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Chapter 1

Introduction

With todays large amounts of data, statistics is more relevant than ever. Un-
derstanding what statistical algorithms (or machine learning algorithms) do,
and how to interpret their outcome is essential in scientific research, and also
in daily life. In this lecture we treat some classical concepts and methods from
statistics, with an outlook to more modern mathematical statistics in Chapter
12 (new developments are coming in very fast). The mathematical theory relies
on various branches of mathematics: probability theory, (functional, numerical)
analysis, optimization, geometry, topology, algebra, .... Moreover, mathemati-
cal statistics has its own mathematics. With the present lecture notes we will
not be able to treat all this. There will be very few formal theorems with formal
proofs. The idea is rather to get a first glimpse of the statistical philosophy. We
present approaches to statistical problems that intuitively should “make sense”,
but most of the time we do not formally prove any optimality properties. The
latter is the main theme of the lecture Fundamentals of Mathematical Statistics.

An overview of standard distributions is given in Appendix A.

1.1 Notation

In the lectures on probability theory, we have seen random variables X with
distribution P . Formally, one starts with a probability space (Ω,F , IP), and
a random variable X is defined as a measurable mapping X : Ω 7→ X where
X = Rk or more generally some measurable space. The distribution P of X is
given by

P (A) := IP(ω ∈ Ω : X(ω) ∈ A) = IP(X ∈ A)

for measurable sets A ⊂ X . Shorthand notation: X ∼ P . In what follows, we
will implicitly assume measurability without stating this explicitly. Moreover,
we sometimes apply the abuse of notation

P (A) := P (X ∈ A).
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6 CHAPTER 1. INTRODUCTION

In statistics, the distribution P is unknown and we aim at estimating it from
data. For example, X could be the yearly expenditure of a person living in
Switzerland. We do not know the distribution of X because we did not ask
everybody what his/her expenditures were. We can estimate the distribution
by asking n persons their expenditures. The data then consists of their answers
X1, . . . , Xn. As another example, in classification one observes X = (Y, Z)
where Y ∈ {0, 1} is a label and Z are features. This could be for instance
X = a painting, Z = colours used, composition (coded in an suitable way),
abstraction level (coded in a suitable way), etc., and Y = 1 if the picture is
a Picasso and Y = 0 otherwise. We do not know the distribution of Y given
Z, i.e., the probability of a Picasso given the features Z of the painting. We
also do not know the distribution of the features. The data may be n paintings
where we know the features and whether or not it concerns a Picasso. We aim
at learning from the data (so-called supervised learning) how to recognize a
Picasso up to a small probability of making a mistake.

In most of the theory in these lecture notes, the data (observations) are as-
sumed to be independent identically distributed1(which we abbreviate to i.i.d.)
random variables X1, . . . , Xn each having the same distribution P on X .

We call X the observation space (typically (a subset of) Euclidean space). The
sample is X = Xn := (X1, . . . , Xn) ∈ X n and n the sample size. We say that
X1, . . . , Xn are i.i.d. copies of a random variable X ∈ X .

1.2 Statistical models

Definition 1.2.1 A statistical model2 says that X ∼ P ∈ P := {Pθ : θ ∈ Θ}.
The set Θ is called the parameter space.

Notation If X ∈ Rk has distribution Pθ its expectation depends on θ. We
(often) write the expectation with a subscript: EθX.

Example 1.2.1 .The normal distribution is commonly used to model “mea-
surement error”. If X ∈ R and its mean µ := EX exists can write

X = µ+ ε,

1Thus for all A1, . . . , An measurable subsets of X ,

IP(ω : X1(ω) ∈ A1, . . . , Xn(ω) ∈ An) =

n∏
i=1

IP(ω : Xi(ω) ∈ Ai).

2Formally, one calls {(Ω,F , IPθ) : θ ∈ Θ} a statistical experiment. The observations are
Xi : Ω→ X , i = 1, . . . , n, and in the i.i.d. case, for all A1, . . . , An measurable subsets of X ,

IPθ(ω : X1(ω) ∈ A1, . . . , Xn(ω) ∈ An) =

n∏
i=1

IPθ(ω : Xi(ω) ∈ Ai).
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where ε = X − µ can be seen as measurement error or noise. If we assume
µ ∈ R to be unknown and ε ∼ N (0, σ2) where the variance σ2 > 0 is also
unknown, the statistical model is

P =

{
Pθ is the normal distribution with mean µ and variance σ2,

θ = (µ, σ2) ∈ R× R+

}
.

A statistical model is typically an idealization of the real world situation. For
instance in Example 1.2.1 above, the assumption of a normal distribution is
perhaps for its ease in computations, or inspired by the central limit theorem.
The model is at best only an approximation of the truth. In these lecture notes,
we will however assume throughout that the model is correct, unless otherwise
stated (as we will in Chapters 11 and 12). If the model is not correct we call it
misspecified. There exists a large body of statistical methods that are robust
against model misspecification. It is a topic in itself and closely related to the
theory for adversarial learning developed in e.g. the computer science literature.

Note that if we know nothing about the distribution P we have

P = { all distributions on X}.

Then we may take Θ = P. In other words, the parameter space Θ may be
finite-dimensional such as is the case in Example 1.2.1, but it can also be
a rather abstract space such as the space of all distributions. Of course if
X is finite, say |X | = q, then the space of all distributions on X is finite-
dimensional, in the sense that it can be described by q (in fact q−1) Euclidean
parameters (the probabilities P (X = x) , x ∈ X ). But otherwise, the class
P := {all distributions on X} cannot be described by finitely many Euclidean
parameters. We call a model with parameter space Θ that cannot be described
by finitely many Euclidean parameters nonparametric.

1.3 Parameter of interest and estimators

Let P := {Pθ : θ ∈ Θ} be a statistical model.

Definition 1.3.1 A parameter of interest is γ := Q(P ) where Q is a given
map Q : P → Γ with domain some given space Γ (typically Γ = R or some
subset thereof). We then write g(θ) := Q(Pθ) where g : Θ 7→ Γ.

In Example 1.2.1: X ∼ N (µ, σ2), θ = (µ, σ2), the parameter µ (the signal) is
typically the parameter of interest. It is the quantity we observe with measure-
ment error ε (the noise). The variance σ2 is then called a nuisance parameter.

Example 1.3.1 Let X = (Y,Z) ∈ {0, 1} × R where Z = pitch of voice and
Y = gender (Y = 0 is male and Y = 1 is female). Suppose the probability that



8 CHAPTER 1. INTRODUCTION

Y = 1 given the pitch of voice Z = z is strictly increasing in z. A parameter of
interest could then be the value γ ∈ R for which given Z = z:{

Y = 0 (male) is more likely if z < γ

Y = 1 (female) is more likely if z > γ
.

(This example corresponds mathematically to Example 3.2.5).

We consider a sample X = (X1, . . . , Xn) ∈ X n.

Definition 1.3.2 An estimator (or statistic) T of a parameter of interest γ ∈ Γ
is a given (measurable) map T : X n → Γ. We then also call T (X1, . . . , Xn) an
estimator (or statistic).

Remark 1.3.1 With some abuse of notation, we write shorthand

T = T (X) = T (X1, . . . , Xn).

That is we do not make a the distinction in notation between the map T and its
evaluation at X = (X1, . . . , Xn). It should then be clear from the context what
is meant. For example, we write IEθT =: IEθT (X).

Remark 1.3.2 Often we denote estimators with a “hat”, e.g. γ̂ = γ̂(X) as
estimator of γ.

We present ways to construct estimators in the coming chapters. It depends on
your creativity, your computational limits and the model assumptions you are
prepared to make. Estimators should preferably “make sense”: For example,
having a law of large numbers in mind they should be close to what one is
trying to estimate when the sample size n is large. What estimator would you
use for γ in Example 1.3.1 about pitch of voice? Well, for {Xi = (Yi, Zi)}ni=1,
being the data, a reasonable estimate of γ could be the value γ̂ that makes the
smallest number of errors in the sample, i.e.

|{i : Yi = 0, Zi > γ̂} ∪ {Yi = 1, Zi < γ̂}|

∈ min
z
|{i : Yi = 0, Zi > z} ∪ {Yi = 1, Zi < z}|.

1.4 The law of large numbers as source of inspiration

The law of large numbers is an important result for developing statistical theory,
and we use the abbreviation LLN. We recall that for X1, . . . , Xn i.i.d. copies
of X ∈ R where E|X| < ∞, the LLN says that the sample average X̄ :=∑n

i=1Xi/n is for n large close to the theoretical mean µ := EX. More precisely,
X̄ = X̄n converges to µ in probability as n→∞. One has in fact convergence
almost surely if X1, . . . , Xn are the first n of an infinite sequence. Thus it makes
sense to estimate µ by X̄. Similarly, for a given function g : X → R, inspired by
the LLN, an estimator of Eg(X) is

∑n
i=1 g(Xi)/n and for a given (continuous)

function h : R→ R an estimator of h(µ) is h(X̄), etc.



1.4. THE LAW OF LARGE NUMBERS AS SOURCE OF INSPIRATION 9

For example σ2 = EX2 − µ2 = E(X − µ)2 by definition, so the LLN leads to
the estimator

σ̂2 :=
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)2.

An estimator γ̂ = γ̂n of γ is called consistent if γ̂n converges to γ in probability.
In this lecture, we judge estimators that are consistent as “making sense”, but
we will also see situations where the estimator makes sense, but proving its
consistency is beyond the scope of this lecture and usually requires some addi-
tional conditions (see Fundamentals of Mathematical Statistics for consistency
proofs).

Let

F (x) := P (X ≤ x), x ∈ R

be the cumulative distribution function (CDF) of X. Again, inspired by the
LLN, an estimator of F is

F̂n(x) =
1

n

n∑
i=1

l{Xi≤x}, x ∈ R.

The function F̂n is called the empirical distribution function.

(a) F̂n when X ∼ N (0, 1) and n = 100 (b) The theoretical F (= Φ) in green

Figure 1.1: A realization of the empirical distribution function F̂n in 1.1a and
comparison with the theoretical distribution function F in 1.1b.

One can use similar inspirations when X is not the real line (X = Rk for
example, or even a more abstract space). We will encounter these later.
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1.5 Mean square error

Ideally, we aim at estimators of a parameter of interest that are in some sense
“good”. Then one needs to make precise what is meant by “good”. For real-
valued parameters of interest γ ∈ R the mean square error is a popular criterion
for accessing the performance of an estimator T ∈ R. Another criterion is
unbiasedness.

Definition 1.5.1 The mean square error (MSE) of an estimator T ∈ R of
γ := g(θ) ∈ R is

MSEθ(T ) = Eθ(T − g(θ))2.

The bias of T is

biasθ(T ) = EθT − g(θ).

The estimator T is called unbiased if

biasθ(T ) = 0, ∀ θ ∈ Θ.

A little warning may be in place: MSE (and bias) may be difficult to compute
exactly. For instance, in Example 1.3.1 about pitch of voice, the MSE of γ̂
has to the best of our knowledge never been considered exactly. This warning
indicates that we can only handle “toy” examples. Note moreover that the MSE
depends the underlying unknown distribution, and hence is typically unknown.
A further warning is that unbiased estimators often do not exist and if they do
they cannot stand non-linear transformations! That nevertheless MSE and bias
remain important throughout the statistical literature comes from the fact that
there is much theory on approximate MSE and bias (e.g. using “asymptotics”
beyond LLN’s).

The following lemma presents the famous bias-variance decomposition for MSE.
If you like, it is Pythagoras’ rule in abstract terms.

Lemma 1.5.1

MSEθ(T ) = bias2
θ(T ) + Varθ(T ).

Proof. Write q(θ) := Eθ(T ). Then

MSEθ(T ) = Eθ

(
T − q(θ) + q(θ)− g(θ)

)2

= Eθ

(
T − q(θ)

)2

+

(
q(θ)− g(θ)

)2

+ 2

(
q(θ)− g(θ)

)
Eθ

(
T − q(θ)

)
︸ ︷︷ ︸

=0

= Varθ(T ) + bias2
θ(T ).

tu
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Example 1.5.1 Let X1, . . . , Xn be i.i.d. copies of X ∈ R where EX =: µ
and Var(X) =: σ2. Then the sample average X̄ =

∑n
i=1Xi/n is an unbiased

estimator of µ.

For n ≥ 2 the sample variance S2 :=
∑n

i=1(Xi − X̄)2/(n − 1) is an unbiased
estimator of σ2. To see this, note that

n∑
i=1

(Xi − µ− (X̄ − µ))2 =
n∑
i=1

(Xi − µ)2 − (X̄ − µ)2

(the latter being again Pythagoras’ rule) and

IE(Xi − µ)2 = σ2, IE(X̄ − µ)2 = σ2/n.

Thus IES2 = σ2. The estimator

σ̂2 :=
1

n

n∑
i=1

(Xi − X̄)2

that was inspired by the LLN is not unbiased. If one wants to compare the mean
square error of S2 and σ̂2 one needs to calculate the variance of

∑n
i=1(Xi−X̄)2

which requires additional distributional assumptions. It turns out that when
Xi ∼ N (µ, σ2) (∀ i), then actually σ̂2 wins from S2 in terms of MSE: σ̂2 is
biased but has smaller variance! Of course for n→∞ the difference in MSE’s
disappears.

We further observe that S is generally not an unbiased estimator of σ: by
Jensen’s inequality

ES ≤
√

(ES2) = σ

with equality only in the degenerate case where var(S) = 0. Nevertheless, al-
beit biased, S remains a “reasonable” estimator by the LLN. Thus, non-linear
transformations generally ruin unbiasedness and one often need not to be too
upset about that.

1.6 The central limit theorem with estimated vari-
ance

Let for n ≥ 1, X1, . . . , Xn be i.i.d. copies of X ∈ R where EX =: µ and
var(X) =: σ2 < ∞. Let X̄n :=

∑n
i=1Xi/n be the average of X1, . . . , Xn. By

the central limit theorem (which we abbreviate to CLT)

lim
n→∞

IP

(√
n(X̄n − µ)

σ
≤ z
)

= Φ(z) ∀z ∈ R

where Φ is the standard normal distribution function. This result is frequently
applied in statistics to construct approximate confidence intervals for the un-
known µ when the data are X1, . . . , Xn (as we will do in the next section).
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However, in most statistical situations the variance σ2 is unknown as well. One
can show (“Slutsky’s Theorem”, see Fundamental of Mathematical Statistics)
that for σ̂2

n > 0 a sequence of random variables which converges in probability
to σ2, the CLT still holds with σ2 replace by σ̂2

n:

lim
n→∞

IP

(√
n(X̄n − µ)

σ̂n
≤ z
)

= Φ(z) ∀z ∈ R.

1.7 An example using the central limit theorem

The example in this section serves as a look ahead: more theory is to follow
in Chapter 8. It will illustrate that there a several ways to tackle statistical
problems (for example several ways to estimate a parameter of interest). Then
one would like to know what the best approach is. And the answer is: it
depends!

