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Chapter 1

Introduction

With todays large amounts of data, statistics is more relevant than ever. Un-
derstanding what statistical algorithms (or machine learning algorithms) do,
and how to interpret their outcome is essential in scientific research, and also
in daily life. In this lecture we treat some classical concepts and methods from
statistics, with an outlook to more modern mathematical statistics in Chapter
12 (new developments are coming in very fast). The mathematical theory relies
on various branches of mathematics: probability theory, (functional, numerical)
analysis, optimization, geometry, topology, algebra, .... Moreover, mathemati-
cal statistics has its own mathematics. With the present lecture notes we will
not be able to treat all this. There will be very few formal theorems with formal
proofs. The idea is rather to get a first glimpse of the statistical philosophy. We
present approaches to statistical problems that intuitively should “make sense”,
but most of the time we do not formally prove any optimality properties. The
latter is the main theme of the lecture Fundamentals of Mathematical Statistics.

An overview of standard distributions is given in Appendix A.

1.1 Notation

In the lectures on probability theory, we have seen random variables X with
distribution P. Formally, one starts with a probability space (2, F,P), and
a random variable X is defined as a measurable mapping X : € — X where
X = R* or more generally some measurable space. The distribution P of X is
given by

PA) =Pwe: X(w)eA)=P(X A

for measurable sets A C X. Shorthand notation: X ~ P. In what follows, we
will implicitly assume measurability without stating this explicitly. Moreover,
we sometimes apply the abuse of notation

P(A) := P(X € A).
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6 CHAPTER 1. INTRODUCTION

In statistics, the distribution P is unknown and we aim at estimating it from
data. For example, X could be the yearly expenditure of a person living in
Switzerland. We do not know the distribution of X because we did not ask
everybody what his/her expenditures were. We can estimate the distribution
by asking n persons their expenditures. The data then consists of their answers
X1,...,Xn. As another example, in classification one observes X = (Y, 2)
where Y € {0,1} is a label and Z are features. This could be for instance
X = a painting, Z = colours used, composition (coded in an suitable way),
abstraction level (coded in a suitable way), etc., and Y = 1 if the picture is
a Picasso and Y = 0 otherwise. We do not know the distribution of Y given
Z, i.e., the probability of a Picasso given the features Z of the painting. We
also do not know the distribution of the features. The data may be n paintings
where we know the features and whether or not it concerns a Picasso. We aim
at learning from the data (so-called supervised learning) how to recognize a
Picasso up to a small probability of making a mistake.

In most of the theory in these lecture notes, the data (observations) are as-
sumed to be independent identically Qistributedl(which we abbreviate to i.i.d.)
random variables X1, ..., X, each having the same distribution P on X.

We call X' the observation space (typically (a subset of) Euclidean space). The
sample is X = X, := (X1,...,X,) € A" and n the sample size. We say that
X1,...,X, are i.i.d. copies of a random variable X € X.

1.2 Statistical models

Definition 1.2.1 A statistical model’ says that X ~ P € P:={Py: 6 € O}.
The set © is called the parameter space.

Notation If X € R* has distribution Py its expectation depends on 6. We
(often) write the expectation with a subscript: EpX.

Example 1.2.1 .The normal distribution is commonly used to model “mea-
surement error”. If X € R and its mean p:= EX exists can write

X =p+e

Thus for all Ai,..., A, measurable subsets of X,

Plw: X1(w) € A1,..., Xn(w) € An) = ﬁ]P(w D Xi(w) € Ay).

=1

*Formally, one calls {(Q, F,Pg) : 6 € O} a statistical experiment. The observations are
Xi: Q> X, i=1,...,n, and in the i.i.d. case, for all Ai,..., A, measurable subsets of X,

Polw: Xi(w) € A1,...,Xn(w) € An) = ﬁ]Pg(w s Xi(w) € Ay).
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where € = X — p can be seen as measurement error or noise. If we assume
p € R to be unknown and € ~ N(0,02) where the variance o® > 0 is also
unknown, the statistical model is

P = {Pg is the normal distribution with mean p and variance o2,

0= (u,0%) R XR+}.

A statistical model is typically an idealization of the real world situation. For
instance in Example 1.2.1 above, the assumption of a normal distribution is
perhaps for its ease in computations, or inspired by the central limit theorem.
The model is at best only an approximation of the truth. In these lecture notes,
we will however assume throughout that the model is correct, unless otherwise
stated (as we will in Chapters 11 and 12). If the model is not correct we call it
misspecified. There exists a large body of statistical methods that are robust
against model misspecification. It is a topic in itself and closely related to the
theory for adversarial learning developed in e.g. the computer science literature.

Note that if we know nothing about the distribution P we have
P = { all distributions on X'}.

Then we may take ® = P. In other words, the parameter space © may be
finite-dimensional such as is the case in Example 1.2.1, but it can also be
a rather abstract space such as the space of all distributions. Of course if
X is finite, say |X| = ¢, then the space of all distributions on X is finite-
dimensional, in the sense that it can be described by ¢ (in fact ¢ — 1) Euclidean
parameters (the probabilities P(X = z) , = € X). But otherwise, the class
P := {all distributions on X'} cannot be described by finitely many Euclidean
parameters. We call a model with parameter space © that cannot be described
by finitely many Euclidean parameters nonparametric.

1.3 Parameter of interest and estimators

Let P :={FPy: 6 € ©} be a statistical model.

Definition 1.3.1 A parameter of interest is v := Q(P) where Q is a given
map @ : P — T with domain some given space I (typically T' = R or some
subset thereof ). We then write g(0) := Q(Py) where g: © +— T.

In Example 1.2.1: X ~ N (p1,02), 0 = (u,0?), the parameter u (the signal) is
typically the parameter of interest. It is the quantity we observe with measure-
ment error € (the noise). The variance o2 is then called a nuisance parameter.

Example 1.3.1 Let X = (Y, Z) € {0,1} x R where Z = pitch of voice and
Y = gender (Y =0 is male and Y =1 is female). Suppose the probability that
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Y =1 given the pitch of voice Z = z is strictly increasing in z. A parameter of
interest could then be the value v € R for which given Z = z:

Y =0 (male) is more likely if z <y
Y =1 (female) is more likely —if z >~

(This example corresponds mathematically to Example 3.2.5).

We consider a sample X = (X1,...,X,,) € X™.

Definition 1.3.2 An estimator (or statistic) T' of a parameter of interesty € I’
is a given (measurable) map T : X" — I'. We then also call T(X1,...,Xy) an
estimator (or statistic).

