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Goals of Today’s Lecture

Understand the difference between linear and nonlinear regression
models.

See that not all functions are linearizable.

Get an understanding of the fitting algorithm in a statistical sense
(i.e. fitting many linear regressions).

Know that tests etc. are based on approximations and be able to
interpret computer output, profile t-plots and profile traces.
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Nonlinear Regression Model

The nonlinear regression model is

Yi = h(x
(1)
i , x

(2)
i , . . . , x

(m)
i ; θ1, θ2, . . . , θp) + Ei

= h(x i ; θ) + Ei .

where

Ei are the error terms, Ei ∼ N (0, σ2) independent

x (1), . . . , x (m) are the predictors

θ1, . . . , θp are the parameters

h is the regression function, “any” function.
h is a function of the predictors and the parameters.
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Comparison with linear regression model

In contrast to the linear regression model we now have a general
function h.

In the linear regression model we had

h(x i ; θ) = xTi θ

(there we denoted the parameters by β).

Note that in linear regression we required that the parameters appear
in linear form.

In nonlinear regression, we don’t have that restriction anymore.
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Example: Puromycin

The speed of an enzymatic reaction depends on the concentration of
a substrate.

The initial speed is the response variable (Y ). The concentration of
the substrate is used as predictor (x). Observations are from different
runs.

Model with Michaelis-Menten function

h(x ; θ) =
θ1x

θ2 + x
.

Here we have one predictor x (the concentration) and two
parameters: θ1 and θ2.

Moreover, we observe two groups: One where we treat the enzyme
with Puromycin and one without treatment (control group).
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Illustration: Puromycin (two groups)
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Data (• treated enzyme; 4 untreated enzyme)

Right: Typical shape of the regression function.
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Example: Biochemical Oxygen Demand (BOD)

Model the biochemical oxygen demand (Y ) as a function of the incubation
time (x)

h(x ; θ) = θ1

(
1− e−θ2x

)
.
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Linearizable Functions

Sometimes (but not always), the function h is linearizable.

Example

Let’s forget about the error term E for a moment. Assume we have

y = h(x ; θ) = θ1 exp{θ2/x}
⇐⇒

log(y) = log(θ1) + θ2 · (1/x)

We can rewrite this as
ỹ = θ̃1 + θ̃2 · x̃ ,

where ỹ = log(y), θ̃1 = log(θ1), θ̃2 = θ2 and x̃ = 1/x .

If we use this linear model, we assume additive errors Ei

Ỹi = θ̃1 + θ̃2x̃i + Ei .
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This means that we have multiplicative errors on the original scale

Yi = θ1 exp{θ2/xi} · exp{Ei}.

This is not the same as using a nonlinear model on the original scale
(it would have additive errors!).

Hence, transformations of Y modify the model with respect to
the error term.

In the Puromycin example: Do not linearize because error term would
fit worse (see next slide).

Hence, for those cases where h is linearizable, it depends on the data
if it’s advisable to do so or to perform a nonlinear regression.
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Puromycin: Treated enzyme
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Parameter Estimation

Let’s now assume that we really want to fit a nonlinear model.

Again, we use least squares. Minimize

S(θ) :=
n∑

i=1

(Yi − ηi (θ))2 ,

where
ηi (θ) := h(x i ; θ)

is the fitted value for the ith observation (x i is fixed, we only vary the
parameter vector θ).
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Geometrical Interpretation

First we recall the situation for linear regression.

By applying least squares we are looking for the parameter vector θ
such that

‖Y − Xθ‖22 =
n∑

i=1

(
Yi − xTi θ

)2
is minimized.

Or in other words: We are looking for the point on the plane spanned
by the columns of X that is closest to Y ∈ Rn.

This is nothing else than projecting Y on that specific plane.
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Linear Regression: Illustration of Projection
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Situation for nonlinear regression

Conceptually, the same holds true for nonlinear regression.

The difference is: All possible points do not lie on a plane anymore,
but on a curved surface, the so called model surface defined by

η(θ) ∈ Rn

when varying the parameter vector θ.

