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Abstract—We present two different diode-pumped passively
mode-locked Nd:YVO4 lasers with a repetition rate of 40 GHz.
This is the highest repetition rate demonstrated so far with
diode-pumped 1- m solid-state lasers. The first laser design
allows short pulses of 2.7-ps duration whereas the second laser de-
sign is optimized for high average output power of up to 288 mW.
We compare both design approaches and show that there is a
tradeoff between output power and pulse duration.

Index Terms—Diode-pumped lasers, high-pulse repetition rates,
mode-locked lasers, semiconductor absorbers.

I. INTRODUCTION

PROGRESS over the last decade in ultrafast all-solid-state
lasers has pushed performance in average power and

pulse repetition rate by 2–3 orders of magnitude [1]. Trains of
picosecond or femtosecond mode-locked pulses at repetition
rates of several gigahertz are required for various applications
like telecommunications [2], optical clocking of very fast
computer processors [3], high-speed electro-optic sampling [4],
analog-to-digital conversion, time-resolved spectroscopy with
high signal-to-noise ratio [5], generation of polarized electron
beams for particle accelerators [6], and pumping of optical
parametric oscillators [7], [8]. Such pulse trains should be
generated with compact, efficient and reliable lasers delivering
at least a few picojoules of pulse energy (e.g., 1 pJ of pulse
energy with a pulse repetition rate of 40 GHz corresponds to
an average output power of 40 mW). The noise properties are
also very important, and timing stabilization of the laser using
an external microwave reference oscillator may be required
[9]. Depending on the application, the emission wavelength
can be of concern and might ideally be tunable. For example,
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for telecommunication through optical fibers, the often used
-band has a wavelength region between 1530 and 1565 nm.

Optical parametric oscillators allow coverage of even much
wider wavelength ranges [8]; for multigigahertz pulse repeti-
tion rates, they require solid-state pump lasers with optimized
output power.

Several approaches are currently being explored to generate
mode-locked pulses at gigahertz repetition rates. One common
approach is represented by actively and passively mode-locked
fiber lasers. These lasers can produce very high repetition rates
of up to 200 GHz [10] but at the cost of a high complexity due
to harmonic mode locking and relatively low output powers of
at most a few tens of milliwatts. Even higher repetition rates of
more than 1 THz can be reached with mode-locked edge-emit-
ting semiconductor lasers [11]. In general, the pulses from such
laser diodes are strongly chirped, and the average output power
is typically only a few milliwatts or even below 1 mW. Opti-
cally pumped vertical-external cavity surface-emitting semicon-
ductor lasers (VECSELs) that are passively mode-locked with a
semiconductor saturable absorber (SESAM) [12], [13], can gen-
erate high average output powers in picosecond pulses of good
quality [14], [15], and close to transform-limited femtosecond
pulses [16]. Recently, a 10-GHz device of this kind with 1.4 W
average output power has been demonstrated [17], and higher
repetition rates should be possible.

Here we present another class of lasers based on a Nd:YVO
crystal and on passive mode locking using a SESAM. This con-
cept has been demonstrated with up to a 157-GHz repetition rate
[18], but so far repetition rates higher than 13 GHz [19] have re-
quired the use of a Ti:sapphire laser as a pump source with high
brightness. A 10-GHz diode-pumped laser was optimized for
a high average output power of 2.1 W [18]. Table I presents a
summary of 1- m solid-state lasers with repetition rates above
1 GHz. Similar lasers with Er:Yb:glass as gain medium, emit-
ting within the telecom -band, have been demonstrated with
repetition rates of up to 50 GHz [20]. Both types of lasers pro-
duced pulses of some picosecond durations and of very high
quality.

In this paper, we present diode-pumped passively
mode-locked Nd:YVO lasers with repetition rates around
40 GHz. This is the highest repetition rate achieved so far for
diode-pumped 1- m lasers (see Table I). A key point was the
use of novel high-brightness pump diodes. We demonstrate two
different laser designs meeting different goals. In Section II, we
describe a laser optimized for short pulses of 2.7-ps duration
with an average output power of 49 mW, whereas in Section III
we present a second laser producing longer pulses with 6.5-ps
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TABLE I
1-�m SOLID-STATE LASERS WITH REPETITION RATES ABOVE 1 GHz

duration but at a much higher average output power of 288 mW.
We compare both approaches and discuss a tradeoff between
output power and pulse duration.

