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Goals of Today’s Lecture

Get familiar with the multivariate counterparts of the expectation and
the variance.

See how principal component analysis (PCA) can be used as a
dimension reduction technique.
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Introduction

In your introductory course you started with univariate statistics.
You had a look at one random variable X at a time. E.g., X =
“measurement of temperature”.

A random variable can be characterized by its expectation µ and the
variance σ2 (or standard deviation σ).

µ = E [X ], σ2 = Var(X ) = E [(X − µ)2].

A model that is often used is the normal distribution:
X ∼ N (µ, σ2).

The normal distribution is fully characterized by the expectation and
the variance.
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The unknown parameters µ and σ can be estimated from data.

Say we observe n (independent) realizations of our random variable
X : x1, . . . , xn.

You can think of measuring n times a certain quantity, e.g.
temperature.

Usual parameter estimates are

µ̂ = x =
1

n

n∑
i=1

xi , σ̂2 = V̂ar(X ) =
1

n − 1

n∑
i=1

(xi − x)2.
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Multivariate Data

Now we are going to have a look at the situation where we measure
multiple things simultaneously.

Hence, we have a multivariate random variable (vector) X having
m components: X ∈ Rm.

You can think of measuring temperature at two different locations or
measuring temperature and pressure at one location (m = 2).

In that case

X =

[
X (1)

X (2)

]
,

where X (1) is temperature and X (2) is pressure.
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A possible data-set now consists of n vectors of dimension 2 (or m in
the general case):

x1, . . . , xn,

where x i ∈ R2 (or Rm).

Remark

In multiple linear regression we already had multiple variables per
observation.

There, we had one response variable and many predictor variables.

Here, the situation is more general in the sense that we don’t have a
response variable but we want to model “relationships” between (any)
variables.

5 / 40



Expectation and Covariance Matrix

We need new concepts to model / describe this kind of data.

We are therefore looking for the multivariate counterparts of the
expectation and the variance.

The (multivariate) expectation of X is defined as

E [X ] = µ = (µ1, . . . , µm)T = (E [X (1)], . . . ,E [X (m)])T .

It’s nothing else than the collection of the univariate expectations.
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What about dependency?
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We need a measure to characterize the dependency between the
different components.

The simplest thing one can think of is linear dependency between
two components.

The corresponding measure is the correlation ρ.

ρ is dimensionless and it always holds that

−1 ≤ ρ ≤ 1

|ρ| measures the strength of the linear relationship.

The sign of ρ indicates the direction of the linear relationship.
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Illustration: Empirical Correlation

Source: Wikipedia
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The formal definition of the correlation is based on the covariance.

The covariance is an unstandardized version of the correlation. It is
defined as

Cov(X (j),X (k)) = E [(X (j) − µj)(X (k) − µk)].

The correlation between X (j) and X (k) is then

ρjk = Corr(X (j),X (k)) =
Cov(X (j),X (k))√

Var(X (j)) Var(X (k))

You have seen the empirical version in the introductory course.

10 / 40



The covariance matrix |Σ is an m ×m matrix with elements

|Σjk = Cov(X (j),X (k)) = E [(X (j) − µj)(X (k) − µk)].

We also write Var(X ) or Cov(X ) instead of |Σ.

The special symbol |Σ is used in order to avoid confusion with the
sum sign

∑
.
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The covariance matrix contains a lot of information, e.g.

|Σjj = Var(X (j)).

This means that the diagonal consists of the individual variances.

We can also compute the correlations via

Corr(X (j),X (k)) =
Cov(X (j),X (k))√

Var(X (j)) Var(X (k))
=

|Σjk√
|Σjj |Σkk

.
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Again, from a real data-set we can estimate these quantities with

µ̂ =
[
x (1), x (2), . . . , x (m)

]T
|̂Σjk =

1

n − 1

n∑
i=1

(x
(j)
i − µ̂j)(x

(k)
i − µ̂k),

Or more directly the whole matrix

|̂Σ =
1

n − 1

n∑
i=1

(x i − µ̂)(x i − µ̂)T .

Remember: (Empirical) correlation only measures strength of linear
relationship between two variables.
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Linear Transformations

The following table illustrates how the expectation and the variance
(covariance matrix) change when linear transformations are applied to
the univariate random variable X or the multivariate random vector X .

Univariate Multivariate

Y = a + bX Y = a + BX

E [Y ] = a + bE [X ] E [Y ] = a + BE [X ]

Var(Y ) = b2 Var(X ) Var(Y ) = B |ΣXBT

where a, b ∈ R and a ∈ Rm,B ∈ Rm×m.
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Principal Component Analysis (PCA)

Goal: Dimensionality reduction.

We have m different dimensions (variables) but we would like to find
“a few specific dimensions (projections) of the data that contain most
variation”.

If two specific dimensions of the data-set contain most variation,
visualizations will be easy (plot these two!).

Such a plot then can be used to check for any “structure”.
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Illustration of Artificial 3-Dim Data-Set
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We have to be more precise with what we mean with “variation”.

We define the total variation in the data as the sum of all
individual empirical variances

m∑
j=1

V̂ar(X (j)) =
m∑
j=1

σ̂2(X (j)).

How can we now find projections that contain most variation?

Conceptually, we are looking for a new coordinate system with basis
vectors b1, . . . , bm ∈ Rm.
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Of course, our data-points x i ∈ Rm will then have new coordinates

z
(k)
i = xTi bk , k = 1, . . . ,m

(= projection on new basis vectors).

