scale Plot

The absolute values of the standardized residuals are plotted against the fitted values in order to

see more clearly than in the Tukey-Anscombe plot whether the scatter of residuals depends on the

expected values. The plot shown when plotting lm objects uses square roots of absolute residuals

instead of the absolute values themselves because they are more symmetrically distributed. This

appears as a technical argument to me and it may confuse unexperienced users. While square roots

are therefore avoided for plotting, they are still used to calculate the smooth that is added to the plot.

When the smooth line in the Tukey-Anscombe plot indicates a curved relationship, the residuals

contain a bias, and deviations from a straight line in the scale plot are not necessarily an indication

of heteroscedasticity. On the other hand, clear differences in the scatter around the smooth line in

the Tukey-Anscombe plot may not show up in the scale plot as a consequence of the bias. Therefore,

plot.regr uses modified residuals to generate the scale plot: The difference between the residual and

the smooth fit in the TA plot is this modified residual, of which the absolute value is used.

3.6 QQ-Plot

The QQ-normal plot of residuals only makes sense in the ordinary linear or nonlinear regression. It is

therefore avoided by default for other models (unlike in standard R). Furthermore, this plot only makes

sense if quantities with the same normal distribution are used to generate it. Therefore, standardized

residuals should be used. The preceding reasoning for using modified residuals also applies. In fact,

these modified residuals are modified again to reflect the potentially different scales: they are divided

by the value of the smooth in the scale plot before they are used for the QQ-plot.
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3.7 Weights

If weights are given by the user, they should usually reflect different variances of the random errors Ei,

and the residuals, multiplied by the square root of the weights, should have constant variance. The

standardized absolute residuals are therefore plotted against the weights. If the size of these residuals

is not constant but depends on the weight, the rule or weighting function should be revised.

If weights are given, they are also used as the sizes of the plotting symbols (circles) in other plots.

3.8 Leverage Plot

Influential observations can be spotted in the scatterplot of residuals against leverage values (diagonal

elements of the projection matrix). The well-know diagnostic called Cook’s distance is a simple

function of these two quantities, and level curves are drawn in the plot.

3.9 Residual differences and Distance in x-space

If there are groups of observations with identical input variables (or identical xi vectors), then there

is the possibility to perform a kind of overall goodness-of-fit test by comparing the variability of the

residuals within these groups to the estimated variance of the error. This is performed by a simple

Analysis of Variance of the standardized residuals with the grouping just mentioned. (Note that this

method can be applied even if some or many xi vectors are unique.)

If such groups are not available, an old idea, described by Daniel and Wood (1971/80) is to use

“near replicates” for this purpose. They introduced a distance in x-space that they called WSSD

and suggested to calculate all distances between observations along with the corresponding differences

of residuals. If the differences of residuals are smaller for short distances than for long ones, then

this points to a lack of fit of the model, which might be avoided by introducing additional terms or

modelling nonlinear dependencies through transformations of variables. The procedure however does

not suggest which modifications may help.

As to the distance measure dhi, Daniel & Wood (1971) introduced their WSSD (weighted Squared

Standard Distance (?)) with the intention to weigh variables according to their “importance” for the

model. Since this feature seems too much dependent on the parametrization of the model, I prefer to

use the Mahalanobis distance in the design space,

d
(X)
hi = n(xi − xh)T (XTX)−1(xi − xh)

(which can be calculated efficiently from the QR decomposition of X).

The distance pairs and the respective differences of residuals are calculated by the function

xdistResdiff. They are grouped and the corresponding group means of absolute residual differences

are then produced by xdistResscale. The distances are then classified, and the residual differences

are averaged over these classes. This yields a pair of mean distance d
(X)
k and mean residual differences

d
(R)
k for each class k. (Trimmed means (α = 1/6) are used by default to obtain some robustness

against outliers.) These pairs are then plotted.

The class limits are chosen by fixing the percentages of distance values that they should contain.

