Regression with Many Predictors

21.12.2016

• Get a (limited) overview of different approaches to handle data-sets with (many) more variables than observations.

Example

- Can the concentration of a (specific) component be **predicted** from spectra?
- Can the yield of a plant be **predicted** from its gene expression data?
- We have
 - a response variable Y (yield)
 - ▶ many **predictor variables** $x^{(1)}, ..., x^{(m)}$ (gene expr.)
- The easiest model is a linear model.

$$Y_i = x_i \beta^0 + E_i \qquad i = 1 \dots n,$$

• But... we typically have many more predictor variables than observations (m > n)! I.e. the model is high-dimensional

- High-dimensional models are more problematic because we can not compute the linear regression.
- If we want to use all predictor variables, we **can't fit the model** because it would give a perfect fit.
- Mathematically, the matrix $(X^T X) \in \mathbb{R}^{m \times m}$ can not be inverted. \oint
- Therefore, we need methods that can deal with this new situation.

Stepwise Forward Selection of Variables

A simple approach is **stepwise forward regression**.

It works as follows:

- Start with empty model, only consisting of intercept.
- Add the predictor to the model that has the **smallest p-value**. For that reason fit all models with just one predictor and compare p-values.
- Add all possible predictors to the model of the last step, expand the model with the one with smallest p-value.
- Continue until some stopping criterion is met.

Pro's: Easy

Con's: Unstable: small perturbation of data can lead to (very) different results, may miss "best" model.

Idea: Perform PCA on (centered) design matrix X.

PCA will give us a "new" design matrix **Z**. Use first p < m columns. Perform an ordinary linear regression with the "new data".

Pro's

New design matrix **Z** is orthogonal (by construction).

Con's

We have **not** used Y when doing PCA. It could very well be that some of the "last" principal components are useful for predicting Y!

Extension

Select those principal components that have largest (simple) correlation with the response Y.

Ridge Regression

• Ridge regression "shrinks" the regression coefficients by adding a penalty to the least squares criterion.

$$\underline{\widehat{\boldsymbol{\beta}}}_{\lambda} = \arg\min_{\underline{\boldsymbol{\beta}}} \left\{ \|\underline{\boldsymbol{Y}} - \mathbf{X}\underline{\boldsymbol{\beta}}\|_{2}^{2} + \lambda \sum_{j=1}^{m} \beta_{j}^{2} \right\},\$$

where $\lambda \geq 0$ is a tuning parameter that controls the size of the penalty.

- The first term is the usual residual sum of squares.
- The second term penalizes the coefficients.
- Intuition: Trade-off between goodness of fit (first-term) and penalty (second term).

• There is a closed form solution

$$\widehat{\underline{\beta}}_{\lambda} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\underline{Y},$$

where $\boldsymbol{\mathsf{I}}$ is the identity matrix.

- Even if X^TX is singular, we have a unique solution because we add the diagonal matrix λI.
- λ is the tuning parameter
 - For $\lambda = 0$ we have the usual least squares fit (if it exists).
 - ► For $\lambda \to \infty$ we have $\hat{\beta}_{\lambda} \to \underline{0}$ (all coefficients shrunken to zero in the limit).

- Lasso = Least Absolute Shrinkage and Selection Operator.
- This is similar to Ridge regression, but "more modern".

$$\underline{\widehat{\beta}}_{\lambda} = \arg\min_{\underline{\beta}} \left\{ \|\underline{Y} - \mathbf{X}\underline{\beta}\|_{2}^{2} + \lambda \sum_{j=1}^{m} |\beta_{j}| \right\},\$$

It has the property that it also selects variables, i.e. many components of β_λ are zero (for large enough λ).

Get help/support for

- planning your experiments.
- doing **proper analysis** of your data to answer your scientific questions.

Information available at

```
http://stat.ethz.ch/consulting
```