We illustrate the use of the CLT here for the case where X ∼ Poisson(λ), with
λ > 0 an unknown parameter (see Appendix A for a definition of the Poisson
and other distributions). Suppose we observe X1, . . . , Xn, i.i.d. Poisson(λ)-
distributed random variables. We estimate EλX = λ by the sample average
λ̂ := X̄ (omitting the subscript n). It holds that IEλX̄ = λ for all λ > 0 so
X̄ is unbiased. Moreover Varλ(X̄) = λ/n. By the CLT, X̄ is approximately
N (λ, λ/n)-distributed for n large. Thus for all z ≥ 0

IPλ

(
|X̄ − λ| ≤ z

√
λ/n

)
≈ Φ(z)− Φ(−z) = 2Φ(z)− 1.

Now we choose z = 1.96 which gives 2Φ(z)− 1 = 2Φ(1.96)− 1 = 2(0.975)− 1 =
0.95. To clean up the formula’s3, we replace 1.96 ≈ 2 by 2.

Moreover we let

I1(X̄) :=

{
λ > 0 : |X̄ − λ| ≤ 2

√
λ/n

}
=

{
λ > 0 : X̄ +

2

n
− 2

√
X̄ + 1/n

n
≤ λ ≤ X̄ +

2

n
+ 2

√
X̄ + 1/n

n

}
where the second equality follows from some computations. Then we have by
the CLT

IPλ

(
λ ∈ I1(X̄)

)
≈ 0.95.

We call I1(X̄) an approximate 95% confidence interval for λ.

An alternative way to use the CLT to build a confidence interval for λ is based
on an estimate of the variance of X̄:

V̂arλ(X̄) := λ̂/n = X̄/n.

3Rule of thumb: an approximate 95 % confidence interval for γ ∈ R is γ̂±2× the (estimated)
standard deviation of γ̂, provided γ̂ − γ is approximately a centered normally distributed
random variable.
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As stated in Section 1.6, the CLT still holds with this estimated variance

IPλ

(
|X̄ − λ| ≤ z

√
X̄/n

)
≈ 2Φ(z)− 1.

Let now

I2(X̄) :=

{
λ > 0 : |X̄ − λ| ≤ 2

√
X̄/n

}
=

{
λ > 0 : X̄ − 2

√
X̄/n ≤ λ ≤ X̄ + 2

√
X̄/n

}
.

Then (using again 2 ≈ 1.96), I2(X̄) is approximately a 95% confidence interval
for λ:

IPλ

(
λ ∈ I2(X̄)

)
≈ .95.

The two intervals I1(X̄) and I2(X̄) are for n large approximately equal (the
first one is slightly more conservative).

One may also use S2 =
∑n

i=1(Xi − X̄)2/(n− 1) as estimator of the variance of
X̄ and use this estimator in the CLT for X̄. This would give a third confidence
interval I3(X̄, S2).

Since Varλ(X) = λ we see that S2 is also an alternative estimator of λ. One
may ask which one of the two estimators, X̄ or S2, is “better”. One may want
to compare them by calculating the MSE’s of the two estimators (calculation
the MSE of S2 is not an easy exercise). One could try to apply a CLT for S2

instead of X̄ (this is indeed possible) and base a confidence interval for λ on
that. Then one needs to estimate the (asymptotic) variance of S2 (which is
possible too).

Statistical theory says that the differences between the confidence intervals
I1(X̄), I2(X̄) and I3(X̄, S2) vanish as n→∞, provided that the Poisson model
is correct. If the model may be wrong, I3(X̄, S2) is a safer (more conservative)
choice than I1(X̄) and I2(X̄). The fourth approach where the confidence inter-
val is based on S2 instead of X̄ is asymptotically valid under the assumption
that the model is correct, but it is more conservative than I1(X̄), I2(X̄) and
I3(X̄, S2).

If the sample size is small, one may prefer to construct exact confidence intervals
for λ instead of approximate ones. This is possible too, see Chapter 9.

Numerical example

In a numerical example (and in real life), one sees the “realizations” of the ran-
dom variables involved. These realizations are denoted with lower case letters.
A realization of an estimator is called an estimate.

This is from Example 10.19 in DasGupta [2011]. Let the data be
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xi # days

0 100

1 60

2 32

3 8

≥ 4 0

Thus n = 200 and the observed value for X̄ is x̄ = .74. Then an approximate
95% confidence interval for λ is

I2(x̄) = x̄± 2
√
x̄/n = [0.62, 0.84].

Let γ := g(λ) := Pλ(X ≥ 4) be the parameter of interest. Then

γ̂ = ĝ(λ) := g(λ̂) = g(x̄) = .00697,

and, since λ 7→ g(λ) is a monotone function, an approximate 95% confidence
interval for γ is

g

(
x̄± 2

√
x̄/n

)
= [0.0038, 0.01].

Suppose now we estimate the variance Varλ(X) of X by the sample variance
S2.

xi − x̄ (xi − x̄)2 # days

-.74 .5476 100

.26 .0676 60

1.26 1.5876 32

2.26 5.1076 8

We find that the observed value of S2 is s2 :=
∑n

i=1(xi − x̄)2/(n− 1) = .7561.
Since Varλ(X) = λ, both x̄ = .74 and s2 = .7561 are unbiased estimates of λ.
The fact that these values are not very different can be seen as an indication
that the Poisson model is appropriate.

Invoking s2 to construct another approximate 95% confidence interval for λ
yields

I3(x̄, s2) = x̄± 2
√
s/n = [0.62, 0.86].



Chapter 2

The method of moments

The method of moments is a procedure for constructing an estimator of the pa-
rameter describing the distribution, when this parameter is finite-dimensional,
say of dimension d.

Let X ∈ R and let the data X1, . . . , Xn be i.i.d. copies of X.

Definition 2.0.1 For k ∈ N the k-th moment of X is

µk := EXk

(if the expectation exists).

Definition 2.0.2 The k-th sample moment (or empirical moment) is

µ̂k :=
1

n

n∑
k=1

Xk
i , k ∈ N.

Note By the LLN µ̂k ≈ µk for n large (provided the moment exists).

2.1 Definition of the method of moments estimator

Suppose that X has distribution Pθ, where θ ∈ Θ ⊂ Rd. Then the moments of
X also depend on θ:

µk = µk(θ) = EθX.

Definition 2.1.1 The methods of moments estimator θ̂ is a solution of

µk(ϑ)ϑ=θ̂ = µ̂k, k = 1, . . . , d.

(assuming a solution exists).

15
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Thus with the method of moments, one creates d equations with d unknowns
and tries to solve these. These d equations are based on the sample moments.
The parameter θ is a solution of the d equations with the sample moments
replaced by the theoretical moments. Since the sample moments are close to to
the theoretical moments by the law of large numbers, the estimator θ̂ “makes
sense”: if the inverse map of ϑ 7→ {µk(ϑ)}dk=1 is continuous, then θ̂ will be close
θ.

2.2 Examples

Example 2.2.1 Let the data X1, . . . , Xn be i.i.d. copies of X ∼ N (µ, σ2),
where both µ ∈ R and σ2 > 0 are unknown. Then the methods of moments
estimator is

µ̂ = X̄, σ̂2 =
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)2.

Example 2.2.2 Let X ∼ Gamma(α, λ) (see Appendix A):

EθX = α/λ, Varθ(X) = α/λ2.

Then EθX
2 = α(α+ 1)/λ2. So the methods of moments estimator (α̂, λ̂) solve

the two equations
µ̂1 = α̂/λ̂, µ̂2 − µ̂2

1 = α̂/λ̂2.

It follows that

λ̂ =
µ̂1

µ̂2 − µ̂2
1

, α̂ =
µ̂2

1

µ̂2 − µ̂2
1

.

Example 2.2.3 Let the data X1, . . . , Xn be i.i.d. copies of X where X has
Lebesgue density

pθ(x) =
1 + θx

2
, −1 ≤ x ≤ 1, −1 ≤ θ ≤ 1.

Then

Eθ(X) =
θ

3
.

The methods of moments estimator is thus θ̂ = 3X̄.

Example 2.2.4 (Gaussian mixture) Let X have density

pθ(x) := π1
1

τ1
φ

(
x− ν1

τ1

)
+ (1− π1)

1

τ2
φ

(
x− ν2

τ2

)
where φ is the standard normal density. To simplify, we assume that π1 = 1

2 ,
ν1 = 0 and τ1 = 1 are given. We write ν := ν2 and τ := τ2. The unknown
parameter is θ = (ν, τ). We have

EX =
1

2
ν, EX2 =

1

2
+

1

2
(ν2 + τ2).
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So the method of moments estimator (ν̂, τ̂) solve

1

2
ν̂ = µ̂1,

1

2
+

1

2
(ν̂2 + τ̂2) = µ̂2.

Hence
ν̂ = 2µ̂1, τ̂

2 = 2µ̂2 − 4µ̂2
1 − 1.

2.3 Plug in method

The method of moments is inspired by the LLN, but the LLN can also be
a source of inspiration for further constructions. The idea is to mimic the
unknown theoretical parameter of interest by its empirical counterpart. We
present two examples.

Example 2.3.1 Let (X,Y ) ∈ R2. The best linear predictor of Y given X is
defined as α+ βX where(

α
β

)
:= arg min

{
E

(
Y − (a+ bX)

)2

:

(
a
b

)
∈ R2

}
.

Here “arg” stands for “argument”, i.e. the location of (in this case) the mini-
mum. By direct calculations one sees that

α = EY − βEX, β =
Cov(X,Y )

Var(X)
.

Let now (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of (X,Y ). Then, the LLN leads
to the estimators

α̂ := Ȳ − β̂X̄, β̂ :=
1
n

∑n
i=1(Xi − X̄)(Yi − Ȳ )
1
n

∑n
i=1(Xi − X̄)2

.

The estimator (α̂, β̂)> is called the least squares estimator. Note that(
α̂

β̂

)
= arg min

{
1

n

n∑
i=1

(
Yi − (a+ bXi)

)2

:

(
a
b

)
∈ R2

}
,

see also Example 11.1.1.

Example 2.3.2 Let X ∈ R have CDF F . Assume the median m := F−1(1
2)

exists. Let F̂n be the empirical distribution function (see Section1.4). We can
estimate m by a solution m̂ of F̂n(m̂) ≈ 1

2 . The sample median is

m̂ :=

X(n+1
2

), n odd
X(n2 )+X(n2 +1)

2 , n even
.

Here X(1) ≤ · · · ≤ X(n) are the order statistics.
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Chapter 3

Maximum likelihood

Maximum likelihood is another way to construct estimators. Let X ∈ X and
suppose that X ∼ Pθ ∈ P := {Pϑ : ϑ ∈ Θ}. In order to be able to define
the maximum likelihood estimator of θ we need to assume that the family P is
dominated by some sigma-finite measure ν. We then call, for ϑ ∈ Θ

pϑ :=
dPϑ
dν

the density of Pϑ (with respect to ν). Typically, we consider one of the two
cases:

• The space X is finite or countably infinite. Then we can take ν as the
counting measure, and for x ∈ X

pϑ(x) = Pϑ({x}),

which we write with some abuse of notation as pϑ(x) = Pϑ(X = x).

• The space X is a subset of Rk and ν is Lebesgue measure. Then Pϑ is
absolutely continuous, and pϑ is the Lebesgue density of Pϑ. In that case,
for Fϑ the CDF of Pϑ, we can take for ν-almost all x = (ξ1, . . . , ξk)

pϑ(x) =
∂k

∂ξ1 · · · ∂ξk
F (ξ1, . . . , ξk).

3.1 Definition of the maximum likelihood estimator

Let X = (X1, . . . , Xn) be a sample of size n of i.i.d. copies of X. We use the
notation: for a real-valued function f on some domain Z: arg maxz∈Z f(z) :=
the location of the maximum of f .

Definition 3.1.1 The likelihood function is

LX : Θ→ R,

19
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with

LX(ϑ) :=

n∏
i=1

pϑ(Xi), ϑ ∈ Θ.

The maximum likelihood estimator (MLE) of θ is

θ̂ = θ̂MLE := arg max
ϑ∈Θ

LX(ϑ)

(assuming the maximum exists).

One may ask why maximum likelihood “makes sense”. Is the MLE θ̂ close
to θ when n is large? The answer is: yes, under certain conditions it is. In
the background there is again the LLN which indicates maximum likelihood is
potentially a good idea. We will not give the theory here, see Remark 3.1.2
for a first hint and see for example the lecture Fundamentals of Mathematical
Statistics.

Maximum likelihood also intuitively “makes sense”. Here is an example. Sup-
pose you throw a coin n = 10 times. The probability θ of heads is unknown, but
suppose we know that either θ = 1/2 or θ = 1/4, i.e. Θ = {1/2, 1/4}. Now after
throwing the coin, one finds 7 heads. What would you then be your estimate of
θ? I would say θ̂ = 1/2 because we found many heads, which makes the value
ϑ = 1/2 more likely than the value ϑ = 1/4:

IPϑ=1/2(7 heads) =

(
10

7

)(
1

2

)10

= 0.117,

and

IPϑ=1/4(7 heads) =

(
10

7

)(
1

4

)7(3

4

)4

= 0.016.

In other words, LX=7(1/2) = 0.117, LX=7(1/4) = 0.016.

One may note that the likelihood function is nothing else then the density
of X, which is

∏n
i=1 pϑ(xi), evaluated at (x1, . . . , xn) being the sample X =

(X1, . . . , Xn). The difference between the concept likelihood and the con-
cept density is that the likelihood function considers

∏n
i=1 pϑ(xi) as function

of the parameter ϑ, whereas the density considers
∏n
i=1 pϑ(xi) as function of

(x1, . . . , xn).

Remark 3.1.1 Since z 7→ log z, z > 0 is a monotone transformation, one may
also maximize the log-likelihood logLX.

θ̂ = θ̂MLE = arg max
ϑ∈Θ

logLX(ϑ) = arg max
ϑ∈Θ

n∑
i=1

log pϑ(Xi).

If Θ ⊂ Rd is finite-dimensional, the MLE can often (not always!) be obtained
by setting the derivative of the log-likelihood to zero:

n∑
i=1

sθ̂(Xi) = 0,
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where

sϑ(·) :=
∂

∂ϑ
log pϑ(·).

Remark 3.1.2 (LLN as source of inspiration) One can show that

θ = arg max
ϑ∈Θ

Eθ log pϑ(X),

and also, when Θ ⊂ Rd and under regularity conditions,

Eθsθ(X) = 0, sϑ :=
∂

∂ϑ
log pϑ.

3.2 Examples

Example 3.2.1 Let the data be X1, . . . , Xn be i.i.d. copies of X ∼ N (µ, σ2),
where both µ ∈ R and σ2 > 0 are unknown, i.e. θ = (µ, σ2). Writing ϑ :=
(µ̃, σ̃2) the log-likelihood is

LX(ϑ) =
n∑
i=1

log pϑ(Xi) = −n
2

log(2π)− n

2
log σ̃2 −

∑n
i=1(Xi − µ̃)2

2σ̃2
.

Taking derivatives w.r.t. µ̃ gives∑n
i=1(Xi − µ̂MLE)

σ̂2
MLE

= 0,

so that µ̂MLE = X̄. As

X̄ = arg min
µ̃

n∑
i=1

(Xi − µ̃)2,

it is also called the least squares estimator (LSE) of µ.