Remark 1.3.1 With some abuse of notation, we write shorthand
T=TX)=T(Xq,...,X,).

That is we do not make a the distinction in notation between the map T and its
evaluation at X = (X1,...,X,). It should then be clear from the context what
is meant. For example, we write BgT =:EyT (X).

Remark 1.3.2 Often we denote estimators with a “hat”, e.g. ¥ = ¥(X) as
estimator of 7.

We present ways to construct estimators in the coming chapters. It depends on
your creativity, your computational limits and the model assumptions you are
prepared to make. Estimators should preferably “make sense”: For example,
having a law of large numbers in mind they should be close to what one is
trying to estimate when the sample size n is large. What estimator would you
use for v in Example 1.3.1 about pitch of voice? Well, for {X; = (Y;, Z;)}I" 4,
being the data, a reasonable estimate of v could be the value 4 that makes the
smallest number of errors in the sample, i.e.

|{Z Y, =0, Zi>’A)/}U{YVi:1, Zi<’A)’}|

emin|{i: V; =0, Z; >z} U{Y; =1, Z; < z}|.
z

1.4 The law of large numbers as source of inspiration

The law of large numbers is an important result for developing statistical theory,
and we use the abbreviation LLN. We recall that for Xi,..., X, i.i.d. copies
of X € R where E|X| < oo, the LLN says that the sample average X :=
>, Xi/n is for n large close to the theoretical mean p := EX. More precisely,
X = X,, converges to u in probability as n — co. One has in fact convergence
almost surely if X1,..., X, are the first n of an infinite sequence. Thus it makes
sense to estimate p by X. Similarly, for a given function g : X — R, inspired by
the LLN, an estimator of Eg(X) is > ;" ; g(X;)/n and for a given (continuous)
function h : R — R an estimator of h(u) is h(X), etc.
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For example 02 = EX? — y? = E(X — u)? by definition, so the LLN leads to
the estimator

n

1 & _ 1 _
==Y XP-X'==-> (Xi - X)%
n n
=1 =1

An estimator 4 = 4, of y is called consistent if 4,, converges to 7 in probability.
In this lecture, we judge estimators that are consistent as “making sense”, but
we will also see situations where the estimator makes sense, but proving its
consistency is beyond the scope of this lecture and usually requires some addi-
tional conditions (see Fundamentals of Mathematical Statistics for consistency
proofs).

Let

Fx):=P(X<z), z€R

be the cumulative distribution function (CDF) of X. Again, inspired by the
LLN, an estimator of F' is

1 n
Fo(w) = ~ > Yxi<op z€R.
1=1

The function F), is called the empirical distribution function.

(a) F,, when X ~ N(0,1) and n =100  (b) The theoretical F(= ®) in green

Figure 1.1: A realization of the empirical distribution function F, in 1.1a and
comparison with the theoretical distribution function F' in 1.1b.

One can use similar inspirations when X is not the real line (X = R* for
example, or even a more abstract space). We will encounter these later.
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1.5 Mean square error

Ideally, we aim at estimators of a parameter of interest that are in some sense
“good”. Then one needs to make precise what is meant by “good”. For real-
valued parameters of interest v € R the mean square error is a popular criterion
for accessing the performance of an estimator 7' € R. Another criterion is
unbiasedness.

Definition 1.5.1 The mean square error (MSE) of an estimator T € R of
v:=g(0) e R is

MSEy(T) = Eo(T — g(0))>.

The bias of T is
biasy(T') = EgT — g(0).

The estimator T is called unbiased if

biasy(T) =0, V 0 € O.

A little warning may be in place: MSE (and bias) may be difficult to compute
exactly. For instance, in Example 1.3.1 about pitch of voice, the MSE of ¥
has to the best of our knowledge never been considered exactly. This warning
indicates that we can only handle “toy” examples. Note moreover that the MSE
depends the underlying unknown distribution, and hence is typically unknown.
A further warning is that unbiased estimators often do not exist and if they do
they cannot stand non-linear transformations! That nevertheless MSE and bias
remain important throughout the statistical literature comes from the fact that
there is much theory on approximate MSE and bias (e.g. using “asymptotics”
beyond LLN’s).

The following lemma presents the famous bias-variance decomposition for MSE.
If you like, it is Pythagoras’ rule in abstract terms.

Lemma 1.5.1
MSEy(T) = biasj(T) + Varg(T).

Proof. Write ¢(6) := Ey(T). Then

MSE4(T) = Ey <T —q(0) +q(0) - 9(9)>2
= Ey <T - q(0)> : + <q(9) - 9(9)>2

+ 2 <q(9) - 9(9)> Ey <T - Q(9)>

=0
= Vary(T) + bias3(T).
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Example 1.5.1 Let Xy,...,X,, be i.i.d. copies of X € R where EX =: pu
and Var(X) =: o%. Then the sample average X = Y, X;/n is an unbiased
estimator of (.

For n > 2 the sample variance S? := 3" (X; — X)?/(n — 1) is an unbiased
estimator of 0. To see this, note that

=1

that was inspired by the LLN is not unbiased. If one wants to compare the mean
square error of S? and 6% one needs to calculate the variance of Y v | (X; — X)?
which requires additional distributional assumptions. It turns out that when
X; ~ N(u,0%) (¥ i), then actually 6 wins from S? in terms of MSE: 62 is
biased but has smaller variance! Of course for n — oo the difference in MSE’s
disappears.

We further observe that S is generally not an unbiased estimator of o: by
Jensen’s inequality
ES < /(ES?) =0

with equality only in the degenerate case where var(S) = 0. Nevertheless, al-
beit biased, S remains a “reasonable” estimator by the LLN. Thus, non-linear
transformations generally ruin unbiasedness and one often need not to be too
upset about that.

1.6 The central limit theorem with estimated wvari-
ance

Let for n > 1, Xy,..., Xy be i.id. copies of X € R where EX =: p and
var(X) =: 02 < co. Let X,, := > I | X;/n be the average of Xi,...,X,. By
the central limit theorem (which we abbreviate to CLT)

Iim P Mgz =®(z)VzeR
( )=o)

n—oo o

where ® is the standard normal distribution function. This result is frequently
applied in statistics to construct approximate confidence intervals for the un-
known g when the data are Xi,..., X, (as we will do in the next section).
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However, in most statistical situations the variance o2 is unknown as well. One

can show (“Slutsky’s Theorem”, see Fundamental of Mathematical Statistics)
that for 62 > 0 a sequence of random variables which converges in probability
to o2, the CLT still holds with o replace by &2:

Iim P MSZ =®(z2) Vz € R.
( ) =)

n—00 On

1.7 An example using the central limit theorem

The example in this section serves as a look ahead: more theory is to follow
in Chapter 8. It will illustrate that there a several ways to tackle statistical
problems (for example several ways to estimate a parameter of interest). Then
one would like to know what the best approach is. And the answer is: it
depends!