This is a p-dimensional surface because we parameterize it with p
parameters.
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Nonlinear Regression: Projection on Curved Surface

 5  6  7  8  9 10 11

10
12

14
16

18
20

18
19

20
21

22

η1 | y1

η 2
 | 

y 2

η3 | y3

−

Y

θ1 = 20

θ1 = 21

θ1 = 22

0.3

0.4

0.5θ2 =

−

y

14 / 35



Computation

Unfortunately, we can not derive a closed form solution for the
parameter estimate θ̂.

Iterative procedures are therefore needed.

We use a Gauss-Newton approach.

Starting from an initial value θ(0), the idea is to approximate the
model surface by a plane, to perform a projection on that plane and
to iterate many times.

Remember η : Rp → Rn. Define n × p matrix

A
(j)
i (θ) =

∂ηi (θ)

∂θj
.

This is the Jacobi-matrix containing all partial derivatives.
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Gauss-Newton Algorithm

More formally, the Gauss-Newton algorithm is as follows

Start with initial value θ̂(0)

For l = 1, 2, . . .

Calculate tangent plane of η(θ) in θ̂(l−1):

η(θ) ≈ η(θ̂(l−1)) + A(θ̂(l−1)) · (θ − θ̂(l−1))

Project Y on tangent plane  θ̂(l)

Projection is a linear regression problem, see blackboard.

Next l

Iterate until convergence
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Initial Values

How can we get initial values?

Available knowledge

Linearized version (see Puromycin)

Interpretation of parameters (asymptotes, half-life, . . . ), “fitting by
eye”.

Combination of these ideas (e.g., conditional linearizable functions)
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Example: Puromycin (only treated enzyme)
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Dashed line: Solution of linearized problem.

Solid line: Solution of the nonlinear least squares problem.
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Approximate Tests and Confidence Intervals

Algorithm “only” gives us θ̂.

How accurate is this estimate in a statistical sense?

In linear regression we knew the (exact) distribution of the estimated
parameters (remember animation!).

In nonlinear regression the situation is more complex in the sense that
we only have approximate results.

It can be shown that

θ̂j
approx .∼ N (θj ,Vjj)

for some matrix V (Vjj is the jth diagonal element).
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Tests and confidence intervals are then constructed as in the linear
regression situation, i.e.

θ̂j − θj√
V̂jj

approx .∼ tn−p.

The reason why we basically have the same result as in the linear
regression case is because the algorithm is based on (many) linear
regression problems.

Once converged, the solution is not only the solution to the nonlinear
regression problem but also for the linear one of the last iteration.

In fact
V̂ = σ̂2(ÂT Â)−1,

where Â = A(θ̂).
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Example Puromycin (two groups)

Remember, we originally had two groups (treatment and control)
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Question: Do the two groups need different regression parameters?
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To answer this question we set up a model of the form

Yi =
(θ1 + θ3zi )xi
θ2 + θ4zi + xi

+ Ei ,

where z is the indicator variable for the treatment (zi = 1 if treated,
zi = 0 otherwise).

E.g., if θ3 is nonzero we have a different asymptote for the treatment
group (θ1 + θ3 vs. only θ1 in the control group).

Similarly for θ2, θ4.

Let’s fit this model to data.
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Computer Output

Formula: velocity ~ (T1 + T3 * (treated == T)) * conc/(T2 +

T4 * (treated == T) + conc)

Parameters:

Estimate Std.Error t value Pr(>|t|)

T1 160.280 6.896 23.242 2.04e-15

T2 0.048 0.008 5.761 1.50e-05

T3 52.404 9.551 5.487 2.71e-05

T4 0.016 0.011 1.436 0.167

We only get a significant test result for θ3 ( different asymptotes)
and not θ4.

A 95%-confidence interval for θ3 (=difference between asymptotes)
is

52.404± qt190.975 · 9.551 = [32.4, 72.4],

where qt190.975 ≈ 2.09.
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More Precise Tests and Confidence Intervals

Tests etc. that we have seen so far are only “usable” if linear
approximation of the problem around the solution θ̂ is good.

We can use another approach that is better (but also more
complicated).

In linear regression we had a quick look at the F -test for testing
simultaneous null-hypotheses. This is also possible here.

Say we have the null hypothesis H0 : θ = θ∗ (whole vector).