Inserting µ̂MLE = X̄ and differentiating w.r.t. σ̃2 gives

− n

2σ̂2
MLE

+

∑n
i=1(Xi − X̄)2

2σ̂4
MLE

= 0

so σ̂2
MLE = 1

n

∑n
i=1(Xi− X̄)2. Thus, in this case the MLE equals the method of

moments estimator (see 2.2.1).

Example 3.2.2 Let the data X1, . . . , Xn be i.i.d. copies of X ∼ Laplace(µ, σ2),
where both µ ∈ R and σ2 > 0 are unknown, i.e. θ = (µ, σ2). The (Lebesgue)
density of X is

pθ(x) =
1

2σ
exp

[
−|x− µ|

σ

]
, x ∈ R.

The log-likelihood based on the sample X = (X1, . . . , Xn) is

LX(ϑ) =

n∑
i=1

log pϑ(Xi) = −n log 2− n log σ̃ −
∑n

i=1 |Xi − µ̃|
σ̃

, ϑ = (µ̃, σ̃).
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It follows that

µ̂MLE = arg min
µ̃

n∑
i=1

|Xi − µ̃|.

For n even the minimizer is not unique. We take the sample median

µ̂MLE = m̂ :=

X(n+1
2

) n odd
X(n2 )+X(n2 +1)

2 n even

where X(1) ≤ · · · ≤ X(n) are the order statistics (see also Section 1.4). The
sample median is often called the least absolute deviations (LAD) estimator of
µ.

What is still left to do in this example is to calculate the MLE of σ. By differ-
entiating the log-likelihood w.r.t. σ̃ one gets

− n

σ̂MLE
+

∑n
i=1 |Xi − m̂|
σ̂2

MLE

= 0,

which gives σ̂MLE = 1
n

∑n
i=1 |Xi − m̂|.

Let us briefly present an alternative view how LLN can make sense out of the
estimator m̂ ≈ arg minµ̃

∑n
i=1 |Xi−µ̃|/n, even when the data are not Laplacian.

One may verify that

E|X − µ̃| = 2

∫
x>µ̃

(1− F (x))dx+ µ̃− EX,

where F is the CDF of X. One can find

arg min
µ̃
E|X − µ̃|

by setting the derivative of E|X − µ̃| to zero

−2(1− F (µ̃))|µ̃=arg min + 1 = 0.

In other words
arg min

µ̃
E|X − µ̃| = F−1( 1

2 ),

is the theoretical median (provided it exists).

Remark 3.2.1 Estimating the mean EX by the LSE X̄ remains a valid pro-
cedure also for non-Gaussian data. Similarly, the LAD estimator m̂ remains a
valid estimator of the median F−1(1

2) also when the data are not Laplacian.

Example 3.2.3 Let the data be X ∼ Binomial(n, θ), where the success proba-
bility 0 < θ < 1 is unknown. Then for x ∈ {0, 1, . . . , n}

pϑ(x) = Pϑ(X = x) =

(
n

x

)
ϑx(1− ϑ)n−x,
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and

logLX(ϑ) = log pϑ(X) = log

(
n

X

)
+X log ϑ+ (n−X) log(1− ϑ).

We have
d

dϑ
log pϑ(X) =

X

ϑ
− n−X

1− ϑ
.

Setting this to zero gives

X

θ̂MLE

− n−X
1− θ̂MLE

= 0,

giving

θ̂MLE =
X

n
.

Example 3.2.4 Let the data X1, . . . , Xn be i.i.d. copies of X ∈ {1, . . . , q}. For
example, X represents a “class label”. The probability of a particular label is
unknown:

Pθ(X = j) := θj , j = 1, . . . , q,

where

θ ∈ Θ =

{
ϑ ∈ Rq : ϑj ≥ 0 ∀ j,

q∑
j=1

ϑj = 1

}
.

We may write

log pϑ(x) =

q∑
j=1

l{x=j} log ϑj .

Hence the log-likelihood based on X = (X1, . . . , Xn) is

LX(ϑ) =
n∑
i=1

log pϑ(Xi) =
n∑
i=1

q∑
j=1

l{Xi=j} log ϑj =

q∑
j=1

Nj log ϑj ,

where Nj :=
∑n

i=1 l{Xi=j} = #{Xi = j} counts the number of observations with
the label j (j = 1, . . . , q). To find the maximum of the log-likelihood under the
restriction that

∑q
j=1 ϑj = 1 we use a Lagrange multiplier λ: we maximize

q∑
j=1

Nj log ϑj + λ

(
1−

q∑
j=1

ϑj

)
.

Differentiating and setting to zero gives for the MLE θ̂

∂

∂ϑj

{ q∑
j=1

Nj log ϑj + λ

(
1−

q∑
j=1

ϑj

)}∣∣∣∣
θ̂

=
Nj

θ̂j
− λ = 0.

Thus

θ̂j =
Nj

λ
, j = 1, . . . , q.
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The restriction now gives

1 =

q∑
j=1

Nj

λ
,

and since
∑q

j=1Nj = n we obtain λ = n. The MLE is therefore

θ̂j =
Nj

n
, j = 1, . . . , q.

Example 3.2.5 This example concerns a case where the parameter space is
infinite-dimensional. We present it to illustrate that maximum likelihood can
also be used when the parameter is non-Euclidean (see e.g. Groeneboom and
Wellner [1992] for more about nonparametric maximum likelihood and in par-
ticular the problem described here). This example is not part of the exam.

Let Z be the arrival time of (slow) mail. The arrival time Z is never observed
exactly. You check your (physical) mailbox every day at a random time T . Then
either the mail arrived: Y = 1, or it did not: Y = 0. Aim is now to estimate
the distribution of Z. The problem is called “interval censored”. Let F be the
CDF of Z. We have P (Y = 1|T = t) = F (t) and P (Y = 0|T = t) = 1− F (t).
Thus the density (with dominating measure the distribution of T ) is

pF (y, t) = F y(t)(1− F (t))1−y

and so
log pF (y, t) = y logF (t) + (1− y) log(1− F (t)).

Having checked the mailbox for n days, the data are i.i.d. copies X = {Yi, Ti}ni=1,
of X = (Y, T ). The log-likelihood is

LX(F̃ ) =
n∑
i=1

(
Yi log F̃ (Ti) + (1− Yi) log(1− F̃ (Ti))

)
,

where the parameter F̃ ranges over the parameter space F of all CDF’s. The
(“nonparametric”) MLE is

F̂MLE := arg max
F̃∈F

LX(F̃ ).

Questions are now: does it exist, how to compute it, what are its properties?
(This example is closely related to Example 1.3.1 when the parameter of interest
is F−1(1/2).)



Chapter 4

Hypothesis testing

In this chapter, we denote the data by X, i.e. we replace X by X (and IP by
P ). This makes the notation less Baroque.

Let X ∈ X , X ∼ Pθ, θ ∈ Θ. We consider two hypotheses about the parameter
θ: for Θ0 ⊂ Θ, Θ1 ⊂ Θ, Θ0 ∩Θ1 = ∅
H0 : θ ∈ Θ0 the null hypothesis,
H1 : θ ∈ Θ1 the alternative hypothesis.

Example Let X ∼ Binomial(n, θ) and
H0 : θ = 1

2 ,
H1 : θ = 3

4 .
Suppose we observe the value X = 14. We have
PH0(X = 14) = .074 ,
PH1(X = 14) = .112 .
We see that the likelihood PH1(X = 14) is larger than the likelihood PH0(X =
14). The value θ = 3

4 is the maximum likelihood estimate over {1
2 ,

3
4}. The

likelihood ratio is
PH1(X = 14)

PH0(X = 14)
= 1.51.

Is this large enough to reject H0 in favour of H1?

To answer the question in the above example, we need to agree on a criterion
for evaluating whether or not rejecting the null hypothesis is a good decision.
The point of view one uses in statistical hypothesis testing is that the null
hypothesis H0 represents a situation where “everything is as usual”, or “no
evidence found”. For example1, if it concerns the decision of putting someone
in prison (for murder) or not, it makes sense to choose
H0 : the person is innocent,
H1 : the person is guilty,
when convicting an innocent person is an error considered worse than not to
convict a guilty person. The Bayesian approach is to put a prior on H0 and H1

1The use of statistics in the court room is under debate. We only use this illustration to
explain the idea of hypothesis testing more vividly.

25
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(see Chapter 10), i.e. in the above example, a prior belief whether a person is
a murderer. In the frequentist approach, no prior is used.

4.1 Definition of a test

We can make two errors: rejectingH0 (acceptingH1) whenH0 is true (error first kind)
and not rejecting H0 when H1 is true (error second kind). It is (generally) not
possible to keep both errors under control. The idea is now to keep the prob-
ability of the error of first kind below a (small) prescribed value α.

H0 H1

error probability
φ = 1 first =

kind power

error
φ = 0 second

kind

Definition 4.1.1 A statistical test2 at given level α (0 < α < 1) is a (measur-
able) map φ : X → {0, 1} such that

φ(X) =

{
1 means H0 is rejected

0 means H0 is not rejected
,

and such that
Pθ0(φ(X) = 1) ≤ α ∀ θ0 ∈ Θ0.

The power of the test at θ1 ∈ Θ1 is Pθ1(φ(X) = 1).

Thus, in a loose notation, φ = 1 is in favour of H1 and φ = 0 is in favour of H0.
I.e. the decision is

Hφ =

{
H1, φ = 1

H0, φ = 0
.

A statistical test is often based on a real-valued test statistic, say T = T (X),
such that φ(X) = 1 iff T (X) > c, where c is called the critical value of the test.

Once the null hypothesis is rejected, this can be reason for further research. It
may also be a reason for publication of the findings, and then the results should
be reproducible. If the null hypothesis is not rejected, one says that the result
is not significant. One can see this too as an interesting result that might be
publishable. However, one should be careful here, as it could just be due to a
lack of power of the test. For example, if pharmaceutic industry wants to show
that the effect of a new (cheaper to produce) drug is not significantly different
from the existing drug (bio-equivalence), it could stir towards a non-significant
effect by basing the test on very little test persons.

2We extend this to “randomized” tests φ : X → [0, 1] in the next section
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Example X ∼ Binomial(n, θ), with n = 20.
H0: θ ≤ 1

2 ,
H1: θ > 1

2 ˙
We choose α = .05. Let

φ(X) :=

{
1 X > c

0 X ≤ c
,

where we now need to choose the “critical value” c is such a way that

Pθ0(X > c) ≤ α ∀ θ0 ≤ 1
2 .

Consider the map

ϑ 7→ Pϑ(X > c) =
n∑

x=c+1

(
n

x

)
ϑx(1− ϑ)n−x.

It is increasing in ϑ so that

max
θ0≤ 1

2

Pθ0(X > c) = Pθ0= 1
2
(X > c) =

n∑
x=c+1

(
n

x

)
1

2n
.

It holds that
Pθ0= 1

2
(X > 15)︸ ︷︷ ︸

=0.0207

< α︸︷︷︸
=0.05

< Pθ0= 1
2
(X > 14)︸ ︷︷ ︸

=0.0577

.

We choose the critical value c as small as possible: c = 15.

4.2 Definition of a randomized test

We have seen in the previous example that for discrete distributions, it is not
always possible to make the error of first kind exactly equal to α. In a sense, a
part of α is then left unused (comparable with a knapsack that is not completely
filled, but all items that are not in the knapsack are too large to put in). By
applying a randomized test, this problem is overcome (comparable to cutting a
too large item so that it fits in the knapsack).

Definition 4.2.1 A randomized statistical test at given level α (0 < α < 1) is
a (measurable) map φ : X → [0, 1] such that

φ(X) =


1 means H0 is rejected

q ∈ (0, 1) means H0 is rejected with probability q

0 means H0 is not rejected

,

and such that
Eθ0φ(X) ≤ α ∀ θ0 ∈ Θ0.

The power of the test at θ1 ∈ Θ1 is Eθ1φ(X).



28 CHAPTER 4. HYPOTHESIS TESTING

In other words, when φ(X) ∈ (0, 1) one throws a coin with probability φ(X)
of success (heads) and rejects when it is heads. One may object that this is
something one will never do in practice. Yet, it does make sense. Imagine
a lab that carries out experiments every day, and based on these data, tests
hypotheses every day. Then the same outcome on different days can sometimes
mean rejection, sometimes not. In other words, one does not always stay on
the conservative side as this would lead to a decrease of power. On the other
hand, a judge who considers two cases with the same evidence, will not put one
person in jail and the other person not. I.e. there may be ethical reasons not
to randomize.

Example X ∼ Binomial(n, θ), with n = 20.
H0: θ ≤ 1

2 ,
H1: θ > 1

2 ˙
We choose α = .05. We have

Pθ0= 1
2
(X > 15) < α < Pθ0= 1

2
(X > 14)

so we can write

α = Pθ0= 1
2
(X > 15) + γPθ0= 1

2
(X = 15)

where

q =
α− Pθ0= 1

2
(X > 15)

Pθ0= 1
2
(X = 15)

= 0.79.

Thus a test at level α is

φ(X) =


1 X > 15

.79 X = 15

0 X < 15

.

Suppose we observe X = 14. Then H0 cannot be rejected.

4.3 Simple hypothesis versus simple alternative

The simple hypothesis versus simple alternative problem is
H0 : θ = θ0 ,
H1 : θ = θ1 .
The term “simple” refers to the fact that there is only one parameter under H0

and only one parameter under H1. In other words, the distributions under H0

and H1 are known. This is maybe an exceptional situation, but it is good to
start with something simple.

There are only two distributions in the class P, that is P = {Pθ0 , Pθ1}. Then
there is always a dominating measure (for example ν = Pθ0 +Pθ1). Let p0(·) :=
pθ0(·) be the density under H0 and p1(·) := pθ1 be the density under H1. This
could be the probability mass function in the discrete case, or the Lebesgue
density in the absolutely continuous case.
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Definition 4.3.1 A Neyman-Pearson test is of the form

φNP(X) :=


1 p1(X)

p0(X) > c0

q p1(X)
p0(X) = c0

0 p1(X)
p0(X) < c0

where c0 ≥ 0 and q ∈ [0, 1] are given constants.

Note that a Neyman-Pearson test “makes sense”: if p1 is much larger than p0

it means that θ1 is more likely than θ0.

Lemma 4.3.1 (Neyman-Pearson Lemma) Let α ∈ (0, 1) be a given level. Choose
c0 and q in such a way that

Eθ0φNP(X) = α.

Then for all (randomized) tests φ̃ with Eθ0 φ̃(X) ≤ α it holds that

Eθ1 φ̃(X) ≤ Eθ1φNP(X).

In other words, φNP has maximal power among all tests with level α.