We illustrate the use of the CLT here for the case where X ~ Poisson(\), with
A > 0 an unknown parameter (see Appendix A for a definition of the Poisson
and other distributions). Suppose we observe Xi,..., Xy, i.i.d. Poisson(\)-
distributed random variables. We estimate F\X = A by the sample average
A := X (omitting the subscript n). It holds that ExX = X for all A > 0 so
X is unbiased. Moreover Vary(X) = A\/n. By the CLT, X is approximately
N (A, A/n)-distributed for n large. Thus for all z > 0

]P,\<|X - A < z\/)\/n> ~PO(z) - P(—z) =2P(2) — 1.
Now we choose z = 1.96 which gives 2®(z) —1 = 29(1.96) — 1 = 2(0.975) — 1 =
0.95. To clean up the formula’s®, we replace 1.96 ~ 2 by 2.

Moreover we let

L(X) = {)\>0: |X—A|g2\/%}

_ 2 X +1 _ 2 X +1
n n n n

where the second equality follows from some computations. Then we have by
the CLT

P, <)\ S Il(X)> ~ 0.95.

We call I1(X) an approximate 95% confidence interval for \.

An alternative way to use the CLT to build a confidence interval for A is based
on an estimate of the variance of X:

Vary(X) := A/n = X /n.

3Rule of thumb: an approximate 95 % confidence interval for v € R is 442x the (estimated)
standard deviation of 4, provided 4 — v is approximately a centered normally distributed
random variable.
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As stated in Section 1.6, the CLT still holds with this estimated variance

]PA<|X )< zm> ~ 2B(2) — 1.

Let now

Then (using again 2 ~ 1.96), I>(X) is approximately a 95% confidence interval
for A:

P, (A € Ig()_()) ~ .95.

The two intervals I1(X) and I5(X) are for n large approximately equal (the
first one is slightly more conservative).

One may also use S2 =31 (X — X)Q/(ZL — 1) as estimator of the variance of
X and use this estimator in the CLT for X. This would give a third confidence
interval I3(X, S?).

Since Vary(X) = X\ we see that S? is also an alternative estimator of . One
may ask which one of the two estimators, X or S2, is “better”. One may want
to compare them by calculating the MSE’s of the two estimators (calculation
the MSE of S? is not an easy exercise). One could try to apply a CLT for S?
instead of X (this is indeed possible) and base a confidence interval for A on
that. Then one needs to estimate the (asymptotic) variance of S? (which is
possible too).

Statistical theory says that the differences between the confidence intervals
I(X), Io(X) and I3(X, S?) vanish as n — oo, provided that the Poisson model
is correct. If the model may be wrong, I3(X, S?) is a safer (more conservative)
choice than I1(X) and I3(X). The fourth approach where the confidence inter-
val is based on S? instead of X is asymptotically valid under the assumption

that the model is correct, but it is more conservative than I(X), I5(X) and
I3(X, S8?).

If the sample size is small, one may prefer to construct exact confidence intervals
for A instead of approximate ones. This is possible too, see Chapter 9.

Numerical example

In a numerical example (and in real life), one sees the “realizations” of the ran-
dom variables involved. These realizations are denoted with lower case letters.
A realization of an estimator is called an estimate.

This is from Example 10.19 in DasGupta [2011]. Let the data be
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x; | # days
0 100
1 60
2 32
3 8
>4 0

Thus n = 200 and the observed value for X is Z = .74. Then an approximate
95% confidence interval for A is

I)(z) =z £2/%/n =[0.62,0.84].

Let v := g(\) := P\(X > 4) be the parameter of interest. Then

—

5= g(\) == g(\) = g(z) = .00607,

and, since A\ — g¢(\) is a monotone function, an approximate 95% confidence
interval for « is

g<;z~ +2 :E/n) = [0.0038, 0.01].

Suppose now we estimate the variance Vary(X) of X by the sample variance
S2.

v, — 7 | (v; — )% | # days
.74 5476 100
.26 .0676 60
1.26 1.5876 32
2.26 5.1076 8

We find that the observed value of S? is s% := Y1 | (z; — Z)?/(n — 1) = .7561.
Since Vary(X) = A, both = .74 and s? = .7561 are unbiased estimates of .
The fact that these values are not very different can be seen as an indication
that the Poisson model is appropriate.

Invoking s? to construct another approximate 95% confidence interval for A
yields

I3(Z, %) = T+ 2¢/s/n = [0.62,0.86].



Chapter 2

The method of moments

The method of moments is a procedure for constructing an estimator of the pa-
rameter describing the distribution, when this parameter is finite-dimensional,
say of dimension d.

Let X € R and let the data X1,..., X, be i.i.d. copies of X.

Definition 2.0.1 For k € N the k-th moment of X is
M = EXk

(if the expectation ezists).

Definition 2.0.2 The k-th sample moment (or empirical moment) is

I
[k ._EZXZ-, k € N.
k=1
Note By the LLN /i =~ u for n large (provided the moment exists).

2.1 Definition of the method of moments estimator

Suppose that X has distribution Py, where §# € © ¢ R?%. Then the moments of
X also depend on 6:

e = pi(0) = EpX.

Definition 2.1.1 The methods of moments estimator 0 is a solution of

Mk’(ﬁ)ﬁ:é =fg, k=1,...,d.
(assuming a solution ezists).

15
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Thus with the method of moments, one creates d equations with d unknowns
and tries to solve these. These d equations are based on the sample moments.
The parameter 6 is a solution of the d equations with the sample moments
replaced by the theoretical moments. Since the sample moments are close to to
the theoretical moments by the law of large numbers, the estimator 0 “makes
sense”: if the inverse map of ¥ — {1 (9)}¢_, is continuous, then 6 will be close
0.

2.2 Examples

Example 2.2.1 Let the data Xi,...,X, be i.i.d. copies of X ~ N(u,0c?),
where both i € R and 0® > 0 are unknown. Then the methods of moments
estimator s

n

_ 1 & _ 1 _
p=X, 6% = H;XEXZZ n;(XiX)Q.
Example 2.2.2 Let X ~ Gamma(a, \) (see Appendiz A):
EyX = a/)\, Varg(X) = a/N\2
Then EgX? = a(a+1)/X2. So the methods of moments estimator (é, \) solve

the two equations

It follows that

Example 2.2.3 Let the data X1,...,X, be i.i.d. copies of X where X has
Lebesgue density

146z
2

po(x) , —1<z<1, -1<0<1.

