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or 5,000 effects, corresponded significantly more often to effects 
in the target set than can be expected by random guessing, with 
P < 0.001 for all combinations of m and q (Supplementary Table 
1 and Supplementary Methods). For instance, for m = 10 and q = 
50, IDA found 33 (66%) true positives, whereas random guessing 
yielded only 5 ± 2.1 true positives (10% ± 4.2%). Moreover, IDA 
improved substantially on Lasso4 and Elastic-net5, two state-of-
the-art high-dimensional regression approaches commonly used 
to determine variable importance but not designed for causal 
inference (Fig. 1a, Supplementary Table 1 and Supplementary 
Methods). For m = 10 and q = 50, these methods yielded 10 
(20%) and 8 (16%) true positives, respectively. Finally, we found 
that the superior performance of IDA compared to that of the 
other methods was insensitive to the choice of m value for m = 
1, ... 50 (Fig. 1b).

As a second test, we used data from the DREAM4 In Silico 
Network Challenge6, a competition in reverse engineering of 
gene regulation networks. These data include several types of 
simulated mRNA expression levels, based on sophisticated bio-
logically motivated simulation methods6, for five networks of 
10 genes and five networks of 100 genes. We used two types of 
observational data: (i) steady-state gene expression levels from 
unknown multifactorial perturbations of the networks and (ii) 
time series data on gene expression levels from the response 
and recovery of the networks to unknown external perturba-

Predicting causal effects in large-scale 
systems from observational data
To the Editor: Understanding cause-effect relationships between 
variables is of primary interest in many fields of science. The 
standard method for determining such relationships uses ran-
domized controlled perturbation experiments. In many settings, 
however, such experiments are expensive and time consuming. 
Hence, it is desirable to obtain causal information from observa-
tional data, that is, from data obtained by observing the system 
of interest without subjecting it to interventions.

There are established methods to estimate causal effects 
from observational data when the possible causal relationships 
between the variables are known1. Many real-world problems, 
however, involve large-scale systems without such information. 
Although it is generally impossible to estimate causal effects in 
such systems, we recently proposed and mathematically justi-
fied2 a statistical method to obtain bounds on total causal effects, 
under some assumptions (Supplementary Methods). We call this 
method intervention-calculus when the DAG is absent (IDA). 
IDA has not been experimentally validated until now, and there 
is a lack of experimental validation of causal inference methods 
in general.

We present here an experimental validation of IDA. As a first 
test, we used a compendium of  gene 
expression profiles of  Saccharomyces 
cerevisiae3, containing 267 full-genome 
expression profiles of  yeast deletion 
mutants (interventional data), together 
with 63 full-genome expression profiles 
of negative control experiments (observa-
tional data), all obtained under the same 
conditions. After initial data cleaning 
(Supplementary Methods), the interven-
tional data contained expression measure-
ments of 5,361 genes for 234 single-gene 
deletion mutant strains, and the obser-
vational data contained expression mea-
surements of the same 5,361 genes for 63 
wild-type cultures.

We used the interventional data as the 
gold standard for estimating the total 
causal effects of the 234 deleted genes on 
the remaining genes (that is, 234 × 5,360 
effects; Supplementary Methods). We 
defined the top m percentage of these 
effects, where m = 5 or 10, as our target set 
and evaluated how well IDA could iden-
tify these effects from the observational 
data. We found that the q largest predicted 
effects from IDA, where q = 50, 250, 1,000 

m values

0

0.5

1.0

1.5

2.0

2.5

pA
U

C
 ×

 1
05

0            10           20            30           40            500 1,000 2,000 3,000 4,000

0

200

400

600

800

1,000

IDA
Lasso
Elastic-net
Random

Tr
ue

 p
os

iti
ve

s

False positives

a b IDA
Lasso
Elastic-net
Random

Figure 1 | Predicting causal effects from observational data (data are from ref. 3). (a) The number 
of true positives versus the number of false positives are plotted for the indicated methods, for 
the top 5,000 predicted effects from the observational data. The target set is the top 10% of the 
effects as computed from the interventional data. (b) The partial area under the receiver operating 
characteristic curve (pAUC) is plotted versus m values, when the target set is the top m percentage of 
the effects as computed from the interventional data. The pAUC was computed up to the false-positive 
rate determined by the top 5,000 effects from IDA for m = 10. The three horizontal lines for random 
guessing correspond to the 2.5th, 50th and 97.5th percentiles of a simulated distribution based on 
random orderings of effects.
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tions (omitting the time stamps). We used interventional data on 
steady-state gene expression levels of known single-gene knock-
out experiments as the gold standard for determining the causal 
effects. We applied IDA, as well as Lasso and Elastic-net, to the 
observational datasets and evaluated how well the resulting top q 
predicted effects (q = 10 for the networks of size 10 and q = 25 for 
the networks of size 100) corresponded to the top m percentage 
(m = 5 or 10) of the effects as computed from the interventional 
data (Supplementary Methods). We counted the number of 
networks in which the partial area under the receiver operating 
characteristic curve (pAUC) was better than random guessing at 
significance level a = 0.01 for both values of m (Supplementary 
Methods). By this measure, IDA was at least as good as Lasso 
and Elastic-net for all four possible combinations of the type of 
observational data (multifactorial or time series) and the size of 
the networks (10 or 100 genes). The difference was largest for the 
multifactorial data on the networks of size 10, where IDA was 
substantially better than Lasso and Elastic-net for three of the 
five networks (Supplementary Fig. 1 and Supplementary Table 
2). For instance, in this setting with m = 10 and q = 10, IDA 
found 4, 4, 5, 1 and 2 true positives for the five different networks, 
whereas Lasso found 1, 1, 0, 1 and 2 true positives and Elastic-net 
found 3, 1, 0, 1 and 1 true positives.