Proof for the discrete case. We have

Eθ1

(
φ̃(X)− φNP(X)

)
=
∑
x

(
φ̃(x)− φNP(x)

)
p1(x)

=
∑

p1/p0>c0

(φ̃− φNP)︸ ︷︷ ︸
≤0

p1 +
∑

p1/p0=c0

(φ̃− φNP)p1 +
∑

p1/p0<c0

(φ̃− φNP)︸ ︷︷ ︸
≥0

p1

≤ c0

∑
p1/p0>c0

(φ̃− φNP)p0 + c0

∑
p1/p0=c0

(φ̃− φNP)p0 + c0

∑
p1/p0<c0

(φ̃− φNP)p0

= c0Eθ0

(
φ̃(X)− φNP(X)

)
= c0

(
Eθ0 φ̃(X)− α

)
≤ 0.

tu

4.4 Examples

Example 4.4.1 Consider X ∼ Binomial(n, θ) and
H0 : θ = θ0 ,
H1 : θ = θ1 ,
where θ1 > θ0. Then

p1(x)

p0(x)
=

[
θ1/(1− θ1)

θ0/(1− θ0)

]x(1− θ1

1− θ0

)
> c0

⇔
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x log

[
θ1/(1− θ1)

θ0/(1− θ0)

]
︸ ︷︷ ︸

>0 as θ1>θ0

+n log

(
1− θ1

1− θ0

)
> log c0

⇔

x >

log c0 − n log

(
1−θ1
1−θ0

)
log

[
θ1/(1−θ1)
θ0/(1−θ0)

] := c.

A Neyman-Pearson test is thus

φNP(X) =


1 X > c

q X = c

0 X < c

.

If we choose the critical value c in such a way that

Pθ0(X > c)︸ ︷︷ ︸
=
∑
x>c (nx)θ

x
0 (1−θ0)n−x

≤ α ≤ Pθ0(X > c− 1)︸ ︷︷ ︸
=
∑
x>c−1 (nx)θ

x
0 (1−θ0)n−x

and then

q =
α− Pθ0(X > c)

Pθ0(X = c)
,

then Eθ0φNP(X)) = α and φNP is most powerful among all tests with level α.
Note that c and q do not depend on θ1: the test only depends on the sign of
θ1 − θ0.

Example 4.4.2 In this example, we have a sample X = (X1, . . . , Xn) of i.i.d.
N (µ, σ2

0) -distributed random variables where µ is unknown and σ2
0 is known.

Write the density of (X1, . . . , Xn) as

pµ(x1, . . . , xn) :=
1

(2πσ2
0)n/2

exp

[
−
∑n

i=1(xi − µ)2

2σ2
0

]
.

Then

pµ1(x1, . . . , xn)

pµ0(x1, . . . , xn)
= exp

[
− 1

2σ2
0

( n∑
i=1

(xi − µ1)2 −
n∑
i=1

(xi − µ0)2

)]

= exp

[
1

2σ2
0

(
−2

n∑
i=1

(xi − µ0) + n(µ1 − µ0)2

)]
= exp

[
1

σ2
0

(
nx̄− nµ0 − n(µ1 − µ0)2/2

)]
It follows that

pµ1(X)

pµ0(X)
> c0 ⇔

{
X̄ > c if µ1 > µ0

X̄ < c if µ1 < µ0

.
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To test H0 : µ = µ0 we consider 3 alternative hypotheses.
Right sided

H1 : µ = µ1 > µ0. Then φNP(X) = l{X̄>c} where the critical value c is such
that IEµ0φNP(X) = α. We have

IEµ0φNP(X) = IPµ0(X̄ > c) = IPµ0

(√
n(X̄ − µ0)

σ0
>

√
n(c− µ0)

σ0

)
= α

for √
n(c− µ0)

σ0
= Φ−1(1− α).

Thus
c = µ0 + Φ−1(1− α)σ0/

√
n.

For example for α = .05 it holds that Φ−1(1− α) = 1.65.

Left sided
H1 : µ = µ1 < µ0. Reject H0 if

X̄ < µ0 − Φ−1(1− α)σ0/
√
n.

Two sided
H1 : µ 6= µ0. The Neyman-Pearson Lemma cannot be used. It can be shown
(see e.g. Fundamentals of Mathematical Statistics) that the following test is in
some sense optimal (it has largest power among all tests of level α for which
the power is larger than the probability of rejecting under H0) : reject H0 if

X̄ > µ0 + Φ−1(1− α
2 )σ0/

√
n or X̄ < µ0 − Φ−1(1− α

2 )σ0/
√
n.

For example for α = .05 it holds that Φ−1(1 − α
2 ) = 1.96. If one agrees that

1.96 ≈ 2 we see the rule of thumb: reject H0 if the difference between X̄ and µ0

is more than twice the standard deviation of X̄, i.e. if |X̄ − µ0| > 2σ0/
√
n.
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Chapter 5

One-sample tests

In this chapter we consider a sample of real-valued observations from a CDF
F with unknown “location parameter” (mean or median in this chapter), and
aim at testing whether the location parameter is below (or above, or equal) to
a given value.

One may think for example of having a group of n test persons, which have been
given a drug to reduce blood pressure, and one observes the difference between
blood pressure at the beginning of the test period and the end of the test period.
Then one may ask: did the mean (or median) blood pressure decrease?

We will present two tests: Student’s test and the sign test. The first is based
on the assumption that the data are normally distributed, and the second only
assumes the median exists and continuity near the median.

In the previous chapter, we showed that the Neyman-Pearson test is most pow-
erful for the “simple null-hypothesis versus simple alternative” problem. In
this and the next chapter, we are dealing with composite hypotheses. For such
problems, the theory on optimal (most powerful) tests is more involved (see
Fundamentals of Mathematical Statistics). Here, we only present the tests, but
do not explain why they are a good idea. But they do “make sense”.

5.1 The Student distribution

The Student distribution (or t-distribution) is symmetric around 0. We will
encounter below the Student distribution with n− 1 “degrees of freedom”, the
tn−1-distribution. The Lebesgue density of the tn−1-distribution is

fn−1(t) =
Γ(n2 )√

(n− 1)πΓ(n−1
2 )

(
1 +

t2

n− 1

)−n/2
, t ∈ R.

Let X1, . . . , Xn be i.i.d. N (µ, σ2). Let X̄ := 1
n

∑n
i=1Xi be the sample average.

Then X̄ ∼ N (µ, σ2/n). If we subtract the mean and divide by the standard
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deviation, this is called standardization. So the standardized form of the sample
average is √

n(X̄ − µ)

σ
.

It has the standard normal distribution. Now if σ2 is unknown one may want to
replace σ in the standardization by the sample standard deviation S :=

√
S2 =√

1
n−1

∑n
i=1(Xi − X̄)2. This is called studentization.

Theorem 5.1.1 Let X1, . . . , Xn be i.i.d. N (µ, σ2)-distributed. The studentized
sample average √

n(X̄ − µ)

S

has a Student distribution with n− 1 degrees of freedom (tn−1-distribution).

Proof. We first show that, for all i, Xi − X̄ and X̄ are independent. This
follows from

Cov(Xi − X̄, X̄) = Cov(Xi, X̄)− Cov(X̄, X̄)︸ ︷︷ ︸
=Var(X̄)

=
1

n

n∑
j=1

Cov(Xi, Xj)−
σ2

n
= 0.

The independence now follows from the fact that for multivariate normal ran-
dom variables, zero covariance implies independence.
Thus S2 and X̄ are also independent. Moreover

n∑
i=1

(Xi − µ)2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2
+
n(X̄ − µ)2

σ2
.

By the definition of the χ2-distribution (see Appendix A), the left hand side

has a χ2
n-distribution. Moreover n(X̄−µ)2

σ2 has a χ2
1-distribution. Since moreover∑n

i=1
(Xi−X̄)2

σ2 is independent of n(X̄−µ)2

σ2 it must have a χ2
n−1-distribution. The

result now follows from the definition of the Student distribution (see Appendix
A). tu

5.2 The Student test

Let X1, . . . , Xn be i.i.d. N (µ, σ2) We consider the same testing problem as in
Example 4.4.2, but now for the case both µ and σ2 unknown.

Let c(n− 1, α) be the (1− α)-quantile of the tn−1-distribution. One can show
that ∀ α ∈ (0, 1)

c(n− 1, α)

{
> Φ−1(1− α) ∀ n
→ Φ−1(1− α) n→∞

.
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The latter in fact follows from the consistency of S2 as estimator of σ2, i.e.,
S2 → σ2 (in probability) as n→∞.

We know from Theorem 5.1.1 that

IPµ

(√
n(X̄ − µ)

S
> c(n− 1, α)

)
= α,

IPµ

(√
n(X̄ − µ)

S
< −c(n− 1, α)

)
= α,

and

IPµ

(√
n|X̄ − µ|
S

> c(n− 1, α2 )

)
= α.

The first will be applied in the right sided test, the second in the left sided test,
and the third in the two sided test.

Right sided
H0 : µ ≤ µ0 ,
H1 : µ > µ0 .
Reject H0 if

X̄ > µ0 + c(n− 1, α)S/
√
n.

Then

max
µ≤µ0

IPµ(H0 rejected) = IPµ0(H0 rejected) = α.

Left sided
H0 : µ ≥ µ0 ,
H1 : µ < µ0 .
Reject H0 if

X̄ < µ0 − c(n− 1, α)S/
√
n.

Two sided
H0 : µ = µ0 ,
H1 : µ 6= µ0 .
Reject H0 if

X̄ > µ0 + c(n− 1, α2 )S/
√
n or X̄ < µ0 − c(n− 1, α2 )S/

√
n.

Numerical example:

xi (xi − x̄) (xi − x̄)2

4.5 0 0

4 -.5 .25

3.5 -1 1

6 1.5 2.25

5 .5 .25

4 -.5 .25
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We have n = 6, x̄ = 4.5,
∑

(xi − x̄)2 = 4, s2 = .8 and s/
√
n = .365. With

α = .05 the (1− α
2 )-quantile of the t5-distribution is c(5, 0.025) = 2.571. Thus

c(5, 0.025)s/
√
n = .939.

For example
H0 : µ = 5.1
is rejected when |x̄− 5.1| > .939. Thus H0 : µ = 5.1 is not rejected as

|x̄− 5.1| = .6 < .939.

The values for µ which are not rejected are all µ such that |x̄− µ| ≤ .939, that
is all µ ∈ [3.561, 5.439]. We call [3.561, 5.439] a 95% confidence interval for µ
(see Chapter 8).

5.3 Sign test

Let X1, . . . , Xn be i.i.d. real-valued random variables with common CDF F .
We assume m := F−1(1

2) exists, and that F is continuous near m. Consider
the testing problem
H0 : m = m0 ,
H1 : m 6= m0 .
As test statistic we take

T := #{Xi > m0}

and as (non-randomized) test

φ(T ) :=

{
1 |T − n

2 | > c

0 |T − n
2 | ≤ c

where c is such that

IPH0

(∣∣∣∣T − n

2

∣∣∣∣ > c

)
︸ ︷︷ ︸

=
∑
|k−n2 |>c

(nk)2−n=:1−GZ(c)

≤ α

and c is as small as possible. One calls 1 − GZ(Z−) where Z := |T − n
2 | the

p-value: see the next section for its definition. We reject H0 if the p-value is at
most α. We can write for c̃ < n/2,

φ(T ) :=

{
1 T ≤ c̃ or T ≥ n− c̃
0 else

,

where
IPH0(T ≤ c̃) + IPH0(T ≥ n− c̃)︸ ︷︷ ︸

=2
∑
k≤c̃ (nk)2−n

≤ α.

Numerical example continued
The normal distribution is symmetric around µ so the median m is equal to µ.
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We test
H0 : µ = 5.1 ,
H1 : µ 6= 5.1 .
We have

1−GZ(2) = IPH0(T ≤ 0 or T ≥ 6) = IPH0(T = 0) + IPH0(T = 6)

=
2

64
= .03125 < .05

so we can take c̃ = 0.1 The observed value of T is T = 1. Therefore we cannot
reject H0. Since n = 6 we have Z := |T − n

2 | = 2. In the next section one can
find the general definition of a p-value. In this example, the p-value is

1−GZ(2−) = 1−GZ(1) =
14

64
= .21875 > .05.

5.4 Definition of p-value

Definition 5.4.1 Let Z be a test statistic such that large values of Z are evi-
dence against H0 : θ = θ0. We reject H0 when Z ≥ c where the critical value c
is chosen such that the probability of rejection when the null hypothesis is true
is at most α:

1−GZ(c−) ≤ α

with 1−GZ(c−) := IPH0(Z ≥ c). The p-value is then 1−GZ(Z−).

Note 1−GZ is a decreasing function, so

Z ≥ c⇒ 1−GZ(Z−) ≤ 1−GZ(c−) ≤ α.

Thus if the p-value is at most α we reject H0.

Note In the two-sided case, one typically starts with a test statistic T such
that large values of Z := |T | are evidence against H0 : θ = θ0. If we reject
H0 for |T | ≥ c and T has CDF GT under the null hypothesis, then since
IPH0(|T | ≥ c) = 1−GT (c−)+GT (−c) the p-value is 1−GT (|T |−)+GT (−|T |). If
in addition GT is continuous and symmetric the p-value becomes 2(1−GT (|T |)).
Thus then we reject H0 if (1−GT (|T |) ≤ α/2.

1A randomized test at level α = .05 is

φ̃(T ) =


1 T = 0 or T = 6
1
10

T = 1 or T = 5

0 else

.

Indeed

IEH0 φ̃(T ) = IPH0(T = 0 or T = 6) +
1

10
IPH0(T = 1 or T = 5) = .05.
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Chapter 6

Two-sample tests

Suppose we carry out an experiment with a treatment group and a control
group. The data then consists of two samples X1, . . . , Xn and Y1, . . . , Ym. We
assume that X1, . . . , Xn are i.i.d. real-valued random variable with CDF F and
Y1, . . . , Ym are i.i.d. real-valued random variables with CDF G. We moreover
assume that the two samples (X1, . . . , Xn) and (Y1, . . . , Ym) are independent.
Our goal is to test whether F and G are equal. As in Chapter 5, one can build
a test under the assumption that the data follow a normal distribution. This
leads to Student’s test. If one is not ready to assume normality, one can try to
build a test assuming no extra conditions, except maybe continuity. This leads
to Wilcoxon’s test.

When one constructs a test, the general idea is to try to find a real-valued test
statistic such that its extreme values, say large values, are evidence against the
null-hypothesis. Then for such extreme values the null is rejected. But what is
extreme? For that one needs to know what the distribution of the statistic is
under the null hypothesis: the null-distribution. Then, given a level α ∈ (0, 1),
one takes the critical value c such that when the null hypothesis is true, the
probability that the statistic is larger than c is at most α. One rejects H0 if the
statistic is larger than the critical value c.

6.1 The two-sample student test

Model:
X1, . . . , Xn︸ ︷︷ ︸
∼N (µ1,σ2)

, Y1, . . . , Ym︸ ︷︷ ︸
∼N (µ2,σ2)

independent

We want to test
H0 : µ1 = µ2

H1 : µ1 6= µ2.

Note that we assume that the observations in both samples have the same
variance σ2. If the variance of the observations in one sample may be different
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from those in the other sample, and these two variances are unknown, the
problem is known as the Behrens-Fisher problem, and there is no test statistic
with a simple null-distribution and good power. Assuming equal variance is
mathematically convenient but is perhaps not realistic.

