Errata in "Elements of Causal Inference: Foundations and Learning Algorithms"

Below, you find a collection of all typos and mistakes from our book that we know of. The part in blue is correct (hopefully!). We thank all readers who kindly sent us comments to any of these typos.

København, May 26, 2023
Jonas Peters, Dominik Janzing, and Bernhard Schölkopf

1 Not yet corrected in a new print

- page 51

We write

$$
\text { "only linear functions } f \text { ". }
$$

This should read

$$
\text { only linear functions } f_{Y}
$$

- page 76

We write
"to which we assign the label zero.".
This should read
to which we assign the label one.

- page 85

We write
"starting from source nodes, then nodes with at most one parent and so on".

This should read
using the causal order and starting from a source node

- page 92

We write
"the following statements are equivalent:".
This should read
the following statements (i), (ii), and (iv) are equivalent (and each of them implies (iii)):

- page 107

We write
"the opposite of the global Markov condition".
This should read the converse of the global Markov condition

- page 118

We write
"more formally, s we have".
This should read
more formally, we have

- page 148

We write

$$
" X-\mathbb{E}[X \mid Z]=N_{X} " \text {. }
$$

It should read:

$$
X-\mathbb{E}[X \mid Z]=N_{X}-\mu_{N_{X}}
$$

- page 151

We write
"but also that the scoring function".

It should read:

but sometimes also that the scoring function

- page 171

We write
"if there is no hidden common cause $C \notin \mathbf{X}$ that is causing more than one variable in $\mathbf{X}^{\prime \prime}$.

This should read
if there is no hidden common cause $C \notin \mathbf{X}$ that is causing at least two variables in \mathbf{X} (and the causing paths go only through nodes that are not in \mathbf{X})

- page 181

We write (four times)

> "seperation".

This should read (four times)

> separation

- page 181

We write:

$$
" P_{\mathbf{O}, \mathrm{v}} " .
$$

It should read
$P_{\mathbf{O}, \mathbf{H}}$

- page 187

We write

$$
\begin{aligned}
& " \mathbb{E}[X Y \mid S=-1, T=-1]+\mathbb{E}[X Y \mid S=-1, T=1] \\
& \quad+\mathbb{E}[X Y \mid S=1, T=-1]+\mathbb{E}[X Y \mid S=1, T=1] \leq 2 " .
\end{aligned}
$$

This should read

$$
\begin{aligned}
& \mathbb{E}[X Y \mid S=-1, T=-1]+\mathbb{E}[X Y \mid S=-1, T=1] \\
& \quad-\mathbb{E}[X Y \mid S=1, T=-1]+\mathbb{E}[X Y \mid S=1, T=1] \leq 2 \prime
\end{aligned}
$$

- page 217

We write
"non-parametric independent test".
This should read
non-parametric independence test

- page 188

We write

$$
" H\left(S \cup\left\{X_{j}, X_{k}\right\}\right) \leq " .
$$

This should read

$$
H(S)+H\left(S \cup\left\{X_{j}, X_{k}\right\}\right) \leq
$$

- page 227

We write
"We further have $(i i) \stackrel{\text { (trivial) }}{\Longrightarrow}(i i i)$ and that (\ldots) the negation of a statement.".

This should read
We further have $(i i) \stackrel{\text { (trivial) }}{\Longrightarrow}(i i i)$.

2 Already corrected in a new print

- page 40

We write

$$
\text { "where } N_{X} \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right) \text { and } N_{Y} \sim \mathcal{N}\left(\mu_{X}, \sigma_{Y}^{2}\right) \text { ". }
$$

This should read

$$
\text { where } N_{X} \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right) \text { and } N_{Y} \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)
$$

- page 44

We write

$$
" F_{Y \mid x}^{-1}\left(n_{Y}\right):=\inf \left\{x \in \mathbb{R}: F_{Y \mid x}(x) \geq n_{Y}\right\} . "
$$

The correct definition for the inverse cdf is

$$
F_{Y \mid x}^{-1}\left(n_{Y}\right):=\inf \left\{y \in \mathbb{R}: F_{Y \mid x}(y) \geq n_{Y}\right\}
$$