Then

The methods of moments estimator is thus 6=3X.

Example 2.2.4 (Gaussian mizture) Let X have density

polz) = 7711¢><x - ”1) . m)%(‘”” - ”2)

71 71 2 T2

where ¢ is the standard normal density. To simplify, we assume that m = %,
v1 =0 and 71 = 1 are given. We write v := vy and 7 := 1. The unknown
parameter is = (v, 7). We have

1 1

1
EX = P EX? = 3 + §(V2 +72).
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So the method of moments estimator (0, 7) solve

Hence
=211, 7° = 2fp — 441 — L.

2.3 Plug in method

The method of moments is inspired by the LLN, but the LLN can also be
a source of inspiration for further constructions. The idea is to mimic the
unknown theoretical parameter of interest by its empirical counterpart. We
present two examples.

Example 2.3.1 Let (X,Y) € R2. The best linear predictor of Y given X is
defined as oo + X where

(5) =wemind By - @+o0) - (3) v}

Here “arg” stands for “argument”, i.e. the location of (in this case) the mini-
mum. By direct calculations one sees that

Cov(X,Y)

a=FEY — BEX, B = Var(X)

Let now (X1,Y1),...,(Xn,Ys) be i.i.d. copies of (X,Y). Then, the LLN leads
to the estimators
Lo ASm X -X)(Yi-Y
d::Y—,BX,ﬁ::”Zle(n )(_2 )
Ezizl(Xi - X)

The estimator (&,B)T is called the least squares estimator. Note that

<g> —argmin{iiz:;(}’g— (a+bX,»)>2: (Z) eRz}

see also Example 11.1.1.

Example 2.3.2 Let X € R have CDF F. Assume the median m := F~1(3)
exists. Let F, be the empirical distribution function (see Sectionl.4). We can

estimate m by a solution m of Fy,(m) ~ % The sample median is
M= XX g '
BBy even

Here X(1) < --- < X(y are the order statistics.
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Chapter 3

Maximum likelihood

Maximum likelihood is another way to construct estimators. Let X € X and
suppose that X ~ Py € P := {Py : ¥ € ©}. In order to be able to define
the maximum likelihood estimator of 6 we need to assume that the family P is
dominated by some sigma-finite measure v. We then call, for 4 € ©

_ &
Py = dv

the density of Py (with respect to v). Typically, we consider one of the two
cases:

e The space X is finite or countably infinite. Then we can take v as the
counting measure, and for z € X

po(x) = Py({x}),
which we write with some abuse of notation as py(z) = Py(X = z).

e The space X is a subset of R¥ and v is Lebesgue measure. Then Py is
absolutely continuous, and py is the Lebesgue density of Py. In that case,
for Fy the CDF of Py, we can take for v-almost all z = (&1,...,&)

ak
pﬂ(ﬂf) = mF(fla e 7€k)

3.1 Definition of the maximum likelihood estimator

Let X = (X1,...,X,) be a sample of size n of i.i.d. copies of X. We use the
notation: for a real-valued function f on some domain Z: argmax,cz f(2) :=
the location of the maximum of f.

Definition 3.1.1 The likelihood function is

th@%R,

19
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with .
Lx(®) == [ [ po(Xi), 0 € ©.
i=1

The mazimum likelihood estimator (MLE) of 6 is

é = é = L ’l?
MLE arg %leaé( X( )

(assuming the mazimum exists).

One may ask why maximum likelihood “makes sense”. Is the MLE 6 close
to 6 when n is large? The answer is: yes, under certain conditions it is. In
the background there is again the LLN which indicates maximum likelihood is
potentially a good idea. We will not give the theory here, see Remark 3.1.2
for a first hint and see for example the lecture Fundamentals of Mathematical
Statistics.

Maximum likelihood also intuitively “makes sense”. Here is an example. Sup-
pose you throw a coin n = 10 times. The probability € of heads is unknown, but
suppose we know that either 6 = 1/2 or § = 1/4,1.e. © = {1/2,1/4}. Now after
throwing the coin, one finds 7 heads. What would you then be your estimate of
07 1 would say =1 /2 because we found many heads, which makes the value
¥ = 1/2 more likely than the value ¥ = 1/4:

10\ /1\*
Py—_1/2(7 heads) = <7> <2> =0.117,

7 4
Py_1/4(7 heads) = <170> (i) (Z) = 0.016.

In other words, Lx—7(1/2) = 0.117, Lx_7(1/4) = 0.016.

and

One may note that the likelihood function is nothing else then the density
of X, which is [[;" ps(xi), evaluated at (x1,...,x,) being the sample X =
(X1,...,X,). The difference between the concept likelihood and the con-
cept density is that the likelihood function considers [[;"; py(x;) as function
of the parameter ¥, whereas the density considers [[;" | py(z;) as function of
(ZL'l, ceey I‘n)

Remark 3.1.1 Since z — log z, z > 0 is a monotone transformation, one may
also maximize the log-likelithood log Lx.

0 = Oyiip = log Lx (9) = ] X;).
MLE = arg maxlog Lx (V) argglgg; og py(X;)

If © C R is finite-dimensional, the MLE can often (not always!) be obtained
by setting the derivative of the log-likelihood to zero:

n

> si(Xi) =0,

=1
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where 5
== 4.
s9(-) 1= 55 logpa(:)
Remark 3.1.2 (LLN as source of inspiration) One can show that

0 = argmax Eylo X
g wax Ey log py (X),
and also, when © C R% and under reqularity conditions,

0
Epsg(X) =0, sy := %logpqg.

3.2 Examples

Example 3.2.1 Let the data be X1,..., X, be i.i.d. copies of X ~ N (p,0?),
where both 1 € R and 0® > 0 are unknown, i.e. 0 = (u,0?). Writing 9 :=
(f1,52) the log-likelihood is

Z?:l (Xi — ﬁ)2 .

" n n -
Lx(9) = ) _logpy(X;) = = log(2m) — 7 log&° — 552
i=1

Taking derivatives w.r.t. [i gives

> i1 (Xi — fvg)
~2
OMLE

= 07
so that ivLE = X. As
n
X = argmin ) J(X; — )%,
L

it is also called the least squares estimator (LSE) of p.

Inserting finvie = X and differentiating w.r.t. 62 gives

n Z?:l(Xi _X)Q _

+ 0

T 952 ~d
2031, 20\ 1R

50 0Le = + >oi 1 (X; — X)?. Thus, in this case the MLE equals the method of

moments estimator (see 2.2.1).