If µ1 = µ2 then for n large X̄ ≈ Ȳ . Therefore it makes sense to reject H0 if
|X̄ − Ȳ | > c where the critical value c is to be chosen in such a way that

IPH0

(
|X̄ − Ȳ | > c

)
= α

where 0 < α < 1 is a given level. So we need to find the distribution of X̄ − Ȳ
under H0. It holds that

X̄ ∼ N
(
µ1,

σ2

n

)
, Ȳ ∼ N

(
µ2,

σ2

m

)
.

Moreover

IE(X̄ − Ȳ ) = µ1 − µ2,

and since X̄ and Ȳ are independent

Var(X̄ − Ȳ ) = Var(X̄) + Var(Ȳ ) =
σ2

n
+
σ2

m
= σ2

(
n+m

nm

)
.

Thus

X̄ − Ȳ ∼ N
(
µ1 − µ2, σ

2

(
n+m

nm

))
.

Standardizing gives√
nm

n+m

X̄ − Ȳ − (µ1 − µ2)

σ
∼ N (0, 1).

We consider two cases.

σ2 = σ2
0 known: Then we can take as test statistic

T0 :=

√
nm

n+m

X̄ − Ȳ
σ0

.

Under H0 the statistic T0 has a standard normal distribution. We reject H0

when |T0| > Φ−1(1− α
2 ). Then

IPH0(H0 rejected) = IPH0

(
|T0| > Φ−1(1− α

2 )

)
= α.

In other words the critical value is c = Φ−1(1− α
2 )
√

n+m
nm σ0. (With the “com-

mon” choice α = .05 it holds that c = (1.96)
√

n+m
nm σ0, i.e., roughly twice the

standard deviation of X̄ − Ȳ ).
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σ2 unknown: To estimate the standard deviation of X̄ − Ȳ we need an esti-
mator of σ2. A good choice turns out to be the “pooled sample” variance

S̃2 :=
1

n+m− 2

{ n∑
i=1

(Xi − X̄)2 +

m∑
j=1

(Yj − Ȳ )2

}
,

which is unbiased. Standardizing with the estimated standard deviation gives
the statistic

T :=

√
nm

n+m

X̄ − Ȳ
S̃

.

But because S̃ is random T is no longer normally distributed. This is not
really a problem, as long as its distribution under H0 does not depend on
unknown parameters. It is now not difficult to show that under H0, T has a
Student distribution with n+m−2 degrees of freedom, the tn+m−2-distribution1.
Therefore, with c(n+m−2, α2 ) the (1− α

2 )-quantile of the tn+m−2-distribution,
we reject H0 if |T | > c(n+m− 2, α2 ) or equivalently if |X̄ − Ȳ | > c̃ where the

critical value c̃ is c̃ = c(n+m− 2, α2 )
√

n+m
nm S̃.

6.2 Two-sample Wilcoxon test, or Mann-Whitney U
test

Model:
X1, . . . , Xn︸ ︷︷ ︸

∼F

, Y1, . . . , Ym︸ ︷︷ ︸
∼G

independent

where F and G are two unknown continuous distributions.

We want to test
H0 : F = G,
H1 : F 6= G.

We construct a test statistic as follows. Let N := n+m be the pooled sample
size and (Z1, . . . , ZN ) := (X1, . . . , Xn, Y1, . . . , Ym) be the pooled sample. In the
pooled sample, let Z(1) < · · · < Z(N) be the order statistics. Let Ri := rank(Xi)
in the pooled sample (i.e. Z(Ri) = Xi), i = 1, . . . , n, and Rn+j := rank(Yj) in
the pooled sample, j = 1, . . . ,m. If F = G then (R1, . . . , Rn, Rn+1, . . . , RN ) is
a random permutation of the numbers {1, . . . , N}. This means that under H0

the ranks R1, . . . , Rn have the same distribution as a random sample without
replacement of size n from an urn with N balls numbered from 1 to N . The
Mann-Whitney U statistic is

U :=

n∑
i=1

Ri.

1As in the one sample case,
∑n
i=1(Xi − X̄)2/σ2 has a χ2

n−1-distribution. Similarly,∑n
i=1(Yj − Ȳ )2/σ2 has a χ2

m−1-distribution. The two sums-of-squares are independent and
independent of X̄ and Ȳ .
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The Wilcoxon test statistic is

W := #{Xi > Yj}.

One may verify that U and W are equivalent:

U = W +
n(n+ 1)

2
.

numerical example

z rank

x1 = 36 8

x2 = 9 4

x3 = 7 2

x4 = 100 9

x5 = 3 1

y1 = 5 3

y2 = 37 7

y3 = 11 5

y4 = 12 6

Table 6.1: n = 5, m = 4, EH0(U) = 25, u = 24, w = 9

Lemma 6.2.1
i) IEH0(U) = n(N+1)

2

ii) VarH0(U) = nm(N+1)
12 .

Proof.
i) For all i

IPH0(Ri = k) =
1

N
, k = 1, . . . N.

Hence

IEH0Ri =
N∑
k=1

k
1

N
=
N + 1

2

and so

IEH0(U) =
n(N + 1)

2
.

ii) For all i

IEH0R
2
i =

N∑
k=1

k2 1

N
=

(N + 1)(2N + 1)

6

so

VarH0(Ri) =
(N + 1)(2N + 1)

6
− (N + 1)2

4
=
N2 − 1

12
=: σ2.

Further for i 6= j

IEH0RiRj =
∑
k 6=l

kl
1

N(N − 1)
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=
N(N + 1)2

4(N − 1)
− (N + 1)(2N + 1)

6(N − 1)
=

(N + 1)(3N2 −N − 2)

12(N − 1)
.

Thus

CovH0(Ri, Rj) =
(N + 1)(3N2 −N − 2)

12(N − 1)
− (N + 1)2

4
= − σ2

N − 1
.

It follows that

VarH0

( n∑
i=1

Ri

)
= nσ2 − n(n− 1)

σ2

N − 1
= nσ2N − n

N − 1
.

tu

Corollary 6.2.1 IEH0(W ) = nm
2 , VarH0(W ) = nm(N+1)

12 .

Standardizing under H0:

T :=
U − IEH0(U)√

VarH0(U)
=
W − IEH0(W )√

VarH0(W )
.

For n and m large, T has under H0 approximately a N (0, 1)-distribution. (No
proof: this does not follow from the “usual” CLT.)

Numerical example continued

|T | = |24− 25|√
20×8

12

=

√
3

7
= .655.

The approximate p-value (see Section 5.4 for its definition) is 2(1−Φ(.655)) =
.513.
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Chapter 7

Goodness-of-fit tests

In this chapter, we study the construction of tests when the hypothesis is that
the data follow some given distribution (simple hypothesis), or a distribution
in some given parametric family (composite hypothesis). For example, one
may want to test whether the digits of π are uniformly distributed, or whether
the square-root function follows Benford’s law. For such questions one may
use the χ2-test. Perhaps one wants to test whether waiting times in queueing
theory follow an exponential distribution. Then the distribution of the data
is continuous one may invoke binning and again use a χ2-test, or refrain from
binning and use a Kolmogorov-Smirnov test.

7.1 Kolmogorov-Smirnov tests

Model: X1, . . . , Xn i.i.d. with CDF F on R.

H0 : F = F0.

Recall the empirical distribution function

F̂n(x) :=
1

n

n∑
i=1

l{Xi≤x}, x ∈ R.

Kolmogov-Smirnov tests are based on a comparison of F̂n with F0. The test
statistic is

T∞ := sup
x
|F̂n(x)− F0(x)|,

or its variants

Tp :=

∫
|F̂n(x)− F0(x)|pdF0(x), 1 ≤ p <∞.

An approximation of the distribution of Tp (1 ≤ p ≤ ∞) under the null hypoth-
esis follows from probability theory (not treated here). One may also simulate
the null-distribution.

45



46 CHAPTER 7. GOODNESS-OF-FIT TESTS

7.2 The χ2-test: simple hypothesis

Let X ∈ {1, . . . , q} represent a class label. Write

Pθ(X = j) := θj ,

where

θ ∈ Θ := {ϑ = (ϑ1, . . . , ϑq) : ϑj ≥ 0 ∀ j,
q∑
j=1

ϑj = 1}.

Suppose we want to test
H0 : θ = θ0 .
The data consist of i.i.d. copies X1, . . . , Xn of X. The maximum likelihood
estimator of θ is

θ̂j =
Nj

n
, Nj := #{Xi = j}, j = 1, . . . , q

(see Example 3.2.4). The idea is now to reject H0 if θ̂ is very different from
the hypothesized θ0. One may use for instance the Euclidean distance between
θ̂ and θ0 as a test statistic. One may however want to take into account the
different variances of the estimators of the components. A test statistic that
does so is the so-called χ2 test statistic

χ2 := n

q∑
j=1

(θ̂j − θ0,j)
2

θ0,j
=

q∑
j=1

(Nj − nθ0,j)
2

nθ0,j
.

Theorem 7.2.1 For n large, IPH0(χ2 ≤ t) ≈ G(t) for all t, where G is the
CDF of a χ2(q − 1)-distribution.

No proof. (See Fundamentals of Mathematical Statistics.)

Special case: q = 2. Then X := N1 ∼ Binomial(n, p) where p := θ1, and
N2 = n−X, θ2 = 1− p. So

χ2 =
(X − np)2

np
+

(n−X − n(1− p))2

n(1− p)
=

(X − np)2

np(1− p)
.

By the CLT
X − np√
np(1− p)

is approximately N (0, 1)-distributed, and so its square

(X − np)2

np(1− p)

is approximately χ2(1)-distributed (by the definition of the χ2-distribution).
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7.3 The χ2-test: composite hypothesis

The random variable X ∈ {1, . . . , q} again represent a class label and

Pθ(X = j) := θj , j = 1, . . . , q.

Suppose we want to test m < q − 1 restrictions
H0 : Rk(θ) = 0, k = 1, . . . ,m . Let

θ̂0 := arg max
ϑ∈Θ: Rk(ϑ)=0, k=1,...,m

q∑
j=1

Nj log ϑj

be the maximum likelihood estimator under the m restrictions. Define the test
statistic

χ2 :=

q∑
j=1

(Nj − nθ̂0,j)
2

nθ̂0,j

.

Under some regularity conditions (see Fundamentals of Mathematical Statis-
tics), the distribution of χ2 under H0 is approximately χ2(m). Thus we reject
H0 when χ2 > G−1(1−α) where G is the CDF of the χ2(m)-distribution. Then

IPH0(H0 rejected) ≈ α.

Note A special case is the simple hypothesis H0 : θ = θ0. This corresponds to
m = q − 1 restrictions.

7.4 Contingency tables

This section treats a special case of the previous section.

Let X := (Y,Z) ∈ {(k, l) : k = 1, . . . , p, l = 1, . . . , q} and

Pθ

(
X = (k, l)

)
:= θk,l

where

θ ∈ Θ

=

{
ϑ = {ϑk,l : k = 1, . . . , p, l = 1, . . . , q}, ϑk,l ≥ 0 ∀ k, l

p∑
k=1

q∑
l=1

ϑk,l = 1

}
.

We aim at testing whether Y and Z are independent. Define the marginals

ηk :=

q∑
l=1

θk,l (k = 1, . . . , p), ξl :=

p∑
k=1

θk,l (l = 1, . . . , q).

The null hypothesis is H0 : θk,l = ηkξl, ∀ k, l .
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The data are i.i.d. copies {Xi = (Yi, Zi) : i = 1, . . . , n} of X = (Y,Z). The
maximum likelihood estimator is as before (see Example 3.2.4)

θ̂k,l =
Nk,l

n
, k = 1, . . . , p, l = 1, . . . , q,

where Nk,l = #{(Yi, Zi) = (k, l)}, k = 1, . . . , p, l = 1, . . . , q.

Write

Nk,+ :=

q∑
l=1

Nk,l (k = 1, . . . , p), N+,l :=

p∑
k=1

Nk,l (l = 1, . . . , q).

Lemma 7.4.1 The maximum likelihood under the restrictions of H0 is

η̂k =
Nk,+

n
(k = 1, . . . , p), ξ̂l =

N+,l

n
(l = 1, . . . , q).

Proof. The log-likelihood is

p∑
k=1

q∑
l=1

Nk,l log ϑk,l.

We now have the restriction ϑk,l = η̃kξ̃l for some non-negative η̃k, ξ̃l, with∑p
k=1 η̃k = 1 and

∑q
l=1 ξ̃l = 1. The restricted log-likelihood is therefore

p∑
k=1

q∑
l=1

Nk,l log(η̃kξ̃l)

=

p∑
k=1

q∑
l=1

Nk,l log η̃k +

p∑
k=1

q∑
l=1

Nk,l log ξ̃l

=

p∑
k=1

Nk,+ log η̃k +

q∑
l=1

N+,l log ξ̃l.

The two terms can now be maximized separately, as done in Example 3.2.4
(where we used a Lagrange multiplier). tu

It follows that

χ2 =

p∑
k=1

q∑
l=1

(Nk,l −Nk,+N+,l/n)2

Nk,+N+,l/n
.

The original number of free parameters is

pq − 1.

The number of free parameters under H0 is

p− 1 + q − 1.

The number of restrictions is therefore

m =

(
pq − 1

)
−
(
p− 1 + q − 1

)
= (p− 1)(q − 1).

So χ2 is approximately χ2((p− 1)(q − 1))-distributed under H0.
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7.5 Special case: (2× 2)-table

N1,1 N1,2 N1,+

N2,1 N2,2 N2+

N+,1 N+,2 n

or, using different symbols,

A B R

C D S

P Q n

Then

χ2 =
n(AD −BC)2

PQRS
.

It has approximately a χ2(1)-distribution under H0.

Numerical example

left-handed right-handed All

Arts 16 40 56
Science 25 35 60

All 41 75 116

Table 7.1: Rows: Beverage, Columns: Personality

In the above example

χ2 = 116× (16× 35− 40× 25)2

41× 75× 60× 56
= 2.174.

Remark Let X ∼ Binomial(n1, p1) and Y ∼ Binomial(n2, p2) be independent
and suppose we want to test
H0 : p1 = p2 =: p where 0 < p < 1 is an unknown common value.
An estimator of p1 is p̂1 = X/n1 and an estimator of p2 is p̂2 = Y/n2. Thus it
makes sense to reject H0 if |p̂1 − p̂2|2 is large.

X Y X + Y

n1 −X n2 − Y n− (X + Y )

n1 n2 n := n1 + n2

We have

VarH0(p̂1 − p̂2) = p(1− p) n

n1n2
,

and we can estimate this by

V̂arH0(p̂1 − p̂2) := p̂(1− p̂) n

n1n2
,
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where p̂ = (X + Y )/n. The H0-standardized test statistic is now

T :=
|p̂1 − p̂2|2

p̂(1− p̂) n
n1n2

=
n(AD −BC)2

PQRS
= χ2

as before.