II. 39-GHz Nd:YVO LASER FOR SHORT PULSES

A. Concept and Previous State of the Art

Passively mode-locked Nd:YVO lasers pumped with Ti:sap-
phire lasers have already been demonstrated with repetition
rates up to 157 GHz [18]. The laser with a 157-GHz repetition
rate emitted 2.7-ps pulses with 45 mW of average output power
for 500 mW of pump power. A laser of the same type with
a repetition rate of 39 GHz emitted longer pulses of 5.5 ps
with 60 mW of average output power [25]. In both cases, a
quasi-monolithic laser design was used where basically the
whole intracavity path length is within the Nd:YVO crystal
(see Fig. 1). The crystal thickness is, e.g., 1.74 mm for the
39-GHz laser presented here, or 0.44 mm for the 157-GHz
laser. One crystal facet, which acts as the output coupler, is
curved and dielectrically coated. The other facet is flat, polished
and can be antireflection coated or uncoated. The SESAM is
mounted close to the flat crystal facet with an air gap of a few
micrometers thickness between crystal and SESAM. For fine
adjustment of the air gap, the SESAM is mounted on a piezo-
electric transducer. To suppress -switching instabilities [27]
for the typical intracavity powers of such lasers, the laser mode
radius in the gain medium has to be in the order of 20 m. This
is achieved e.g., with a radius of curvature of the crystal facet
of 10 mm for a 40-GHz laser.

Because this kind of laser has to be operated very far above
the pump threshold in order to suppress -switching insta-
bilities, great care has to be taken to avoid the excitation of
higher-order transverse cavity modes, which would destabilize
the mode-locking process. Therefore, the pump beam radius
should be at most about 3/4 of the laser beam radius over
the whole crystal length. (Even after a propagation length
corresponding to several pump absorption lengths, a larger
pump beam radius is not acceptable.) As a consequence, the
pump beam quality factor must be smaller than 2, while

300 mW of power is required. Until recently, the resulting
high pump brightness could be achieved only by using a Ti:sap-
phire pump laser, but in the meantime, semiconductor diode
lasers with sufficient brightness have been developed.

Fig. 1. Laser setup of the 39-GHz laser optimized for short pulses. The pump
and laser beam are separated with a dichroic mirror. PZT stands for piezoelectric
transducer.

B. Experimental Setup

Our pump diode is a single-mode AlGaAs–GaAs device pro-
vided by Bookham (Switzerland) AG. It can emit up to 500 mW
in a close to diffraction-limited beam . To avoid
catastrophic damage, we run the diode with 400 mA, obtaining
379 mW incident on the Nd:YVO crystal. Due to the E2-facet
passivation technology [28], this single-mode laser reveals an
excellent reliability at high-power densities. For a mount tem-
perature of 24 C, the optical spectrum is centered at 808.7 nm
and has a spectral linewidth below 1 nm. The slightly asym-
metric beam of the diode was shaped to a nearly circular beam
at the laser crystal using two cylindrical lenses. Using an achro-
matic lens with 35-mm focal length, we obtained a beam radius
in the laser crystal of 17 m.

We used a Nd:YVO crystal with 3% neodymium doping.
This doping level might appear to be higher than necessary for
good pump absorption, but it reduces the sensitivity to the pump
wavelength and bandwidth without introducing thermal prob-
lems at this power level. The curved side of the crystal was pol-
ished with a radius of 10 mm. It was coated for high transmission
at the pump wavelength and 0.2% transmission at the laser
wavelength. The flat facet remained uncoated. This aspect is im-
portant and will be discussed below. The SESAM is similar to
the one used in the 157-GHz laser [18]. It consists of a high-re-
flecting AlAs–GaAs Bragg mirror followed by a single InGaAs
quantum well absorber in an antiresonant structure. Three Bragg
pairs of AlAs–GaAs were deposited on the top of the structure to
reduce the nonsaturable losses to less than 0.1% at the expanse
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Fig. 2. (a) Radio frequency spectra of the 39-GHz short pulse laser, showing stable mode locking. (b) Optical spectrum measured with 0.08 nm resolution
bandwidth. The longitudinal modes with 39-GHz spacing are partly resolved. (c) Autocorrelation trace. The sech fit (dots) fully overlaps with the autocorrelation
trace (line). The pulse length is 2.7 ps.

of a lower modulation depth of 0.3% and a higher saturation flu-
ence of 60 J/cm . The absorber recovery time is 28 ps.