How should we choose the new basis?

I The first basis vector b1 should be chosen such that V̂ar(Z (1)) is
maximal (i.e. it captures most variation).

I The second basis vector b2 should be orthogonal to the first one

(bT2 b1 = 0) such that V̂ar(Z (2)) is maximized.

I And so on...
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The new basis vectors are the so-called principal components.

The individual components of these basis vectors are called loadings.
The loadings tell us how to interpret the new coordinate system (i.e.,
how the old variables are weighted to get the new ones).

The coordinates with respect to the new basis vectors (the
transformed variable values) are the so-called scores .
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PCA: Illustration in Two Dimensions
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We could find the first basis vector b1 by solving the following
maximization problem

max
b:‖b‖=1

V̂ar(Xb),

where X is the matrix that has different observations in different rows
and different variables in different columns (like the design matrix in
regression).

It can be shown that b1 is the (standardized) eigenvector of |̂ΣX that
corresponds to the largest eigenvalue.

Similarly for the other vectors b2, . . . , bm.
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To summarize: We are performing a transformation to new
variables

z i = BT (x i − µ̂),

where the transformation matrix B is orthogonal and contains the
bk ’s as columns.

In general we also subtract the mean vector to ensure that all
components have mean 0.

B is the matrix of (standardized) eigenvectors corresponding to the

eigenvalues λk of |̂ΣX (in decreasing order).
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Hence, we have

V̂ar(Z ) = |̂ΣZ = BT |̂ΣXB =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

0 0 . . . λm


λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.

Hence, the variance of the different components of Z is given by the
corresponding eigenvalue (values on the diagonal).

Moreover, the different components are uncorrelated (because the
off-diagonal elements of the covariance matrix of Z are all zero).
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Scaling Issues

The variance is not invariant under rescaling.

If we change the units of a variable, that will change the variance
(e.g. when measuring a length in [m] instead of [mm]).

Therefore, if variables are measured on very different scales, they
should first be standardized to comparable units.

This can be done by standardizing each variable to variance 1.

Otherwise, PCA can be misleading.

24 / 40



PCA and Dimensionality Reduction

At the beginning we were talking about dimensionality reduction.

We can achieve this by simply looking at the first p < m principal
components (and ignoring the remaining components).

The proportion of the variance that is explained by the first p
principal components is ∑p

j=1 λj∑m
j=1 λj

.
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PCA and Dimensionality Reduction

For visualization of our data, we can for example use a scatterplot of
the first two principal components.

It should show “most of the variation”.
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Illustration
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PC1
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Loadings

PC1 PC2 PC3

x1 -0.395118451 0.06887762 0.91604437

x2 -0.009993467 0.99680385 -0.07926044

x3 -0.918575822 -0.04047172 -0.39316727
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Sometimes we see a sharp drop (after component p) when plotting
the eigenvalues (in decreasing order).

→ Consider only the first p components.

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

NIR−spectra without 5 outliers
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This plot is also known as the scree-plot.
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Applying PCA to NIR-Spectra

An NIR-spectrum can be thought of as a multivariate observation
(the different variables are the measurements at different
wavelengths).

A spectrum has the property that the different variables are “ordered”
and we can plot one observation as a “function” (see plot on next
slide).

If we apply PCA to this kind of data, the individual components of
the bk ’s (the so called loadings) can again be plotted as spectra.

As an example we have a look at spectra measured at different
time-points of a chemical reaction.
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Illustration: Spectra (centered at each wavelength)
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Scatterplot of the First Two Principal Components
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Scree-Plot
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Alternative Interpretations

If we restrict ourselves to the first p < m principal components we have

x i − µ̂ = x̂ i + e i

where

x̂ i =

p∑
k=1

z
(k)
i b(k), e i =

m∑
k=p+1

z
(k)
i b(k).
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Linear Algebra

It can be shown that the data matrix consisting of the x̂ i is the best
approximation of our original (centered) data matrix if we restrict
ourselves to matrices of rank p (with respect to the Frobenius norm), i.e.
it has smallest ∑

i ,j

(
e
(j)
i

)2
.

Statistics

It’s the best approximation in the sense that it has the smallest sum of
variances

m∑
j=1

V̂ar(E (j)).
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PCA via Singular Value Decomposition (SVD)

We can also get the principal components from the singular value
decomposition (SVD) of the data matrix X.

For that reason we require X to have centered columns!  

Why does this work?
SVD of X yields the decomposition

X = UDVT

where
I U is n × n and orthogonal

I D is n ×m and generalized diagonal (containing the so-called singular
values in descending order)

I V is m ×m and orthogonal
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Properties of SVD

The (standardized) eigenvectors of XTX make up the columns of V.

The singular values are the square roots of the eigenvalues of XTX.

But what is XTX? If the columns of X are centered, this is the rescaled

(empirical) covariance matrix |̂ΣX , because

(XTX)jk =
n∑

i=1

(x ix
T
i )jk =

n∑
i=1

x
(j)
i x

(k)
i = (n − 1) |̂Σjk .

Hence, the singular value decomposition of the centered data-matrix
automatically gives us the principal components (in V).

The data-matrix in new coordinates is given in UD.
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Summary

PCA is a useful tool for dimension reduction.

New basis system is given by (standardized) eigenvectors of
covariance matrix.

Eigenvalues are the variances of the new coordinates.

In the case of spectra, the loadings can again be plotted as spectra.
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