By default, the first class is quite small – because plausible deviations from the null hypothesis will
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lead to lower mean residual differences for short distances –, followed by a somewhat larger class, then

a really big class for an intermediate range and finally a class (again somewhat smaller) for the upper

end. The current default limits are therefore at 3%,10%, and 90%.

In order to assess the variability of the mean residual differences, we resort to simulation. The

residuals are permuted among the observations, and then the calculation of differences is repeated.

(In fact, the assignment of residual differences to the observation pairs is re-determined.) This leads

to simulated mean differences for each class, and their standard deviations can be used as standard

errors of the observed mean differences. Corresponding error bars are shown in the plot.

This idea can also be used for a test of goodness of fit: The test statistic

T =
∑K

k=1

(
(d

(R)
k − d)

/
sek

)2
should have a Chisquared distribution with K − 1 degrees of freedom. The test is calculated by the

function xdistResscale along with the mean distances and mean residual differences.

3.10 Sequence Plot

Residuals are plotted against the sequence number in the dataset in order to show any trends and

correlation that may be related to this sequence.

3.11 Residuals against explanatory variables

Plotting residuals against explanatory variables serves to detect nonlinearities of the relation between

the response and the variable in question. For ordinary regression and some other models, they can

show dependencies of the scale of errors on the explanatory variables.

The plots are enhanced by smooths as discussed for the Tukey-Anscombe plot. Also, a reference

line is added that helps to decide whether a transformation of the explanatory variable may help to

remove any non-linearity shown by the smooth. Again, the reference line intends to connect points of

equal response values. Note, however, that they do not really align on a straight line because of the

contributions of the other terms in the model to the fit. Therefore, the reference line connects points

for which the sum of “component effect” β̂jx
(j) plus residual is equal. Note that the slope of the

reference line is negative if the regressor has a positive effect on the response. The line is again useful

for finding an adequate modification if a curved smooth appears: If all parallels to the reference line

cut the smooth only once, a monotone transformation of the regressor can help. Otherwise, adding

its square to the model may help.

Alternatively, the sums “component effect β̂jx
(j) plus residual” may be used as the vertical axis

instead of the residuals for plotting. This display is usually called the “partial residual plot” and can

be obtained from plot.regr, too. It is related to the plots shown by default in the same way as the

response versus fitted plot is to the Tukey-Anscombe plot.

When transformed explanatory variables appear in the model, the residuals are plotted

against the original values. The reason is as follows: If any curvature is detected, an improvement of

the model may be possible by transforming the variable shown. It is then more natural to search for

an enhancement of the original transformation rather than a transformation of transformed values,
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and this should be easier if the original scale is used. If this appears to be unsuitable in a given

application, the user may store the transformed variable under a new name and then use this new

variable in the model formula, or specify the transformed variable in the call to plot.

Residuals may be plotted against any variables using an additional function plresx. The function

plres2x displays residuals and two (explanatory) variables in a special type of 3d plot. This serves

to check for interactions.

3.12 Residuals for an ordinal or binary response

Ordinal regression models are best specified by introducing the idea of a “latent response variable” Z,

which is continuous and follows a linear relationship with the explanatory variables. The response Y

is considered to be a classification of Z into k classes of possibly unequal width. The most well-known

model specifies a logistic distribution for the error term in the linear model for Z. Then, the coefficients

and the thresholds or class limits are estimated by maximum likelihood. This is implemented in the

function polr (proportional odds linear regression) of the MASS package, which is the function invoked

by regr for ordinal regression.

Residuals for this model may be defined by considering the conditional distribution of the latent

variable Z, given the observation Y and the explanatory variables. This is a logistic distribution with

parameters given by the model, restricted to the class of Z given by the observed Y . Residuals are

defined as the median of this distribution, and it may help to characterize the uncertainty about the

latent residuals by the quartiles of the conditional distribution. The plots show the interquartile range

by a vertical line and the median, by a horizontal tick on them. (The vertical line is not shown if

the probability observed Y is either too low or too high, see argument condprobrange.) In addition,

random numbers according to the conditional distribution are shown.