- page 51

We write

$$
" p(x, y)=p_{N_{X}}(x) p_{N_{Y}}\left(y-f_{Y}(x)\right) . "
$$

It should read

$$
p(x, y)=p_{X}(x) p_{N_{Y}}\left(y-f_{Y}(x)\right)
$$

- page 51

We write

$$
\text { "Thus, } f_{X} \text { and } p_{N_{E}} "
$$

It should read

Thus, f_{X} and $p_{N_{Y}}$

- page 57

We write

$$
" \mathbf{Y}=A \mathbf{X}+N_{\mathbf{X}}, \quad N_{\mathbf{X}} \Perp \mathbf{X}, " .
$$

It should read

$$
\mathbf{Y}=A \mathbf{X}+N_{\mathbf{Y}}, \quad N_{\mathbf{Y}} \Perp \mathbf{X}
$$

- page 58

We write
" $A_{\mathbf{X}}$ for the model from \mathbf{X} to $\underset{\mathbf{Y}}{\mathbf{X}}$ " $A_{\mathbf{Y}}$ for the model from \mathbf{Y} to X.".

It should read
$A_{\mathbf{X}}$ for the model regressing \mathbf{X} on \mathbf{Y} and $A_{\mathbf{Y}}$ for the model
regressing \mathbf{Y} on \mathbf{X}.

- page 67

In 4.2.2., the first inequality on page 67 reads

$$
" H(X) \leq H(Y), " .
$$

It should read

$$
H(X) \geq H(Y),
$$

- page 69

In Problem 4.16, part (a) reads:
"Prove that $f(x)=\mathbb{E}[Y \mid X=x]$.".
It should read:
Prove that $f(x)=\mathbb{E}[Y \mid X=x]-\mu_{N_{Y}}$.

- page 83

In Definition 6.1, we write:
"neither i_{k} nor any of its descendants is in \mathbf{S} and".
It should read:
neither i_{k} nor any of its descendants is in \mathbf{S}, i.e., $\left(\left\{i_{k}\right\} \cup \mathbf{D E}_{i_{k}}\right) \cap \mathbf{S}=\emptyset$, and
(This is important for the case $\mathbf{D E}_{i_{k}}=\emptyset$.)

- page 84

We write
"An SCM \mathfrak{C} defines a unique distribution over the variables $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ such that $X_{j}=f_{j}\left(\mathbf{P A}_{j}, N_{j}\right)$, in distribution, for $j=1, \ldots, d . "$.

It should read:
An SCM \mathfrak{C} defines a unique distribution over the variables X_{1}, \ldots, X_{d} : any $X_{1}, \ldots, X_{d}, N_{1}, \ldots, N_{d}$ satisfying $X_{j}=f_{j}\left(\mathbf{P A}_{j}, N_{j}\right)$ almost surely, where $\left(N_{1}, \ldots, N_{d}\right)$ has the desired distribution, induce the same distribution over $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$.
(This is, admittedly, a less confusing formulation. Formally, we defined an SCM as a pair of structural equations and a d-dimensional noise distribution. An SCM does not include any ($X_{1}, \ldots, X_{d}, N_{1}, \ldots, N_{d}$), which 'enter' only as a solution to the SCM. See [Bongers et al., 2016] for more details on SCMs including cycles and hidden variables.)

- page 134

We write:
"converges in distribution against $\mathbf{X}:=(I-B)^{-1} \mathbf{N}$ ".
It should read

$$
\text { converges almost surely against } \mathbf{X}:=(I-B)^{-1} \mathbf{N}
$$

- page 174

We write:
"We have seen that there is no solely graphical criteria for".
It should read

We have seen that there is no solely graphical criterion for

- page 175

We write:
"Although A is the more effective drug, we propose to use B. .
It should read
Although A is the more effective treatment, we propose to use B.

- page 181

We write:
"that induces a distribution $P_{\mathbf{O}, \mathbf{V}}$.".
It should read
that induces a distribution $P_{\mathbf{O}, \mathbf{H}}$.

References

S. Bongers, J. Peters, B. Schölkopf, and J. M. Mooij. Structural causal models: Cycles, marginalizations, exogenous reparametrizations and reductions. ArXiv e-prints (1611.06221), 2016.