The results presented here on S. cerevisiae and the DREAM4 
data are proof-of-concept results that IDA can predict the stron-
gest causal effects in potentially large-scale biological systems 
by using only observational data. In particular, the results on 
S. cerevisiae demonstrate that we were able to do this in a chal-
lenging real-world setting where the number of variables (5,361) 
was much larger than the sample size (63) and the variables were 
substantially disturbed by noise. As IDA is supported by math-
ematical theory, we expect the results presented here to generalize 
to other problems.

Of course, statistical predictions based on observational data 
can never replace intervention experiments. In fact, whenever 
possible, IDA predictions should be followed up by intervention 
experiments. In this way, the predictions can serve as a new tool 
for the design of experiments, as they indicate which interven-
tions are likely to show a large effect.

Software for IDA is available in the open source R-package 
pcalg (http://cran.r-project.org/web/packages/pcalg/index.
html).

Note: Supplementary information is available on the Nature Methods website.
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A method and server for predicting 
damaging missense mutations
To the Editor: Applications of rapidly advancing sequencing 
technology exacerbate the need to interpret individual sequence 
variants. Sequencing of phenotyped clinical subjects will soon 
become a method of choice in studies of the genetic causes of 
Mendelian and complex diseases. New exon-capture techniques 
will direct sequencing efforts to the most informative and easily 
interpretable protein-coding fraction of the genome. Thus, the 
demand for computational predictions of the impact of protein 
sequence variants will continue to grow.

Here we present a new method and the corresponding soft-
ware tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/, 
Supplementary Software), for predicting damaging effects of 
missense mutations. PolyPhen-2 is different from the earlier 
tool PolyPhen1 in the set of predictive features, the alignment 
pipeline and the method of classification (Fig. 1a). PolyPhen-2 
uses eight sequence-based and three structure-based predictive 
features (Supplementary Table 1), which were selected automati-
cally by an iterative greedy algorithm (Supplementary Methods). 
The majority of these features involve comparison of a property 
of the wild-type (ancestral, normal) allele and the correspond-
ing property of the mutant (derived, disease-causing) allele. 
The alignment pipeline selects a set of homologous sequences 
using a clustering algorithm and then constructs and refines its 
multiple alignment (Supplementary Fig. 1). The most informa-
tive predictive features characterize how likely the two human 
alleles are to occupy the site given the pattern of amino-acid 
replacements in the multiple-sequence alignment; how distant 
the protein harboring the first deviation from the human wild-
type allele is from the human protein; and whether the mutant 
allele originated at a hypermutable site2. The functional impor-
tance of an allele replacement is predicted from its individual 
features (Supplementary Figs. 2–4) by a naive Bayes classifier 
(Supplementary Methods).

We used two pairs of datasets to train and test PolyPhen-2. We 
compiled the first pair, HumDiv, from all 3,155 damaging alleles 
annotated in the UniProt database as causing human Mendelian 
diseases and affecting protein stability or function, together 
with 6,321 differences between human proteins and their closely 
related mammalian homologs, assumed to be nondamaging 
(Supplementary Methods). The second pair, HumVar3, consists 
of all the 13,032 human disease-causing mutations from UniProt 
and 8,946 human nonsynonymous single-nucleotide polymor-
phisms (nsSNPs) without annotated involvement in disease, 
which we treated as nondamaging.

We found that PolyPhen-2 performance, as presented by its 
receiver operating characteristic curves, was consistently superior 
compared to that of PolyPhen (Fig. 1b) and it also compared 
favorably with that of three other popular prediction tools4–6 
(Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieved 
true positive prediction rates of 92% and 73% on HumDiv and 
HumVar datasets, respectively (Supplementary Table 2).

One reason for the lower accuracy of predictions on HumVar is 
that nsSNPs assumed to be nondamaging in the HumVar dataset 
included a sizable fraction of mildly deleterious alleles. In con-
trast, most amino-acid replacements assumed nondamaging in 
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