C. Experimental Results

With 379 mW of pump power, the laser produced 49 mW of
output power at a repetition rate of 38.9 GHz. The pulse energy
was 1.3 pJ. The laser operated on a single transverse mode with

. The relaxation oscillations are firmly suppressed
as shown in the RF spectrum [Fig. 2(a)]. The optical spectrum
[Fig. 2(b)] has a linewidth of about 0.35 nm. The autocorrelation
[Fig. 2(c)] is well fitted for sech -shaped pulses and indicates a
pulse length of 2.7-ps, which agrees with the transform limit for
the measured optical spectrum.

D. Effect of the Air Gap Between Crystal and SESAM

While the previous 39-GHz laser [25] had an antireflection
coating on the flat side of the crystal, the laser described here has
an uncoated flat side. Due to the strong Fresnel reflection of this
surface and the air gap between the crystal and the SESAM, we
effectively have a Fabry–Perot resonator. When the resonance
condition of this Fabry–Perot resonator is tuned with the piezo
below the SESAM, the pulse duration, pulse stability and output
power change with a period. Stable pulses with the shortest
duration of 2.7 ps are reached when the average power has
its maximum. This observation first appeared to be rather sur-
prising, because one should expect the strongest pulse shaping
effect in the SESAM (and thus the shortest pulses) to occur
in resonance of the Fabry–Perot resonator, where however the
losses are highest and thus the output power is in a minimum. We

conclude that the “good” operation points (with highest output
power and shortest pulses) correspond to antiresonances of the
Fabry–Perot resonator, although in these points the laser field
hardly penetrates into the SESAM and hardly saturates the ab-
sorber. Although the general understanding is that significant
absorber action is required to form short pulses, this is different
in the concrete case due to the effect of spatial hole burning in
the gain medium [29]. As this laser is operated far above the
laser threshold (in order to suppress -switching instabilities),
spatial hole burning is very strong. Experimentally this is ap-
parent from the fact that even without a SESAM such lasers
generate an output spectrum with a width comparable to the one
obtained in mode-locked operation. While without this effect
the spectral width of the laser output requires a balance between
SESAM action and spectral narrowing in the gain medium, spa-
tial hole burning alone can lead to a spectral width on the order
of 0.3 nm. Thus, the SESAM then only has to phase-synchro-
nize the longitudinal cavity modes, but is not required to stabi-
lize their intensity pattern. Note that the phase synchronization
becomes more difficult outside the antiresonance due to the dis-
persion of the Fabry–Perot cavity under these conditions.

Note that we have previously observed a similar behavior in
a 77-GHz Nd:YVO miniature laser where the rear flat crystal
facet was also uncoated [18], [26]. At that time we interpreted
these effects as resulting from dispersion generated in the
Fabry–Perot resonator, acting together with the nonlinearity of
the crystal to form soliton-like pulses. However, we found that
the nonlinearity is actually too weak for soliton pulse shaping,
as we later confirmed with numerical simulations.
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Fig. 3. Experimental setup of the 40-GHz laser with higher power. The pump
and laser wavelengths are separated with a dichroic mirror. PZT stands for
piezoelectric transducer.

We also did experiments using antireflection coated
Nd:YVO crystals, where the resonance effects are signif-
icantly weaker [25]. This, however, leads to roughly two times
longer pulses. Also note that the shortest pulses from Nd:YVO
lasers have always been achieved with quasi-monolithic laser
cavities, where spatial hole burning is strong, while lasers with
a thin gain medium (not extending to the ends of the cavity)
have always generated significantly longer pulses. Such a laser
is also described in the following section.