Example 3.2.2 Let the data X1, ..., X, be i.i.d. copies of X ~ Laplace(u, 0?),
where both p € R and 0® > 0 are unknown, i.e. § = (u,0%). The (Lebesgue)
density of X 1is

po(x) = % exp

The log-likelihood based on the sample X = (X1,...,X,) is
7.1 X’L —
SNl

(2

1 [_Im—uq s ER

Lx(¥) = "logpy(X;) = —nlog2 — nlog & — = (1, 6).
=1
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It follows that
n
AMLE = arg mﬂinz | X — .
i=1

For n even the minimizer is not unique. We take the sample median

AMLE = T 1= X 04X n
41
S 2R £2) 3 G+ ) even

where X1y < -+ < X(y,) are the order statistics (see also Section 1.4). The
sample median is often called the least absolute deviations (LAD) estimator of

W

What is still left to do in this example is to calculate the MLE of o. By differ-
entiating the log-likelihood w.r.t. & one gets
n > i | Xi — 1] _

" L=l
OMLE OMLE

0,

which gives G\LE = % Yo | X — .

Let us briefly present an alternative view how LLN can make sense out of the
estimator m ~ argming > . ; | X; —fi|/n, even when the data are not Laplacian.
One may verify that

E|X - = 2/ (1 - F(x))dz+ i — EX,
x>

m
where F is the CDF of X. One can find

arg min F|X — i
i

by setting the derivative of E|X — [i| to zero
_2(1 - F([‘))|ﬁ=argmin +1=0.
In other words

argmin E|X — | = F~'(§),
H

is the theoretical median (provided it exists).

Remark 3.2.1 Estimating the mean EX by the LSE X remains a valid pro-
cedure also for non-Gaussian data. Similarly, the LAD estimator m remains a
valid estimator of the median Ffl(%) also when the data are not Laplacian.

Example 3.2.3 Let the data be X ~ Binomial(n,8), where the success proba-
bility 0 < 6 < 1 is unknown. Then for x € {0,1,...,n}

pola) = Pox =)= ()1 - 0.
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and
log Lx () = log py(X) = log <;> + Xlogd + (n — X)log(1—9).
We have p \ X
n [R—
—1 X)=—— :
Setting this to zero gives
X - X
M e —
Ovie 1 —0mie
guing
- X
OMLE = —.
n

Example 3.2.4 Let the data X1, ..., X, be i.i.d. copies of X € {1,...,q}. For
example, X represents a “class label”. The probability of a particular label is
unknown:

P@(X:.]) ::9]'7 jzla"'7Q7
where

q
969:{19€]R‘1: 9; >0V 4, Zﬁj:1}.
j=1

We may write

log pg(z Z lz—jy log ¥;.

Hence the log-likelihood based on X = (X1,...,X,,) is
Zlogpg ZZI{X —j) log ¥ —ZN log ¥,
=1 j=1

where Nj := 31" lx,—jy = #{Xi = j} counts the number of observations with
the label j (7 =1,...,q). To find the mazimum of the log-likelihood under the
restriction that Z?:l Y; = 1 we use a Lagrange multiplier \: we mazximize

q q
Zleogﬁj-i-)\(l —Zﬁj)
j=1

J=1

Differentiating and setting to zero gives for the MLE 6

o q q
aﬁA{ZleogﬁjJrAO —Z@-)} =
7= j=1 o

Thus N
9]‘:7], j:].,...,q.
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The restriction now gives

Example 3.2.5 This example concerns a case where the parameter space is
infinite-dimensional. We present it to illustrate that mazimum likelihood can
also be used when the parameter is non-Euclidean (see e.g. Groeneboom and
Wellner [1992] for more about nonparametric mazimum likelihood and in par-
ticular the problem described here). This example is not part of the exam.

Let Z be the arrival time of (slow) mail. The arrival time Z is never observed
exactly. You check your (physical) mailbox every day at a random time T'. Then
either the mail arrived: Y = 1, or it did not: Y = 0. Aim is now to estimate
the distribution of Z. The problem is called “interval censored”. Let F be the
CDF of Z. We have P(Y =1|T =t) = F(t) and P(Y =0|T =t) =1 — F(t).
Thus the density (with dominating measure the distribution of T') is

pr(y,t) = FY(t)(1 — F(t))'™Y

and so
logpr(y,t) = ylog F(t) + (1 — y) log(1 — F(t)).

Having checked the mailbox for n days, the data are i.i.d. copies X = {Y;, T;}7-,,
of X = (Y,T). The log-likelihood is

n

Lx(F) =) (Y log F(T;) + (1 — Y;) log(1 — F(:m>>,
=1

where the parameter F ranges over the parameter space F of all CDF’s. The
( “nonparametric”) MLE is

Fug = arg max LX(F).
FeF
Questions are now: does it exist, how to compute it, what are its properties?

(This example is closely related to Example 1.5.1 when the parameter of interest
is F~1(1/2).)



Chapter 4

Hypothesis testing

In this chapter, we denote the data by X, i.e. we replace X by X (and P by
P). This makes the notation less Baroque.

Let X € X, X ~ Py, 0 € ©. We consider two hypotheses about the parameter
f: for g C ©,0, CO,00NO; =10

Hy : 6 € ©g the null hypothesis,

H; : 0 € ©; the alternative hypothesis.

Example Let X ~ Binomial(n, ) and
Hy: 0=
H1 ;0=
Suppose we observe the value X = 14. We have

Py (X = 14) = .074 |

Py, (X =14) = 112 .

We see that the likelihood Py, (X = 14) is larger than the likelihood Pp, (X =
14). The value § = 2 is the maximum likelihood estimate over {3,3}. The
likelihood ratio is

)

NS NI

Py, (X = 14)

SRS ;1 B
Pp, (X = 14) >

Is this large enough to reject Hy in favour of H?

To answer the question in the above example, we need to agree on a criterion
for evaluating whether or not rejecting the null hypothesis is a good decision.
The point of view one uses in statistical hypothesis testing is that the null
hypothesis Hy represents a situation where “everything is as usual”, or “no
evidence found”. For example!, if it concerns the decision of putting someone
in prison (for murder) or not, it makes sense to choose

Hy : the person is innocent,

Hy : the person is guilty,

when convicting an innocent person is an error considered worse than not to
convict a guilty person. The Bayesian approach is to put a prior on Hy and H;

!The use of statistics in the court room is under debate. We only use this illustration to
explain the idea of hypothesis testing more vividly.