Chapter 8

Confidence intervals

Let γ̂ ∈ R be an estimator of γ ∈ R. As a rule of thumb, γ̂± twice the (es-
timated) standard deviation of γ̂ is approximately a 95% confidence interval
for γ. This is true if γ̂ − γ is approximately normally distributed with mean
zero, and if you are okay with the approximation Φ−1(1 − α/2) = 1.96 ≈ 2
for α = 0.05. We remark here that many estimators are indeed approximately
normally distributed. This is for instance the case for method of moment es-
timators provided certain differentiability conditions hold. It is also true for
maximum likelihood estimators of a finite-dimensional parameter, assuming
(rather involved) regularity conditions. We refer to Fundamentals of Mathe-
matical Statistics.

If the sample size is not very large, one replaces Φ−1(1 − α/2) by a larger
value so that the confidence interval becomes wider (and one thus is more
conservative). The most popular choice is replacing the (1 − α/2)-quantile
Φ−1(1− α/2) of the standard normal distribution by the (1− α/2)-quantile of
the tn−1 distribution. This leads to an exact 95 % confidence interval for the
mean µ using the estimator µ̂ := X̄ if the data are i.i.d. normally distributed. If
the data are not normally distributed, one can often also find exact confidence
intervals (instead of approximate ones based on some CLT), but this requires
some inventivity.

Numerical example:

xi (xi − x̄) (xi − x̄)2

4.5 0 0

4 -.5 .25

3.5 -1 1

6 1.5 2.25

5 .5 .25

4 -.5 .25

We have n = 6, x̄ = 4.5, s2 = .8 and s/
√
n = .365. With α = .05 the (1− α

2 )-
quantile of the t5-distribution is c(5, 0.025) = 2.571 which is substantially larger
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than Φ−1(1 − α/2) = 1.96. Thus c(5, 0.025)s/
√
n = .939. Assuming i.i.d.

Gaussian data the interval

x̄± c(5, 0.025)s/
√
n = 4.5± .939 = [3.561, 5.439]

is an exact 95% confidence interval for µ. If the Gaussian assumption does
not hold, it is an approximate 95 % confidence interval provided the common
variance σ2 of the observations is finite.

8.1 Definition of a confidence interval

Consider an X ∈ X with distribution Pθ depending on θ ∈ Θ. Let γ :=
g(θ) ∈ R be a parameter of interest. Write Γ := {g(θ) : θ ∈ Θ} ⊂ R. Let
X := (X1, . . . , Xn) be a sample from Pθ

Recall that a real-valued statistic is a measurable map X→ R.

Definition 8.1.1 Let T = T (X) ∈ R and T̄ = T̄ (X) ∈ R be two statistics with
T ≤ T̄ . One calls [T , T̄ ] a (1− α)-confidence interval for g(θ) if

IPθ

(
T ≤ g(θ) ≤ T̄

)
≥ 1− α, ∀ θ ∈ Θ.

8.2 Exact confidence intervals when the data are
Gaussian

Let X1, . . . , Xn be i.i.d. N (µ, σ2).

Confidence interval for µ, σ2 =: σ2
0 known

Then [
X̄ − Φ−1(1− α

2 )σ0/
√
n, X̄ + Φ−1(1− α

2 )σ0/
√
n

]
is a (1− α)-confidence interval for µ:

IPµ

(
X̄ − Φ−1(1− α

2 )σ0/
√
n ≤ µ ≤ X̄ + Φ−1(1− α

2 )σ0/
√
n

)
= IPµ

(
µ− Φ−1(1− α

2 )σ0/
√
n ≤ X̄ ≤ µ+ Φ−1(1− α

2 )σ0/
√
n

)
= IPµ

(√
n|X̄ − µ|
σ0

≤ Φ−1(1− α
2 )

)
= 1− α.

Confidence interval for µ, σ2 unknown
Then [

X̄ − c(n− 1, α2 )S/
√
n, X̄ + c(n− 1, α2 )S/

√
n

]
,
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is a (1− α)-confidence interval for µ. Here

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2

is the sample variance and c(n − 1, α2 ) the (1 − α
2 )-quantile of the Student

distribution with n− 1 degrees of freedom.

Confidence interval for σ2, µ = µ0 known
Then [

nσ̂2

G−1
n (1− α

2 )
,

nσ̂2

G−1
n (α2 )

]
is a (1− α)-confidence interval for σ2. Here

σ̂2 :=
1

n

n∑
i=1

(Xi − µ0)2

and Gn is the CDF of the χ2(n)-distribution. Indeed, since nσ̂2/σ2 ∼ χ2(n),

IPσ2

(
nσ̂2

G−1
n (1− α

2 )
≤ σ2 ≤ nσ̂2

G−1
n (α2 )

)
= IPσ

(
G−1
n ( α2 ) ≤ nσ̂2

σ2
≤ G−1

n (1− α
2 )

)
= 1− α.

Confidence interval for σ2, µ unknown
Then [

(n− 1)S2

G−1
n−1(1− α

2 )
,
(n− 1)S2

G−1
n−1(α2 )

]
is a (1− α)-confidence interval for σ2. Here

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2

and Gn−1 is the CDF of the χ2(n − 1)-distribution. A one-sided confidence
interval for σ2 (right-sided) is [

0,
(n− 1)S2

G−1
n−1(α)

]
,

since

IPµ,σ2

(
σ2 ≤ (n− 1)S2

G−1
n−1(α)

)
= IPµ,σ2

(
(n− 1)S2

σ2
≥ G−1

n−1(α)

)
= 1− α.

Numerical example continued

The sample size is n = 6. We take α = .05. Then G−1
n−1(1 − α

2 ) = 12.83 and
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G−1
n−1(α2 ) = .83. The sample variance is s2 = .8. So a 95% confidence interval

for σ2 is
.312 ≤ σ2 ≤ 4.18

and so a 95% confidence interval for σ is

.56 =
√
.312 ≤ σ ≤

√
4.18 = 2.19.

If one is interested in a upper bound for σ2 we use that G−1
n−1(α) = 1.145. So a

one-sided 95% confidence interval for σ2 is

σ2 ≤ 3.491

and a one-sided 95% confidence interval for σ is

σ ≤
√

3.491 = 1.868.

8.3 Approximate confidence interval when the data
are Poisson

We revisit the example of Section 1.7. Let X1, . . . , Xn be i.i.d. Poisson(λ)-
distributed. Then X :=

∑n
i=1Xi has a Poisson(nλ)-distribution. By the duality

between tests and confidence sets as explained in Chapter 9.2 ahead, one can
construct an exact (1−α)-confidence set for λ by testing for all λ0 the hypothesis
H0 : λ = λ0 at level α and taking the confidence set as those values λ0 that are
not rejected. Yes, this is possible, but not easy and does not give us explicit
expressions. Therefore, let us use the central limit theorem instead.

We have X ∼ Poisson(λn) with λn := nλ. In other words, we can reduce to
situation to one where we have one observation X from a Poisson distribution
with parameter λn.
We take α = .05 and for simplicity replace Φ−1(1− α

2 ) = 1.96 by 2.

Approximate confidence interval for λn using the CLT

For λn large, (X− λn)/
√
λn is approximately N (0, 1) distributed. Hence

IPλn

(
|X− λn|√

λn
≤ 2

)
≈ .95.

Rewrite this to

IPλn

(
λn ∈

[
X + 2− 2

√
X + 1,X + 2 + 2

√
X + 1

])
≈ .95.

So [
X + 2− 2

√
X + 1, X + 2 + 2

√
X + 1

]
is an approximate 95% confidence interval for λn.
Approximate confidence interval for λn using the CLT and estimated variance

We can estimate the variance by

V̂ar(X) := X.
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For λn large (X−λ)/
√

X is approximately N (0, 1)-distributed (see e.g. Funda-
mentals of Mathematical Statistics). An approximate 95% confidence interval
based on this is [

X− 2
√

X,X + 2
√

X

]
.
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Chapter 9

Duality between confidence
sets and tests

In this chapter we replace X ∈ X n by X ∈ X and IP by P to make the notation
less Baroque. We assume P = Pθ with θ ∈ Θ and consider a paramater of
interest γ = g(θ) ∈ Γ = {g(ϑ) : ϑ ∈ Θ} which is possibly not real-valued.

9.1 Definition of a confidence set

Let I be a mapping
I : X → {subsets of Γ}

such that {x ∈ X : γ ∈ I(x)} is measurable for all γ ∈ Γ.

Definition 9.1.1 One calls I(X) a (1− α)-confidence set for g(θ) if

Pθ

(
g(θ) ∈ I(X)

)
≥ 1− α, ∀ θ ∈ Θ.

9.2 The duality theorem

Consider some set C ⊂ X × Γ and let for γ ∈ Γ

Jγ := {x ∈ X : (x, γ) ∈ C} ⊂ X ,

and for x ∈ X
I(x) := {γ ∈ Γ : (x, γ) ∈ C} ⊂ Γ.

We assume that Jγ is measurable for all γ ∈ Γ.

Theorem 9.2.1 (duality theorem)
The set I(X) is a (1− α)-confidence set
⇔
For all γ0 ∈ Γ, φγ0(X) := lJcγ0

(X) is a level α test for H0 : γ = γ0.
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Proof.

Pθ

(
φγ(X) = 1

)
= Pθ

(
X /∈ Jγ

)
= Pθ

(
(X, γ) /∈ C

)
= 1− Pθ

(
(X, γ) ∈ C

)
= 1− Pθ

(
γ ∈ I(X)

)
.

tu

Example 9.2.1 In this example we return to the notation X = (X1, . . . , Xn).
Let X1, . . . , Xn be i.i.d. N (µ, σ2) with σ2 =: σ2

0 known. We let γ := µ. Then
we may take

I(X) =

[
X̄ − Φ−1(1− α

2 )σ0/
√
n, X̄ + Φ−1(1− α

2 )σ0/
√
n

]
,

and then

Jµ =

[
µ− Φ−1(1− α

2 )σ0/
√
n, µ+ Φ−1(1− α

2 )σ0/
√
n

]
.

9.3 Confidence intervals when X is binomial

Consider X ∼ Binomial(n, θ) with 0 ≤ θ ≤ 1 unknown. We present three ways
for the construction of confidence intervals for θ.
Exact confidence interval using the Duality Theorem

For the hypothesis
H0 : θ = θ0 ,
we use the test

φ(X, θ0) :=

{
1 X > c̄(θ0) orX < c(θ0)

0 else
,

where c(θ0) ≤ c̄(θ0) (both in {0, . . . , n}) are determined by

Pθ0

(
X > c̄(θ0)

)
︸ ︷︷ ︸

=
∑
k>c̄(θ0) (nk)θ

k
0 (1−θ0)n−k

≤ α

2
≤ Pθ0

(
X > c̄(θ0)− 1

)

Pθ0

(
X < c(θ0)

)
≤ α

2
≤ Pθ0

(
X < c(θ0) + 1

)
.

So
Jθ0 = {x ∈ {0, . . . , n} : c(θ0) ≤ x ≤ c̄(θ0)}
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and

C = {(x, θ) ∈ {0, . . . , n} × [0, 1] : c(θ) ≤ x ≤ c̄(θ)},

I(x) = {θ ∈ [0, 1] : c(θ) ≤ x ≤ c̄(θ)}.

We let for x ∈ {0, . . . , n− 1}, θ̄(x) be defined by

∑
k<x

(
n

k

)
θ̄(x)k(1− θ̄(x))n−k =

α

2

and for x ∈ {1, . . . , n}, θ(x) be defined by

∑
k>x

(
n

k

)
θ(x)k(1− θ(x))n−k =

α

2

and further take θ̄(n) = 1 and θ(0) = 0. Then [θ(X), θ̄(X)] is an exact (1−α)-
confidence interval for θ.
Approximate confidence interval using the CLT

We reject
H0 : θ = θ0 ,
when

|X − nθ0|√
nθ0(1− θ0)

> Φ−1(1− α
2 )︸ ︷︷ ︸

:=z

.

So

I(X) =

{
θ :

|X − nθ|√
nθ(1− θ)

> z

}

=

{
θ ∈

X + z2

2

n+ z2
±

√
z2X(n−X)

n + z4

4

n+ z2

}
,

where the second equality follows after some calculations. Approximate confidence interval using the CLT and estimated variance
By the CLT

X − nθ√
Varθ(X)

is approximately N (0, 1)-distributed. We have Varθ(X) = nθ(1− θ) which can
be estimated by

V̂arθ(X) := nθ̂(1− θ̂).

Then
X − nθ√
V̂arθ(X)

is still approximately N (0, 1)-distributed (see Section 1.6). We can then take

I(X) :=

{
θ ∈ X

n
± z

√
X

n

(
1− X

n

)
/
√
n

}
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=

{
θ ∈ X

n
±

√
z2X(n−X)

n

n

}
.

Numerical example
Let n = 38 and suppose we observe X = 20. Then, using the third method
above, an approximate 95% confidence interval for θ (and using Φ−1(.975) ≈ 2)
is

20

38
± 2

√
20× 18

383
= .526± .162.



Chapter 10

Bayesian statistics

In this chapter we again replace X by X, etc, to avoid a too Baroque notation.
Thus X ∈ X represents the data. We assume X has distribution Pθ, with θ ∈ Θ
an unknown parameter. In frequentist statistics one assumes the unknown θ to
be fixed (nonrandom). In Bayesian statistics on assumes θ to be random.

For example, suppose you visit your doctor. You ask your doctor: what is the
probability θ that someone like me has the disease? He might say: some studies
indicate θ is about 1/2, others experts find it is almost zero, but there are also
reports which point in the direction to it being close to one. And he continues:
I would personally say this probability θ can be anything between 0 and 1,
each value is equally likely. Then the doctor seems to model a probability as a
random variable, assigning uniform weights to all possible values. The doctor
has a uniform prior for θ. Now the doctor carries out some tests on you. Given
the outcome X of these tests, you ask the doctor: what is now the probability
that I have the disease? With the data in hand, the doctor updates beliefs for
your case to posterior beliefs, and will hopefully share these to you.

Suppose P := {Pθ : θ ∈ Θ} is dominated by a sigma-finite measure ν. Before,
we wrote for θ ∈ Θ the densities as

pθ(x) =
dPθ
dν

(x), x ∈ X .

In the Bayesian notation

pθ(x) = p(x|θ), x ∈ X ,

is the density given the parameter value is θ. To make this work we suppose Θ
is measurable space.
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10.1 Prior, marginal and posterior

Definition 10.1.1 Let Π be a given probability distribution on Θ, the prior.
For a dominating measure µ the prior density of θ is

w(ϑ) :=
dΠ

dµ
(ϑ), ϑ ∈ Θ.

Remark 10.1.1

• If Θ is countable we let w(·) be the probability mass function of θ.

• If Θ = R and if Π is absolutely continuous, we let w(·) be the Lebesgue
density of θ.

• In both discrete and absolutely continuous case we call w(·) a density.
Other cases will not be considered in this lecture.

Definition 10.1.2 The marginal density of X is

p(x) =

∫
p(x|ϑ)w(ϑ)dµ(ϑ) =

{∑
ϑ p(x|ϑ)w(ϑ) θ discrete∫

ϑ p(x|ϑ)w(ϑ)dϑ θ abs. continuous
, x ∈ X .