Fact: Under H0 it holds

T =

(
n − p

p

)
S(θ∗)− S(θ̂)

S(θ̂)

approx .∼ Fp,n−p.
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We still have only an “approximate” result. But this approximation is
(much) better (more accurate) than the one that is based on the
linear approximation.

This can now be used to construct confidence regions by searching
for all vectors θ∗ that are not rejected using this test (as before).

If we only have two parameters it’s easy to illustrate these confidence
regions.

Using linear regression it’s also possible to derive confidence regions
(for several parameters). We haven’t seen this in detail.

This approach can also be used here (because we use a linear
approximation in the algorithm, see also later).
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Confidence Regions: Examples

Puromycin Biochem. Oxygen D.
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Dashed: Confidence Region (80% and 95%) based on linear approx.

Solid: Approach with F -test from above (more accurate).

“+” is parameter estimate.
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What if we only want to test a single component θk?

Assume we want to test H0 : θk = θ∗k .

Now fix θk = θ∗k and minimize S(θ) with respect to θj , j 6= k.

Denote the minimum by S̃k(θ∗k).

Fact: Under H0 it holds that

T̃k(θ∗k) = (n − p)
S̃k(θ∗k)− S(θ̂)

S(θ̂)

approx .∼ F1,n−p,

or similarly

Tk(θ∗k) = sign(θ̂k − θ∗k)

√
S̃k(θ∗k)− S(θ̂)

σ̂

approx .∼ tn−p.
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Our first approximation was based on the linear approximation and we
got a test of the form

δk(θ∗k) =
θ̂k − θ∗k
ŝ.e.(θ̂k)

approx .∼ tn−p,

where ŝ.e.(θ̂k) =
√

V̂jj .

This is what we saw in the computer output.

The new approach with Tk(θ∗k) answers the same question (i.e., we
do a test for a single component).

The approximation of the new approach is (typically) much more
accurate.

We can compare the different approaches using plots.
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Profile t-Plots and Profile Traces

The profile t-plot is defined as the plot of Tk(θ∗k) against δk(θ∗k) (when
varying θ∗k).

Remember: The two tests (Tk and δk) test the same thing.

If they behave similarly, we would expect the same answers, hence the
plot should show a diagonal (intercept 0, slope 1).

Strong deviations from the diagonal indicate that the linear
approximation at the solution is not suitable and that the problem is
very non-linear in a neighborhood of θ̂k .
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Profile t-Plots: Examples

Puromycin Biochem. Oxygen D.
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Profile Traces

Select a pair of parameters: θj , θk ; j 6= k.

Keep θk fixed, estimate remaining parameters: θ̃j(θk).

This means: When varying θk we can plot the estimated θ̃j (and vice
versa)

Illustrate these two curves on a single plot.

What can we learn from this?

I The angle between the two curves is a measure for the correlation
between estimated parameters. The smaller the angle, the higher
the correlation.

I In the linear case we would see straight lines. Deviations are an
indication for nonlinearities.

Correlated parameter estimates influence each other strongly and
make estimation difficult.
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Profile Traces: Examples

Puromycin Biochem. Oxygen D.
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Grey lines indicate confidence regions (80% and 95%).
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Parameter Transformations

In order to improve the linear approximation (and therefore improve
convergence behaviour) it can be useful to transform the parameters.

Transformations of parameters do not change the model, but

I the quality of the linear approximation, influencing
the difficulty of computation and
the validity of approximate confidence regions.

I the interpretation of the parameters.

Typically, finding good transformations is hard.

Results can be transformed back to original parameters. Then,
transformation is just a technical step to solve the problem.
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Use parameter transformations to avoid side constraints, e.g.

θj > 0 −→ Use θj = exp{φj}, φj ∈ R

θj ∈ (a, b) −→ Use θj = a +
b − a

1 + exp{−φj}
, φj ∈ R
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Summary

Nonlinear regression models are widespread in chemistry.

Computation needs iterative procedure.

Simplest tests and confidence intervals are based on linear
approximations around solution θ̂.

If linear approximation is not very accurate, problems can occur.
Graphical tools for checking linearities are profile t-plots and profile
traces.

Tests and confidence intervals based on F -test are more accurate.

Parameter transformations can help reducing these problems.
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