25
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(see Chapter 10), i.e. in the above example, a prior belief whether a person is
a murderer. In the frequentist approach, no prior is used.

4.1 Definition of a test

We can make two errors: rejecting Hy (accepting Hy) when H is true (error first kind)
and not rejecting Hy when Hj is true (error second kind). It is (generally) not
possible to keep both errors under control. The idea is now to keep the prob-
ability of the error of first kind below a (small) prescribed value «.

Hy H,
error probability
p=1]| first =
kind power
error
¢=0 second
kind

Definition 4.1.1 A statistical test® at given level a (0 < a < 1) is a (measur-
able) map ¢ : X — {0,1} such that

1 means Hy is rejected
P(X) = {

0 means Hy is not rejected

and such that
Pgo(¢(X) = 1) <aVbe 0.

The power of the test at 01 € ©1 is Py, (¢(X) = 1).

Thus, in a loose notation, ¢ = 1 is in favour of H; and ¢ = 0 is in favour of Hy.

I.e. the decision is
H =1
H¢ _ 1, QZS )
HO) (b =0

A statistical test is often based on a real-valued test statistic, say 7' = T'(X),
such that ¢(X) =1 iff T(X) > ¢, where ¢ is called the critical value of the test.

Once the null hypothesis is rejected, this can be reason for further research. It
may also be a reason for publication of the findings, and then the results should
be reproducible. If the null hypothesis is not rejected, one says that the result
is not significant. One can see this too as an interesting result that might be
publishable. However, one should be careful here, as it could just be due to a
lack of power of the test. For example, if pharmaceutic industry wants to show
that the effect of a new (cheaper to produce) drug is not significantly different
from the existing drug (bio-equivalence), it could stir towards a non-significant
effect by basing the test on very little test persons.

*We extend this to “randomized” tests ¢ : X — [0,1] in the next section
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Example X ~ Binomial(n, #), with n = 20.

H():@S%,
H120>%'
We choose o« = .05. Let
1 X>c
X) = ,
5(%) {O o

where we now need to choose the “critical value” c is such a way that

PgO(X>C)§aV90§

o=

Consider the map

9 Py(X > c) = zn: (;‘)m(l —9)me,

r=c+1

It is increasing in ¥ so that

n
n\ 1
max Py, (X > ¢) = Py _1(X >¢) = ) (x>2n

90§§

N|—=

It holds that

PHO:%(X > 15) < <@ < POOZ%(X > 14).
= —_—
=0.0207 005 =0.0577

We choose the critical value ¢ as small as possible: ¢ = 15.

4.2 Definition of a randomized test

We have seen in the previous example that for discrete distributions, it is not
always possible to make the error of first kind exactly equal to a. In a sense, a
part of « is then left unused (comparable with a knapsack that is not completely
filled, but all items that are not in the knapsack are too large to put in). By
applying a randomized test, this problem is overcome (comparable to cutting a
too large item so that it fits in the knapsack).

Definition 4.2.1 A randomized statistical test at given level o (0 < v < 1) is
a (measurable) map ¢ : X — [0,1] such that

1 means Hj is rejected
#(X)=1<qe€(0,1) means Hy is rejected with probability ¢
0 means Hy is not rejected

and such that
E@O(Z)(X) <aVbe o,

The power of the test at 01 € ©1 is Eg, ¢(X).
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In other words, when ¢(X) € (0,1) one throws a coin with probability ¢(X)
of success (heads) and rejects when it is heads. One may object that this is
something one will never do in practice. Yet, it does make sense. Imagine
a lab that carries out experiments every day, and based on these data, tests
hypotheses every day. Then the same outcome on different days can sometimes
mean rejection, sometimes not. In other words, one does not always stay on
the conservative side as this would lead to a decrease of power. On the other
hand, a judge who considers two cases with the same evidence, will not put one
person in jail and the other person not. I.e. there may be ethical reasons not
to randomize.

Example X ~ Binomial(n,#), with n = 20.
Hp: 0<%,

Hyi: 60> % )

We choose o« = .05. We have

PQO:%(X >15) <a< PQO:%(X > 14)
SO we can write
o= PGO:%(X > 15) + ’YPGO:%(X = 15)
where
a— P, _1(X > 15)
q= 2 = 0.79.
PQO:%(X = 15)
Thus a test at level « is
1 X >15
P(X)=¢.79 X=15 .
0 X <15

Suppose we observe X = 14. Then Hj cannot be rejected.

4.3 Simple hypothesis versus simple alternative

The simple hypothesis versus simple alternative problem is

HO : 0= 90 ;

H : 0=06;

The term “simple” refers to the fact that there is only one parameter under Hy
and only one parameter under H;. In other words, the distributions under Hy
and H; are known. This is maybe an exceptional situation, but it is good to
start with something simple.

There are only two distributions in the class P, that is P = {Fy,, Py, }. Then
there is always a dominating measure (for example v = Py, + Py, ). Let po(-) :=
Po, (+) be the density under Hy and pi(-) := pg, be the density under H;. This
could be the probability mass function in the discrete case, or the Lebesgue
density in the absolutely continuous case.
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Definition 4.3.1 A Neyman-Pearson test is of the form

>

p1(

1 pogxg > cp
¢NP(X) =44 zégﬁg = Co
0 ) <

where ¢co > 0 and q € [0,1] are given constants.

Note that a Neyman-Pearson test “makes sense”: if p; is much larger than pg
it means that 6 is more likely than 6.

Lemma 4.3.1 (Neyman-Pearson Lemma) Let o € (0,1) be a given level. Choose
co and q in such a way that

E90¢NP(X) = .

Then for all (randomized) tests ¢ with Eg,¢(X) < a it holds that

Eg, ¢(X) < Eg, onp(X).

In other words, ¢xp has mazimal power among all tests with level .

Proof for the discrete case. We have

£ (303) = 0560 = 3 (30) = o) )

T

= >, G-oxp)m+ Y (G—dnelit D (G one)m

p1/po>co <0 p1/po=co p1/Po<co >0
<c Y, (P—éxp)potco >, (b—dxe)potco > (6—oxp)po
P1/Po>co p1/Po=co P1/Po<co

= coFy, (QE(X) - ¢NP(X)) = <E90¢~5(X) - 04) <0.

4.4 Examples

Example 4.4.1 Consider X ~ Binomial(n, ) and
HO 0= 90 B

H1 . 9 = 91 5

where 81 > 0y. Then

n - [ (=) >
4
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xlog[M] —i—nlog(i :g > > log ¢

>0 as 6;1>60p

=

log co — nlog < }‘g;)

01/(1—6
g | 4003

xr >

= C.