III. HIGH-POWER 40-GHz LASER

A. Concept and Previous State of the Art

By carefully optimizing a laser based on the presented quasi-
monolithic design, it should be possible to reach a higher av-
erage output power. However, this would require a pump diode
with higher power but not with lower brightness, because the
mode area should not be increased by a larger factor than the
intracavity power. It turns out that the currently available laser
diodes with higher powers ( 0.5 W) have a lower brightness
and thus can not be used for a quasi-monolithic 40-GHz laser.
A tapered amplifier could have the required brightness, but is
more complex and expensive. For a given repetition rate, the de-
mands on the pump brightness can be reduced by reducing the
length of the pump-absorbing crystal, so that the pump beam
divergence is less important. One possibility would be to use
a quasi-monolithic design with a composite crystal that has a
neodymium-doped section and an undoped section. However,
we have used a design that is no longer quasi-monolithic: a
Brewster-angled flat crystal of shorter length is placed between
a SESAM and a curved output coupler (Fig. 3).

In 2002 we published a diode-pumped Nd:YVO laser of this
kind with a repetition rate of 10 GHz, an average output power
of 2.1 W, and a pulse length of 14 ps [18]. This device was
pumped with a 5-W diode that had an of about 22 in both
directions. Despite the high power, the brightness of this source
is not suitable for a 40-GHz laser. In the following we describe
a 40-GHz laser based on the same approach, but using a 2-W
laser diode with higher brightness.

B. Experimental Setup

Fig. 3 shows a schematic of the complete laser setup. The
pump source, provided by Fuji Photo Film Company, Ltd., is a
50- m stripe Al-free laser diode emitting up to 2 W of power
at a wavelength of 807 nm for a mount temperature of 30 C.
This device proved to be very reliable with more than 2000 h of

continuous operation at room temperature without degradation
[30]. The beam quality factor is 12 for the slow axis and 2 for the
fast axis. Two cylindrical lenses, an anamorphic prism pair and
an achromatic lens with 30-mm focal length are used to focus
the beam to a spot of 24 51 m radius with 1.83 W in the
crystal.

The laser cavity has a total physical length of 3.11 mm. The
output coupler with a 3.8-mm radius of curvature has more than
90% transmission for the pump wavelength and a transmission
of 0.25% at the laser wavelength. A crystal with 2% neodymium
doping was chosen for maximum pump absorption without frac-
ture or quenching effects at this power level. A pump absorp-
tion efficiency of roughly 50% is achieved with 0.5-mm crystal
thickness. A longer crystal would allow for higher output power,
but would increase the demands on the pump beam quality.

To avoid thermal quenching, the laser crystal was mounted on
a copper block between indium foils. The SESAM is the same
as used in the short pulse laser described in Section II.

C. Experimental Results

For 1.83 W of incident pump power on the crystal (0.8 W was
absorbed), we obtain stable mode locking at a repetition rate
of 40 GHz with 288 mW of average output power. The pulse
energy was 7.2 pJ. Fig. 4 shows the radio frequency spectra
from a fast photodiode, the optical spectrum and the autocorrela-
tion. Although the autocorrelation trace shows some overlap of
neighboring peaks, the 6.5-ps pulses at 40 GHz (corresponding
to a period of 25 ps) are still well separated. The longer pulse
duration compared to the laser of Section II can be explained by
the fact that spatial hole burning has a weaker influence in this
laser [29].

The saturation energy of the gain medium was independently
calculated from the relaxation oscillations frequency and from
the emission cross section of the Nd:YVO crystal, and we ob-
tained 6.8 and 4.5 J, respectively. The agreement is satisfactory
since the mode size in the laser crystal and the total cavity losses
are not precisely known.