Note that this definition may not have appeared in the literature yet.

3.13 Residuals for censored responses

If response values are censored, so are the residuals. In the same spirit as for the case of ordered

responses, it is straightforward to calculate a conditional distribution, given the fitted value and the

censoring value, for each residual. This can again be plotted by showing quartiles.

3.14 Residuals for the Cox model

The Cox proportional hazards model, the most frequently used model in survival analysis, is a semi-

parametric model. There is no obvious meaning of the notion residual in this context. The Cox-Snell

residuals RCS are defined in a way that they alsways follow an exponential distribution. Since this is

an unususal law for residuals, it is convenient to transform them such that they then obey a standard

normal distribution,

R = Φ−1(1 − exp(−RCS)) .

Note that it is useless to draw a QQ-plot of these residuals, since they obey the normal law by

construction. They should be plotted against the linear predictor values (Tukey-Anscombe plot) and

against the explanatory variables.
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3.15 Residual plots for multivariate regression.

For multivariate regression, the plots corresponding to each target variable should be examined. They

are arranged such that the same type of plot for the different response variables are grouped together,

and a matrix of plots is produced for residuals against explanatory variables. In addition, the qq-plot

of Mahalanobis norms of residuals is shown as well as the scatterplot matrix of residuals.

4 Further Plotting Functions

4.1 Scatterplot Matrices

Scatterplot matrices are produced by the pairs function. In regr0, there is a function with more

flexibility, called plmatrix.

• The set of variables shown horizontally and vertically need not be the same. plmatrix can be

used to show the dependence of several response variables (vertical axes) on several explanatory

ones (horizontal axes).

• A traditional square scatterplot matrix can be split to avoid tiny panels – this is even done by

default. For example, if a scatterplot matrix of 15 variables is needed, plmatrix produces by

default 6 pages of graphical output, the first one showing the upper corner of the lower triangle

of the scatterplot matrix, the second, variables 7 to 11 against 1 to 6, the third, 7 to 11 against

7 to 12, and so on, until the whole lower triangle of the full scatterplot matrix is presented.

• The first argument can be a formula. If it contains a left hand side, then the respective variables

will be shown last in a scatterplot matrix. This is convenient since then, the target variable will

appear as the vertical axis in the last row of plots, such that its (“marginal”) dependence on the

explanatory variables can be seen in the usual way.

• Plotting characters and colors may be specified directly (instead of writing a panel function).

• If only one x and one y variable is given, then a regular plot appears. Therefore, plmatrix can

be used to generate a plot with specified plotting symbols (possibly labels of more than one

character each), colors and symbol sizes.

4.2 Multiboxes

When a quantitative variable is plotted against a grouping variable (factor), the usual formula method

of the plot function produces multiple box plots, one for each group. When there are many observa-

tions per group, a box plot constitutes a very rough image of the distributeion. The “multibox plot”

is a refinement that shows the distribution in more detail.

The idea is to combine the virtues of the box plot, which is based on the quartiles, with those

of a histogram that depicts the density of the distribution. Essentially, a histogram is drawn using

quantiles as class limits. The number of quantiles – or the number of classes – used should be adapted

to the number of observations to be represented. For moderate sample sizes, “octiles” appear suitable.
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Since raw quantiles may be poor characterizations for discrete data, “interpolated quantiles” are

used as class limits.

The multiboxes in Figure 5 resemble a well-known kind of presentation of age distributions. Often,

these displays are asymmetric, showing the age distribution of the two genders on the two sides. In

much the same way, asymmetric multibox plots can be drawn to visualize the relationship of the

continuous variable with any binary variable. Figure 6 shows the distribution of ....

5 Miscellaneous and Utility Functions

5.1 Transformation: Started Logarithm

The logarithmic transformation is very useful for quantitative variables. In fact, it should appear more

often than not, since it is the “first aid transformation” for amounts and concentrations and should

therefore be applied to most quantitative variables by default.