Definition 10.1.3 For p(x) > 0 the posterior density of θ given X = x is

w(ϑ|x) :=
p(x|ϑ)w(ϑ)

p(x)
.

The posterior density is thus given by Bayes’ rule.

10.2 The maximum a posteriori estimator

With the Bayesian approach, the data X lead to a posterior distribution for θ.
But one might also want a point estimator of θ, some value as representative
of the parameter. This could be the mean or the median of the posterior
distribution (when Θ ⊂ R). Another representative is the most likely value for
θ given the data X.

Definition 10.2.1 The maximum a posteriori (MAP) estimator is

θ̂MAP := θ̂MAP(X) := arg max
ϑ∈Θ

w(ϑ|X),

provided the maximum exists.

Note To find θ̂MAP you do not need to calculate the marginal distribution p(·):

θ̂MAP = arg max
ϑ∈Θ

p(X|ϑ)w(ϑ).
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We apply the proportional symbol ∝: for real-valued functions f and g with
domain Θ, we write f(ϑ) ∝ g(ϑ) 6= 0 if f(ϑ)/g(ϑ) does not depend on ϑ ∈ Θ.
So w(ϑ|x) ∝ p(x|ϑ)w(ϑ).

Note We may also write

θ̂MAP = arg max
ϑ∈Θ

{
log p(X|ϑ) + logw(ϑ)

}
.

In other words, the MAP maximizes the log-likelihood logLX(ϑ) penalized with
a “regularization term” logw(ϑ).

Example 10.2.1 Let, given θ ∈ R, X = (X1, . . . , Xn) be an i.i.d. sample of
the N (θ, 1)-distribution. Suppose the prior on θ is the N (0, 1/λ2)-distribution,
where λ > 0 is given. Then

θ̂MAP = arg max
ϑ∈R

{
−1

2

n∑
i=1

(Xi − ϑ)2 − 1

2
λ2ϑ2

}
=

X̄

1 + λ2/n
.

We see that the MAP is a shrinked version of the MLE X̄. This makes sense,
because the N (0, 1/λ2)-prior has a preference for values of θ near zero, and this
is reflected in the MAP by the shrinkage of X̄ to zero.

10.3 Bayes’ decision in classification

Consider two given densities p0(x) and p1(x), x ∈ X . Given an observation X,
we want to classify it as coming from distribution P0 (with density p0) or P1

(with density p1). Let the prior be

w(ϑ) =

{
w0, ϑ = 0

w1, ϑ = 1
,

for given 0 < w0 < 1 and w1 = 1− w0. Then the MAP estimator is

θ̂MAP =


1 p1(X)

p0(X) >
w0
w1

q p1(X)
p0(X) = w0

w1

0 p1(X)
p0(X) <

w0
w1

where q ∈ {0, 1} is arbitrary. Here, use that

w(ϑ|x) =

{
p0(x)w0/p(x), ϑ = 0

p1(x)w1/p(x), ϑ = 1
.

Note that

p(x) = w0p0(x) + w1p1(x), x ∈ X ,

is a mixture of p0 and p1.
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The estimator θ̂MAP is called Bayes’ decision, which we write as φBayes. Note
that φBayes is of the same form as a Neyman-Pearson test defined in Chapter 4.

Now let us reformulate the classification problem. We simply use the notation
Y instead of θ. Let Y ∈ {0, 1} be a label and X ∈ X be the features. Write

η(x) = P (Y = 1|X = x), x ∈ X .

Then Bayes’ decision is is choosing the most likely label: given X = x, predict
Y = 1 if η(x) > 1/2 and predict Y = 0 if η(x) < 1/2 and randomize if
η(x) = 1/2. In other words,

φBayes(X) = l{η(X) > 1/2}+ ql{η = 1/2}.

One can present the situation in terms of decision theory. There are two pos-
sible actions a = 0 (classify as coming from p0) and a = 1 (classify as coming
from p1). The action space is thus A := {0, 1}. We define the loss function as
the event of making a mistake:

L(y, a) := l{y 6=a}, (y, a) ∈ {0, 1}2.

This means one unit loss for taking a wrong action. We call a function φ : X →
{0, 1} a decision and define its risk as

R(y, φ) := E[L(y, φ(X))|Y = y].

Thus

R(y, φ) =

{
P0(φ(X) = 1), y = 0

P1(φ(X) = 0), y = 1
.

We then define the Bayes risk of φ as the average risk over Y , where P (Y =
1) = w1 and P (Y = 0) = w0

rw(φ) = w0P0(φ(X) = 1) + w1P1(φ(X) = 0) = P (φ(X) 6= Y ).

Bayes’ decision is the minimizer of the Bayes risk

φBayes = arg min
φ: X→{0,1}

rw(φ).

Remark 10.3.1 This remark makes a link to machine learning. You may find
it useful to see this connection, but it is not exam material for this course.

In the supervised learning setup for classification, one again has a label Y ∈
{0, 1} and features X ∈ X . The distribution of (X,Y ) is (in part) unknown.
One either starts with a model for η(x) := P (Y = 1|X = x), or for the two
densities p1(x) = p(x|Y = 1) and p0(x) = p(x|Y = 0). For instance, in logistic
regression, one uses given feature mappings ψj : X → R, j = 1, . . . , d, and takes

η(x) =
1

1 + exp[
∑d

j=1 θjψj(x)]
,
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where θ = (θ1, . . . , θd)
> ∈ Rd is an known parameter. In linear discriminant

analysis one has X = Rd (possibly after a feature mapping) and models p1 as
the N (µ1,Σ) density and p0 as the N (µ0,Σ) density with µ1 ∈ Rd and µ0 ∈ Rd
unknown means and Σ ∈ Rd×d an unknown covariance matrix. In either case,
based on data {Xi, Yi}ni=1 one estimates the unknown parameters to obtain an
estimator η̂(·) of η(·) and applies the estimated Bayes’ decision

φ̂Bayes(X) = l{η̂(X) > 1/2}+ ql{η̂ = 1/2}.

10.4 Bayesian inference for the binomial distribution

Let X|θ ∼ Binomial(n, θ) and θ ∼ Beta(r, s). Then the prior mean is Eθ = r
r+s .

The posterior density is

w(ϑ|x) ∝ p(x|ϑ)w(ϑ) ∝ ϑx(1− ϑ)n−xϑs−1(1− ϑ)r−1

= ϑx+s−1(1− ϑ)n−x+r−1.

So θ|X = x ∼ Beta(x+ r, n− x− s) and the posterior mean is

E(θ|X) =
X + r

n+ r + s
.

The MAP estimator is

θ̂MAP =
X + r − 1

n+ s+ r − 2
.

If for example one starts with the uniform distribution as prior, one finds as
posterior

w(ϑ|X) = (n+ 1)

(
n

X

)
ϑX(1− ϑ)n−X

and θ̂MAP is equal to the maximum likelihood estimator θ̂MLE = X/n. This
follows more generally from Definition 10.2.1: if Π is the uniform1 distribution
on Θ, its density is constant over Θ so it plays no role in the maximization, and
therefore that θ̂MAP = θ̂MLE

10.5 Bayesian inference for the normal distribution

We revisit Example 10.2.1. Let X|θ ∼ N (θ, σ2) were θ ∈ R and where σ2 is
known. Suppose θ ∼ N (0, τ2) for some given τ2 > 0. Then the posterior is

θ|X ∼ N
(

τ2

τ2 + σ2
X,

τ2σ2

τ2 + σ2

)
.

We see that the posterior mean is

E(θ|X) =
τ2

τ2 + σ2
X.

In this case this is also the MAP estimator.
1If |Θ| is infinite there is no uniform distribution on Θ.
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Chapter 11

The linear model

The linear model will be defined in Definition 11.2.1. Models are only approx-
imations. In this chapter we allow for a misspecified linear model and study
“linear approximations”. Recall Example 2.3.1, where we defined the best linear
prediction of Y ∈ R given X ∈ R (in that example (X,Y) was called (X,Y ), but
in this chapter X and Y will have another meaning). Let xi := {xi,j}dj=1 ∈ Rd
be fixed and Yi ∈ R be random, i = 1, . . . , n. These data could be based on
i.i.d. copies {(Xi, Yi)}ni=1of a pair (X,Y), with X ∈ Rd and Y ∈ R, and we
condition on the realizations xi of Xi, i = 1, . . . , n. We call {xi} (or {Xi})
the co-variables. Note that given these co-variables Xi = xi, i = 1, . . . , n, the
random variables Y1, . . . , Yn remain independent but are (possibly) no longer
identically distributed.

We aim at estimating the best linear approximation (defined formally in Defi-
nition 11.2.2 below) of Yi given xi ∈ Rp, i = 1, . . . , n, by minimizing

n∑
i=1

(
Yi − a−

d∑
j=1

xi,jbj

)2

.

over a ∈ R and b = (b1, . . . , bd)
> ∈ Rd.

To simplify the expressions, we rename the quantities involved as follows. Define
for all i, xi,0 := 1 and define b0 := a. Then for all i we have a+

∑p
j=1 xi,jbj =∑d

j=0 xi,jbj .

Then we minimize

n∑
i=1

(
Yi −

d∑
j=0

xi,jbj

)2

.

over b = (b0, b1, . . . , bd)
T ∈ Rd+1.

67
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11.1 Definition of the least squares estimator

We let p := d+ 1 and

X :=


1 x1,1 · · · x1,d

1 x2,1 · · · x2,d
...

...
. . .

...
1 xn,1 · · · xn,d

 ∈ Rn×p, Y =

Y1
...
Yn

 .

Thus, in this chapter X ∈ Rn×p is a given matrix with (non-random) entries
{xi,j}.

One calls X the design matrix or input matrix. We assume it to be non-random,
which is called the case of fixed design. Moreover, Y ∈ Rn is the vector of
responses or output vector.

We will assume throughout this chapter:

Condition 11.1.1 The design matrix X has rank p.

Let us denote the Euclidean norm of a vector v ∈ Rn by

‖v‖2 :=

√√√√ n∑
i=1

v2
i .

Then
n∑
i=1

(
Yi −

d∑
j=0

xi,jbj

)2

= ‖Y −Xb‖22, b ∈ Rp.

Definition 11.1.1 One calls

β̂ := arg min
b∈Rp
‖Y −Xb‖22

the least squares estimator (LSE).

The distance between Y and the space {Xb : b ∈ Rp} spanned by the columns
of X is minimized by projecting Y on this space. In fact, one has

Lemma 11.1.1 Suppose X has rank p. Then

β̂ = (X>X)−1X>Y.

Proof. It holds that

1

2

∂

∂b
‖Y −Xb‖22 = −X>(Y −Xb).

It follows that β̂ is a solution of the so-called normal equations

X>(Y −Xβ̂) = 0
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or

X>Y = X>Xβ̂.

As X has rank p, the matrix X>X has an inverse (X>X)−1 and we get

β̂ = (X>X)−1X>Y.

tu

The projection of Y on {Xb : b ∈ Rp} is

X(X>X)−1X>︸ ︷︷ ︸
projection

Y.

Recall that a projection is a linear map of the form PP> such that P>P = I.
We can write X(X>X)−1X> := PP>, where P is an orthonormal basis for the
column space of X.1

Example 11.1.1 (Example with d = 1)
For d = 1

X =


1 x1

1 x2
...

...
1 xn

 .

Then

X>X =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
,

(X>X)−1 =

( n∑
i=1

(xi − x̄)2

)−1( 1
n

∑n
i=1 x

2
i −x̄

−x̄ 1

)
.

Moreover

X>Y =

(
nȲ∑n
i=1 xiYi

)
.

We now obtain (with α̂ := β̂0, β̂ := β̂1)(
α̂

β̂

)
= (XTX)−1XTY

=

( n∑
i=1

(xi − x̄)2

)−1( 1
n

∑n
i=1 x

2
i −x̄

−x̄ 1

)(
nȲ∑n
i=1 xiYi

)

=

( n∑
i=1

(xi − x̄)2

)−1(∑n
i=1 x

2
i Ȳ − x̄

∑n
i=1 xiYi

−nx̄Ȳ +
∑n

i=1 xiYi

)

=

( n∑
i=1

(xi − x̄)2

)−1(∑n
i=1(xi − x̄)2 − x̄(

∑n
i=1 xiYi − nx̄Ȳ )∑n

i=1 xiYi − nx̄Ȳ

)
.

1Write the singular value decomposition of X as X = PφQ>, where φ = diag(φ1, . . . , φp)
contains the singular values of Xand where P>P = I and Q>Q = I.
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Here we used that
∑n

i=1 x
2
i =

∑n
i=1(xi − x̄)2 + nx̄2. We can moreover write

n∑
i=1

xiYi − nx̄Ȳ =
n∑
i=1

(xi − x̄)(Yi − Ȳ ).

Thus (
α̂

β̂

)
=

(
Ȳ − β̂x̄∑n

i=1(xi−x̄)(Yi−Ȳ )∑n
i=1(xi−x̄)2

)
.

These expressions coincide with what we derived as method of moments esti-
mators, see Example 2.3.1.

Note that if we assume that x̄ = 0 the calculations become much simpler. If
x̄ = 0, the matrix X>X becomes a diagonal matrix, and we find α̂ = Ȳ and
β̂ =

∑n
i=1 Yixi/

∑n
i=1 x

2
i .

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Simulated data with Y = .3 + .6× x+ ε, ε ∼ N (0, 1
4), α̂ = .19 , β̂ = .740

11.2 Theoretical properties of the least squares esti-
mator

We define the mean vector f = IEY ∈ Rn. (Recall that X is fixed. One may see
fi as the mean of Yi given xi, i = 1, . . . , n.) We call f the signal. The noise is
defined as ε = Y − f . This gives the signal+noise model

Y = f + ε.

Definition 11.2.1 The linear model (or linear regression model) is

f = Xβ

where β ∈ Rp is an unknown parameter.

Thus in the linear regression model

Y = Xβ + ε,
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where β ∈ Rp is unknown and ε is an unobservable noise vector with indepen-
dent, mean zero entries.

If the linear model is true, the LSE β̂ is an estimator of β. We however allow
for a misspecified model. Then β̂ is an estimator of β∗ given in the following
definition.

Definition 11.2.2 Let β∗ := (X>X)−1X>f . We call Xβ∗ the best linear
approximation of the vector f .

Thus Xβ∗ is the projection of f on the space spanned by the rows of X.

Lemma 11.2.1 Suppose IEεε> = σ2I. Then
i) IEβ̂ = β∗, Cov(β̂) = σ2(X>X)−1,
ii) IE‖X(β̂ − β∗)‖22 = σ2p,
iii) IE‖Xβ̂ − f‖22 = ‖Xβ∗ − f‖22︸ ︷︷ ︸

approximation
error

+ σ2p︸︷︷︸
estimation

error

.

Proof.
i) By straightforward computation

β̂ − β∗ = (X>X)−1X>︸ ︷︷ ︸
:=B

ε.