A Neyman-Pearson test is thus

1 X>c
onp(X)=qq¢ X=c.
0 X<ec

If we choose the critical value ¢ in such a way that

Py, (X > ¢) <a<  Pp(X>c—-1)

—_—— —_———
:Zz>c (:)95(1_90)’”_1 _Zz>c 1( )92(1 00)
and then
_a— Py (X >¢)
P90 (X = C) ’

then Eg,onp(X)) = a and ¢np is most powerful among all tests with level a.
Note that ¢ and q do not depend on 01: the test only depends on the sign of
01 — 6.

Example 4.4.2 In this example, we have a sample X = (X1,... n) of i.i.d.
N (p,0d) -distributed random variables where p is unknown and 0'0 s known.
Write the density of (X1,...,Xy) as

1 S (v — p)?
pu(fCl,. . .,.Z'n) = WGXP |:_Z%‘-8 .
Then
p,tu(xl; s 7xn) = exp __1<Zn:($ _ /111)2 _ Zn:($ _ N0)2>:|
Puo (T, -, Tn) L 203 i=1 Z i=1 Z
n
B 2
- 200( 2@2 o)l ) )]
[ 1 _ 2
= exp 2 nx — npg — n(pwr — po)°/2
L0

It follows that

X X >c if u; >
pm( )>Co(:> c 1 M1 Mo‘
Puo (X) X <ec if n1 < Wo
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To test Hy: p = po we consider 8 alternative hypotheses.

Hy: p=pu > po. Then onp(X) = l x> where the critical value c is such
that E,,onp(X) = a. We have

E,,onp(X) =P (X > ) =Py, (ﬁ(X — Ho) > V(e — MO)> .

00 g0

for
Vilemm) _ g1 ).
)
Thus
¢=po+ 07 (1 - @)oo/ Vn.

For example for a = .05 it holds that ®~1(1 — a) = 1.65.

Hy: p=p1 < pg. Reject Hy if
X < Mo — (I)_l(l — 04)00/\/5.

Hy: p# po. The Neyman-Pearson Lemma cannot be used. It can be shown
(see e.g. Fundamentals of Mathematical Statistics) that the following test is in
some sense optimal (it has largest power among all tests of level v for which
the power is larger than the probability of rejecting under Hy) : reject Hy if

X >po+@ (1 - LYoo/v/n or X < po — 11— S)oo/Vn.

For example for a = .05 it holds that ®~1(1 — 5) = 1.96. If one agrees that
1.96 ~ 2 we see the rule of thumb: reject Hy z‘f_the dijj‘ere_nce between X and po
is more than twice the standard deviation of X, i.e. if | X — po| > 200/+/n.
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Chapter 5

One-sample tests

In this chapter we consider a sample of real-valued observations from a CDF
F with unknown “location parameter” (mean or median in this chapter), and
aim at testing whether the location parameter is below (or above, or equal) to
a given value.

One may think for example of having a group of n test persons, which have been
given a drug to reduce blood pressure, and one observes the difference between
blood pressure at the beginning of the test period and the end of the test period.
Then one may ask: did the mean (or median) blood pressure decrease?

We will present two tests: Student’s test and the sign test. The first is based
on the assumption that the data are normally distributed, and the second only
assumes the median exists and continuity near the median.

In the previous chapter, we showed that the Neyman-Pearson test is most pow-
erful for the “simple null-hypothesis versus simple alternative” problem. In
this and the next chapter, we are dealing with composite hypotheses. For such
problems, the theory on optimal (most powerful) tests is more involved (see
Fundamentals of Mathematical Statistics). Here, we only present the tests, but
do not explain why they are a good idea. But they do “make sense”.

5.1 The Student distribution

The Student distribution (or ¢-distribution) is symmetric around 0. We will
encounter below the Student distribution with n — 1 “degrees of freedom”, the
t,_1-distribution. The Lebesgue density of the ¢, _1-distribution is

) AN
Il = e 5)) (1 - 1) rek

Let X1,..., X, be iid. N(p,0?%). Let X := L3 | X, be the sample average.
Then X ~ N(u,0?/n). If we subtract the mean and divide by the standard

33
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deviation, this is called standardization. So the standardized form of the sample

average is ~
V(X —p)

pu .

It has the standard normal distribution. Now if o? is unknown one may want to
replace o in the standardization by the sample standard deviation S := V52 =

L3 (X; — X)2. This is called studentization.

Theorem 5.1.1 Let X1,..., X, be i.i.d. N'(u, 0?)-distributed. The studentized

sample average -
V(X —p)
S

has a Student distribution with n — 1 degrees of freedom (t,_1-distribution).

Proof. We first show that, for all i, X; — X and X are independent. This

follows from

Cov(X; — X,X) = Cov(X;,X)— Cov(X,X)
—_———

=Var(X)
1< 2

= *ZCOV(X@X]’) — i =0.
n = n

The independence now follows from the fact that for multivariate normal ran-
dom Variables,_zero covariance implies independence.
Thus S? and X are also independent. Moreover

So OGN (=X X

; o? .
i=1 =1

By the definition of the y2-distribution (see Appendix A), the left hand side
T N2

has a x2-distribution. Moreover n()fﬂ“ ) has a x3-distribution. Since moreover

Yoy ()(1;72X)2 is independent of n(XUi;“)Q it must have a x2_,-distribution. The

result now follows from the definition of the Student distribution (see Appendix

A). O

5.2 The Student test

Let X1,...,X, be iid. N(u,o?) We consider the same testing problem as in
Example 4.4.2, but now for the case both y and ¢ unknown.

Let ¢(n — 1, a) be the (1 — a)-quantile of the ¢,,_;-distribution. One can show
that V a € (0,1)

> & 11—-a) Vn
C(n_lva){—)@_l(l—a) n— oo
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The latter in fact follows from the consistency of S? as estimator of o2, i.e.,
S% — o2 (in probability) as n — oo.

We know from Theorem 5.1.1 that

(PO 1) =

P, <\/ﬁ(§_u) < —c(n— 1,a)> = q,
o C SR

The first will be applied in the right sided test, the second in the left sided test,
and the third in the two sided test.

Ho: p<po,
Hy: p>po.
Reject Hy if
X > po+c(n—1,a)S/vn.

Then

max P, (Hy rejected) = P, (Hy rejected) = a.
1o

Ho: p>po,
Hy: p<pgp.
Reject Hy if
X < po—c(n—1,a)S//n.

HO: n= o ,
Hy:op# po -
Reject Hy if

X>p+en—1,%)S/vVnor X < pp—c(n—1,%)S/vn.