Now, amounts and concentrations may be zero (exactly or recorded as such), and the logarithm

of 0 is -Inf. A pragamtic way out of this problem often consists of adding a constant to the variable

before taking logs. Generally, this and other ideas to avoid the -Inf as a transformed value are called

“started logs” according to John Tukey.

regr0 includes a function logst that is based on the following ideas:

• The modification should only affect the values for “small” arguments.

• What is “small” should be determined in connection with the non-zero values of the original

variable, since it should behave well (be equivariant) with respect to a change in the “unit of

measurement”.

• The function must remain monotone, and it should remain (weakly) convex.

The function logst implements these criteria in the following way: The shape is determined by

a threshold c at which – coming from above – the log function switches to a linear function with the

same slope at this point. This is obtained by

g(x) =

{
log10(x) if x ≥ c
log10(c) − (c− x)/(c log(10)) if x < c

The threshold c is set to c = q1+r
1 /qr3, where q1 and q3 are the quartiles of the positive data and r is

a tuning constant. The default of r is 1 and leads to an expected percentage of about 2% of the data

below c for log-normal data.

It is certainly useful to inspect a graph of the function, as drawn in example(logst).

5.2 Documentation

For a data analysis, it is often useful to save graphical displays in documents or on paper. In an

extended data analysis, one can easily lose control over the precise content of the different plots.

regr0 provides some help for keeping track.
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• Every graphical display generated by a graphical function from the package gets a “stamp” in

the lower right corner that indicates date and time of its creation and, if specified by the user

before that time point, a project title and a step name (by writing

userOptions(project=projecttitle, step=stepname)).

(This stamp can of course be suppressed for producing publication graphics.)

• Data sets may be documented by attaching two attributes, tit and doc – title and description

–, which will be printed with numerical output if desired.

5.3 Subsetting Data

If observations (rows) of a data.frame are to be deleted, the usual R-function subset is useful. The

package slightly modifies it to make sure that the attributes – most importantly the documentation

by tit and doc (see the preceding subsection) are passed along.

There is an additional function dropdata which allows for dropping observations or variables based

on their names.

5.4 Multiple Frames

Function mframe splits the screen by calling par(mfrow=...). It adds flexibility and sets other de-

faults for margin widths and the like.

This is the end of the story for the time being. I hope that you will get into using regr0 and have good
success with your data analyses. Feedback is highly appreciated.

Werner Stahel, stahel at stat.math.ethz.ch
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## Warning in plot.regr(r.blast, plotselect = c(resfit = 3, default = 0), xvars = F,

: :plot.regr: Inadequate elements in plotselect: resfit, default
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## [1] "plot.regr done"

Figure 1: A Tukey-Anscombe plot.
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data(d.blast)

rr <- regr(tremor~distance+charge, data=d.blast)

## an inadequate model!

xdrd <- xdistResdiff(rr)

plot(xdrd)
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## [1] "plot.xdistResscale done"

Figure 2: Residual differences against x distance
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data(d.surveyenvir)

dd <- d.surveyenvir

t.rr <- regr(disturbance~age+education+location, data=dd)

plot(t.rr, plotselect=c(resfit=3, default=0), xvars=F, mf=c(1,1),

ask=FALSE)

## Warning in plot.regr(t.rr, plotselect = c(resfit = 3, default = 0), xvars = F, :

:plot.regr: Inadequate elements in plotselect: resfit, default
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## [1] "plot.regr done"

Figure 3: Tukey-Anscombe plot for ordered regression
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plmatrix(iris[,1:4], main="Iris", pch=as.numeric(iris[,"Species"]))
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## [1] "plmatrix: done"

Figure 4: Plot matrix for iris data
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plmboxes(residuals(r.blast)~location, data=d.blast)
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Figure 5: Multibox plot of residuals for the explanatory factor location
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data(d.blast)

plmboxes(tremor~location+I(charge>5), data=d.blast)
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Figure 6: Target variable tremor related to factorlocation and binary variable charge>5
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