D. Stability Versus Cavity Length

A somewhat unexpected observation is that the behavior
of the laser changes periodically when the cavity length is
changed. In general, the RF spectrum exhibits two lines rather
than a single one; only for certain cavity lengths, which occur
with a period of 1 m, do the two lines merge to a single
one, and the autocorrelation shows the minimum width. The
performance described above was obtained at these optimum
points. This dependence on the cavity length is normally not
observed in mode-locked lasers but was seen in an even stronger
form in a similar laser with an antireflection coated crystal
(with a smaller angle toward the beam) and in less clear form
in the 10-GHz laser [18]. These effects are related to spurious
intracavity reflections from the laser crystal. One can easily
show that such reflections, even at a very low level of e.g.,
10 of the power, can slightly modify the frequencies of the
longitudinal cavity modes. These variations are periodic with
the cavity length. Only for certain cavity lengths, occurring
with a period of 1 m (assuming that the gain medium is
near the middle of the cavity), are the frequencies equidistant,
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Fig. 4. (a) Radio frequency spectra of the 40-GHz high average output power laser. (b) Optical spectrum measured with 0.08 nm resolution bandwidth. The
longitudinal modes with 40-GHz spacing are partly resolved. (c) Autocorrelation trace. The sech fit (dots) overlaps with the autocorrelation trace (line). The pulse
length is 6.5 ps.

so that the SESAM can easily lock the phases of the modes
for generation of short pulses. Indeed we have experimentally
verified this variation of the mode frequencies with the cavity
length, making our explanation of the observed periodicity
highly plausible and consistent.

IV. CONCLUSION AND OUTLOOK

We have demonstrated two different diode-pumped
Nd:YVO lasers with 40-GHz repetition rate, which is the
highest repetition rate demonstrated so far with passively
mode-locked 1- m lasers. One laser was optimized for short
pulses of 2.7-ps duration, while the other laser was optimized
for a high output power of 288 mW.

We see some room for improvements with optimized
SESAMs. A reduced saturation fluence would allow the re-
alization of a higher repetition rate, or an increase in the
modulation depth and thus a decrease in the pulse duration. In
principle, this could also be achieved with stronger focusing
on the absorber, but this could lead to overheating. A faster
absorber recovery could be beneficial for high repetition rates.
A factor of crucial importance is low nonsaturable losses,
allowing low cavity losses, high slope efficiency, and leading
to weaker heating.

Our discussion showed that high repetition rates from pas-
sively mode-locked lasers require a high pump brightness,
because we need to operate far above threshold with a small

laser mode radius in the gain medium in order to suppress
-switching instabilities. The following properties of the gain

medium can help to reduce the demands on pump brightness:
large laser cross sections, a high-amplification bandwidth
(allow one to work with a SESAM with lower modulation
depth), a high pump absorption (i.e., a high pump absorption
cross section, a high absorption bandwidth, and a high doping
density), and low parasitic losses. Good thermal properties
are also important because they allow maximization of the
doping level and thus the pump absorption. Compared to
many other gain media, Nd:YVO has excellent properties in
these respects. Recently, some new gain materials of a similar
kind, namely Nd:GdVO [9], [31] and Nd:LuVO [32], [33],
have been shown to have even slightly superior properties
and might therefore allow the performance levels of passively
mode-locked 1- m laser to be raised somewhat further.

Laser diodes with higher powers tend to have a smaller bright-
ness than low-power devices. For this reason, we are forced to
use pump diodes with lower powers when constructing lasers
with higher repetition rates, and the output powers get corre-
spondingly smaller. Of course, the further development of high
brightness pump diodes should help to improve the laser per-
formance. Note that apart from the brightness, a small optical
bandwidth is also important because it improves the pump ab-
sorption efficiency for small crystal lengths.

Passively mode-locked solid-state lasers can be used for
pumping parametric oscillators (OPOs) in the multigigahertz

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 21,2010 at 12:55:23 UTC from IEEE Xplore.  Restrictions apply. 



50 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 1, JANUARY 2005

regime. At higher repetition rates, it becomes more difficult
to achieve a high laser output power, while OPOs need even
higher pump powers. Currently, optimized Nd:YVO lasers
can be used for direct OPO pumping up to a repetition rate
of GHz. For significantly higher repetition rate of e.g.,
40 GHz, a pump laser with sufficient output power is not
feasible with the currently available laser crystals and pump
diodes, and it is then necessary to use an amplifier between
laser and OPO [34].
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