We therefore have
IE(β̂ − β∗) = BIEε = 0,

and the covariance matrix of β̂ is

Cov(β̂) = Cov(Bε) = B Cov(ε)︸ ︷︷ ︸
=σ2I

B>

= σ2BB> = σ2(X>X)−1.

ii) Define the projection PP> := X(X>X)−1X>. Then

‖X(β̂ − β∗)‖22 = ‖PP>ε‖22 :=

p∑
j=1

V 2
j ,

where V := P>ε,
IEV = P>IEε = 0,

and
Cov(V ) = P>Cov(ε)P = σ2I.

It follows that

IE

p∑
j=1

V 2
j =

p∑
j=1

IEV 2
j = σ2p.

iii) It holds by Pythagoras’ rule for all b

‖Xb− f‖22 = ‖X(b− β∗)‖22 + ‖Xβ∗ − f‖22

since Xβ∗ − f is orthogonal to X. tu
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Lemma 11.2.2 Suppose ε ∼ N (0, σ2I). Then we have
i) β̂ − β∗ ∼ N (0, σ2(X>X)−1),

ii)
‖X(β̂−β∗)‖22

σ2 ∼ χ2(p).

Proof.
i) Since β̂ is a linear function of the multivariate normal noise vector ε, the
least squares estimator β̂ is also multivariate normal. The result follows from
Lemma 11.2.1.
ii) Define the projection PP> := X(X>X)−1X>. Then

‖X(β̂ − β∗)‖22 = ‖PP>ε‖22 :=

p∑
j=1

V 2
j .

Now V := P>ε has i.i.d. N (0, σ2) entries. tu

Remark 11.2.1 More generally, under appropriate conditions, many estima-
tors are approximately normally distributed (for example the sample median)
and many test statistics have approximately a χ2 null-distribution (for example
the χ2 goodness-of-fit statistic). This phenomenon occurs because many models
can in a certain sense be approximated by the linear model and many minus log-
likelihoods resemble the least squares loss function (applying a two-term Taylor
expansion). Understanding the linear model is a first step towards understand-
ing a wide range of more complicated models.

Corollary 11.2.1 Suppose the linear model is well-specified:

Y = Xβ + ε

Assume moreover that ε ∼ N (0, σ2I). If σ2 := σ2
0 is known, a test for

H0 : β = β0 ,
is:
reject H0 when ‖X(β̂ − β0)‖22/σ2

0 > G−1
p (1− α),

where Gp is the CDF of a χ2(p)-distributed random variable.

Remark 11.2.2 When σ2 is unknown one may estimate it using the estimator

σ̂2 =
‖ε̂‖22
n− p

,

where ε̂ := Y − Xβ̂ is the vector of residuals. Under the assumptions of the
previous corollary (but now with possibly unknown σ2) the test statistic ‖X(β̂−
β0)‖22/p/σ̂2 has under H0 a so-called F -distribution with p and n− p degrees of
freedom.



Chapter 12

High-dimensional statistics

Let X1, . . . , Xn be independent observations with distribution depending on
some parameter θ ∈ Θ ⊂ Rp. Thus, the number of parameters is p and the
number of observations is n. In high-dimensional statistics, p is “large”, possibly
p� n. We consider here a prototype example, namely the ( approximate) linear
model.

12.1 Definition of ridge estimator and Lasso

As in the previous chapter, the data are (x1, Y1), . . . , (xn, Yn) with co-variable
xi = {xi,j}dj=0 ∈ Rp a given p-dimensional vector with xi,0 = 1 and Yi ∈ R a
random response (i = 1, . . . , n). One wants to find a good linear approximation
using the least squares loss function

b 7→
n∑
i=1

(
Yi −

d∑
j=0

xi,jbj

)2

.

Define as in Chapter 11 p := d+ 1 and

X :=


1 x1,1 · · · x1,d

1 x2,1 · · · x2,d
...

...
. . .

...
1 xn,1 · · · xn,d

 ∈ Rn×p, Y =

Y1
...
Yn

 .

Then
n∑
i=1

(
Yi −

d∑
j=0

xi,jbj

)2

= ‖Y −Xb‖22, b ∈ Rp.

The difference with the previous chapter is now that we consider the high-
dimensional situation where p is “large”. This covers the case p ≥ n or even

73
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p� n .

If p ≥ n the matrix X has rank at most n. If its rank is equal to n, then
minimizing ‖Y − Xb‖22 over all b ∈ Rp gives a “perfect” solution β̂LSE with
Xβ̂LSE = Y . This solution just interpolates the data. It is of no use when
design is fixed1: we say that it overfits the data.

To avoid overfitting one may use a penalization term that penalizes a too good
fit. In general, the constant term b0 is not penalized. Recall b = {bj}dj=0. Let

us define b−0 = {bj}dj=1.

Definition 12.1.1 The ridge regression estimator is

β̂ridge := arg min
b∈Rp

{
‖Y −Xb‖22 + λ2‖b−0‖22

}
,

where λ > 0 is a regularization parameter.

Definition 12.1.2 The Lasso (Tibshirani [1996]: least absolute shrinkage and
selection operator) is

β̂Lasso := arg min
b∈Rp

{
‖Y −Xb‖22 + 2λ‖b−0‖1

}
,

where λ > 0 is a regularization parameter and ‖b−0‖1 :=
∑d

j=1 |bj | is the `1-
norm of b−0 .

Remark 12.1.1 Suppose the linear model is correct: Y = Xβ + ε with ε ∼
N (0, σ2I). The ridge regression estimator is the MAP estimator using as prior
β1, . . . , βd i.i.d. ∼ N (0, τ2). The Lasso estimator is the MAP using as prior
β1, . . . , βd i.i.d. ∼ Laplace(0, τ2). The tuning parameter is then in both cases
λ2 = σ2/τ2.

Both ridge estimator and Lasso are biased. As λ increases the bias increases,
but the variance decreases.

The regularization parameter λ is for example chosen by using “cross validation”
or (information) theoretic or Bayesian arguments.

12.2 Theory for ridge estimator and Lasso

Let is write

x0 :=

1
...
1

 ∈ Rn

and
X =

(
x0 x1 · · · xd

)
.

In this section, we assume

1In recent work, data interpolation has been rehabilitated as it can be useful when the
design is random.
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Condition 12.2.1 For j = 1, . . . , n, the entries of xj add up to zero.

This condition can be made without loss of generality. It means that x1, . . . ,xd
are orthogonal to x0: x>j x0 = 0. (Compare with Example 11.1.1.) Define

X−0 =
(
x1 · · · xd

)
∈ Rn×d.

Lemma 12.2.1 Let β̂ = (β̂0, β̂1 . . . , β̂d be either the ridge estimator or the
Lasso. Then β̂0 = Ȳ . Moreover,

β̂−0 = arg min
b−0∈Rd

{
‖Y −X−0b−0‖22/n+ pen(b−0)

}
where

pen(b−0) =

{
λ2‖b−0‖2, if β̂ is the ridge estimator

2λ‖b−0‖1, if β̂ is the Lasso
.

Proof. It holds that

‖Y −Xb‖22 = ‖Y − x0b0‖22 + ‖Y −X−0b−0‖22 − ‖Y ‖22,

where we applied Pythagoras’ rule. tu

Lemma 12.2.2 For β̂ = β̂ridge we have

β̂−0 = (X>−0X−0 + λ2I)−1X>−0Y.

Proof. We apply Lemma 12.2.1. We have

1

2

∂

∂b−0

{
‖Y −X−0b−0‖22 + λ2‖b−0‖22

}
= −X>−0(Y −X−0b−0) + λ2b−0

= −X>−0Y +

(
X>−0X−0 + λ2I

)
b−0.

The estimator β̂−0 puts this to zero. tu

For the Lasso estimator there is no explicit expression in general. We therefore
only consider the special case of orthogonal design and that all columns in X−0

have the same length.

Lemma 12.2.3 Suppose X is a fixed design matrix and X>−0X−0 = nI (thus

p ≤ n necessarily). Define Z := X>−0Y . Then for β̂ = β̂Lasso, and for j =
1, . . . , d,

β̂j =


(Zj − λ)/n Zj ≥ λ
0 |Zj | ≤ λ
(Zj + λ)/n Zj ≤ −λ

.
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Proof. We apply Lemma 12.2.1. We can write

‖Y −X−0b−0‖22 = ‖Y ‖22 − 2bT−0X
>
−0Y + nb>−0X

>
−0X−0b−0

= −2b>−0Z + nb>−0b−0.

Thus for each j ∈ {1, . . . , d} we minimize

−2bjZj + nb2j + 2λ|bj |.

If β̂j > 0 it must be a solution of putting the derivative of the above expression
to zero:

−Zj + nβ̂j + λ = 0,

or

β̂j = (Zj − λ)/n.

Similarly, if β̂j < 0 we must have

−Zj + nβ̂j − λ = 0.

Otherwise β̂j = 0. tu

From Lemma 12.2.2 we conclude that as λ grows the ridge estimator shrinks
the coefficients towards zero. They will however not be set exactly to zero.
From Lemma 12.2.3, the coefficients of the Lasso estimator shrink to zero as
well and some - or even many - are set exactly to zero. It can be shown that
this remains true when the design is not orthogonal. The ridge estimator can
be useful if p is moderately large. For very large p the Lasso is to be preferred.
The idea is that one should not try to estimate a signal when it is below the
noise level. Instead, then one should simply put it to zero.

Some notation
◦ For a vector z ∈ Rd we let ‖z‖∞ := max1≤j≤d |zj | be its `∞-norm.
◦ For a subset S ⊂ {1, . . . , d} with cardinality s := |S| we let bS := {bj}j∈S and
XS := {xj}j∈S .
◦ We let f−0 = X−0β

∗
−0 be the projection of f on the linear space spanned by

the columns of X−0.

In the next theorem we again assume orthogonal design.

Theorem 12.2.1 Consider again orthogonal design with X>−0X−0 = nI. Fix
some level α ∈ (0, 1) and suppose that for some λα it holds that IP(‖X>−0ε‖∞ >

λα) ≤ α. Let β̂ = β̂Lasso. Then for λ > λα we have with probability at least
1− α

‖X−0β̂−0 − f−0‖22 ≤ min
S

{
‖XSβ

∗
S − f−0‖22︸ ︷︷ ︸

approximation
error

+ (λ+ λα)2s︸ ︷︷ ︸
estimation

error

}
.

Proof. On the set where ‖X>−0ε‖∞ ≤ λα we have for j ∈ {1, . . . , d}
- n|β∗j | > λ+ λα ⇒ n|β̂j − β∗j | ≤ λ+ λα,
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- n|β∗j | ≤ λ+ λα ⇒ |β̂j − β∗j | ≤ |β∗j |.
So with probability at least (1− α),

‖X−0β̂−0 − f−0‖22 ≤
∑

n|β∗j |≤λ+λα

nβ∗2j + (λ+ λα)2

(
#{j : n|β∗j | > λ+ λα}

)

= min
S

{
‖XSβ

∗
S − f−0‖22 + (λ+ λα)2s

}
.

tu

Corollary 12.2.1 Suppose that β∗−0 has s∗ := #{j ∈ {1, . . . , d} : β∗j 6= 0}
non-zero components. Then under the conditions of the above theorem, with
probability at least 1− α

‖X−0(β̂−0 − β∗−0)‖22 ≤ (λ+ λα)2s∗.

The above corollary tells us that the Lasso estimator adapts to favourable sit-
uations where β∗ has many zeroes (i.e. where β∗−0 is sparse).

To complete the story, we need to study a bound for λα. It turns out that for
many types of error distributions, one can take λα of order

√
log p.

Remark 12.2.1 The value α = 1
2 in Theorem 12.2.1 thus gives a bound for

the median of ‖Xβ̂−0 − f−0‖22. In the case of Gaussian errors one may use
“concentration of measure” to deduce that ‖Xβ̂−0 − f−0‖22 is “concentrated”
around its median.
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Appendix A

Standard distributions

Standard discrete distributions

1. Bernoulli distribution with success parameter p ∈ (0, 1). X ∈ {0, 1} and

P (X = 1) = p, EX = p, Var(X) = p(1− p).

2. Binomial distribution with n trials and success parameter p ∈ (0, 1).
X ∈ {0, 1, . . . , n}

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . n,

EX = np, Var(X) = np(1− p).

3. Poisson distribution with parameter λ > 0. X ∈ {0, 1, . . .}

P (X = k) =
λk

k!
e−λ, k = 0, 1, . . . ,

EX = λ, Var(X) = λ.

79
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Standard continuous distributions

4. Gaussian distribution with mean µ and variance σ2. X ∈ R,

fX(x) :=
1√

2πσ2
exp

[
−1

2

(
x− µ
σ

)2
]
, x ∈ R.

Denoted by X ∼ N (µ, σ2).

EX = µ, var(X) = σ2.

X ∼ N (µ, σ2) ⇔ Z :=
X − µ
σ

∼ N (0, 1).

N (0, 1) is called the standard normal (or Gaussian).

5. The standard normal distribution function.

Φ(x) :=
1√
2π

∫ x

−∞
e−z

2/2 dz, x ∈ R.

Let Φ−1 be its inverse function. Then,

Φ−1(0.9) = 1.28, Φ−1(0.95) = 1.64, Φ−1(0.975) = 1.96.

6. Exponential distribution with parameter λ > 0. X ∈ R+ := [0,∞),

fX(x) = λe−λx, x ≥ 0.

EX = 1/λ, Var(X) = 1/λ2.

7. Gamma distribution with parameters α, λ. X ∈ R+ := [0,∞),

fX(x) =
λα

Γ(α)
xα−1 e−λx, x ≥ 0.

Here Γ(α) is the Gamma function and for integer values Γ(m) = (m−1)!.

EX = α/λ, Var(X) = α/λ2.

8. Beta distribution with parameters r, s. X ∈ [0, 1],

fX(x) =
Γ(r + s)

Γ(r)Γ(s)
xr−1 (1− x)s−1, x ∈ [0, 1].

EX =
r

r + s
, Var(X) =

rs

(r + s)2 (1 + r + s)
.
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9. Chi-Square (χ2) distribution.

The χ2 distribution with m degrees of freedom is the Gamma distribution
with parameters (m/2, 1/2). Denoted by χ2(m). In particular,

X ∼ N (0, 1) ⇒ X2 ∼ χ2(1),

Xj ∼ N (0, 1), j = 1, . . . ,m, i.i.d. ⇒
m∑
j=1

X2
j ∼ χ2(m),

10. Student distribution.

If Z ∼ N (0, 1), Y ∼ χ2(m), Z ⊥ Y , then,

T :=
Z√
Y/m

,

has a student distribution with m degrees of freedom.

Its density is given by

fT (t) =
Γ((m+ 1)/2)√
mπ Γ(m/2)

(
1 +

t2

m

)−(m+1)/2

, t ∈ R.

11. Studentizing. Let {Xi}ni=1 be i.i.d. with N (µ, σ2) distribution. Let
Xn :=

∑n
i=1Xi/n and set

S2
n :=

1

n− 1

n∑
i=1

(Xi −Xn)2.

Then, Xn and S2
n are independent and

√
n
[
Xn − µ

]
Sn

has a Student distribution with n− 1 degrees of freedom.
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