Numerical example:

€; (l’z — {f‘) (.’EZ — i’)Q
4.5 0 0

4 -.5 .25
3.5 -1 1

6 1.5 2.25

) 15) 25

4 -.5 .25
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We have n = 6, T = 4.5, Y (2; — 7)? = 4, s> = .8 and s/y/n = .365. With
a = .05 the (1 — §)-quantile of the ¢5-distribution is ¢(5,0.025) = 2.571. Thus
c(5,0.025)s/\/n = .939.

For example

Ho: p=>51

is rejected when |z — 5.1| > .939. Thus Hy: p = 5.1 is not rejected as

1z —5.1| = .6 < .939.

The values for p which are not rejected are all u such that |z — u| < .939, that
is all p € [3.561,5.439]. We call [3.561,5.439] a 95% confidence interval for p
(see Chapter 8).

5.3 Sign test

Let X1,...,X, be ii.d. real-valued random variables with common CDF F.
We assume m := F~1(1) exists, and that F is continuous near m. Consider
the testing problem
Hy: m=mg |,
Hi: m#*mg .
As test statistic we take

T := #{X; > mo}

and as (non-randomized) test

o(T) = {1 T -2 >c

0 |[T-%<c

where ¢ is such that

:Z\k*%|>c (Z)Q*”::l—GZ(c)

and c is as small as possible. One calls 1 — Gz(Z—) where Z := |T' — | the
p-value: see the next section for its definition. We reject Hy if the p-value is at
most o. We can write for ¢ < n/2,

Y

1 T<corT>n-—¢
P(T) =
0 else

where
]PHU(T < 5) —I—]PHO(T > ’I’L—E) <«

=23z (1)27

v

Numerical example continued
The normal distribution is symmetric around p so the median m is equal to p.
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We test
HO D= 5.1 s
Hy: p#51 .
We have

1-— Gz(Q) = ]PHU(T <OQorT > 6) = IPHO(T = 0) +]PHO(T = 6)

2
= — =.03125 < .05
64 <
so we can take ¢ = 0.! The observed value of T is T = 1. Therefore we cannot
reject Hy. Since n = 6 we have Z := |T' — §| = 2. In the next section one can
find the general definition of a p-value. In this example, the p-value is
14

- Gz(2-) =1~ Gz(1) = ¢ = 21875 > 05.

5.4 Definition of p-value

Definition 5.4.1 Let Z be a test statistic such that large values of Z are evi-
dence against Hy : 0 = 60y. We reject Hy when Z > ¢ where the critical value c
is chosen such that the probability of rejection when the null hypothesis is true
18 at most a.:

1-Gz(c—) <a

with 1 — Gz(c—) =Py, (Z > ¢). The p-value is then 1 — Gz(Z—).

Note 1 — Gz is a decreasing function, so
Z>c=1-Gz(Z-)<1-Gz(c—) <a.

Thus if the p-value is at most « we reject Hy.

Note In the two-sided case, one typically starts with a test statistic 1" such
that large values of Z := |T| are evidence against Hy : 0 = 6y. If we reject
Hy for |T| > ¢ and T has CDF Gp under the null hypothesis, then since
P, (|T| > ¢) = 1—Gr(c—)+Gr(—c) the p-value is 1 —Gp(|T| =) +Gr(—|T)). If
in addition G is continuous and symmetric the p-value becomes 2(1—Gp(|T)).
Thus then we reject Hy if (1 — Gp(|T|) < /2.

LA randomized test at level o = .05 is

Indeed 1
Euyd(T) =Py, (T =0o0r T =6) + TgPHo(T =1 o0r T =5) =.05.
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Chapter 6

Two-sample tests

Suppose we carry out an experiment with a treatment group and a control
group. The data then consists of two samples X1,..., X, and Yi,...,Y,,. We
assume that X7y, ..., X, are i.i.d. real-valued random variable with CDF F' and
Y1,...,Y,, are i.i.d. real-valued random variables with CDF G. We moreover
assume that the two samples (Xi,...,X,) and (Y1,...,Y,,) are independent.
Our goal is to test whether F' and GG are equal. As in Chapter 5, one can build
a test under the assumption that the data follow a normal distribution. This
leads to Student’s test. If one is not ready to assume normality, one can try to
build a test assuming no extra conditions, except maybe continuity. This leads
to Wilcoxon’s test.

When one constructs a test, the general idea is to try to find a real-valued test
statistic such that its extreme values, say large values, are evidence against the
null-hypothesis. Then for such extreme values the null is rejected. But what is
extreme? For that one needs to know what the distribution of the statistic is
under the null hypothesis: the null-distribution. Then, given a level o € (0,1),
one takes the critical value ¢ such that when the null hypothesis is true, the
probability that the statistic is larger than ¢ is at most «. One rejects Hy if the
statistic is larger than the critical value c.

6.1 The two-sample student test

Model:
Xi,...,Xpn,Y1,...,Y, independent

~N(p1,0%)  ~N(p2,0?)

We want to test

Ho: p1 = p2

Hy:opy # po.

Note that we assume that the observations in both samples have the same
variance 2. If the variance of the observations in one sample may be different
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from those in the other sample, and these two variances are unknown, the
problem is known as the Behrens-Fisher problem, and there is no test statistic
with a simple null-distribution and good power. Assuming equal variance is
mathematically convenient but is perhaps not realistic.

If py = po then for n large X ~ Y. Therefore it makes sense to reject Hy if
|X — Y| > ¢ where the critical value ¢ is to be chosen in such a way that

Pu, (| X -Y|>¢) =«

where 0 < a < 1 is a given level. So we need to find the distribution of X — Y
under Hy. It holds that

2 2
XNN(M17O->7yNN<M27O->‘
n m

E(X —Y) = 1 — pa,

Moreover

and since X and Y are independent

2 2
Var(X —Y) = Var(X) + Var(Y) = % + % = 02(n+m>.

X—YNN<M1—M2702<n+m>>-
nm

Thus

Standardizing gives

nm X =V == m2) e ),

n—+m o

We consider two cases.

o2 = 0(2] known: | Then we can take as test statistic

T — [[nm X —Y‘
n—+m ogp
Under Hy the statistic Ty has a standard normal distribution. We reject Hy
when [Ty > (1 — §). Then

P, (Hp rejected) = Py, <]To] >0 (1 - 3‘)) =a.

In other words the critical value is ¢ = ®~1(1 — §),/% g, (With the “com-

mon” choice v = .05 it holds that ¢ = (1.96),/ ™™gy, i.e., roughly twice the
standard deviation of X —Y).



6.2. TWO-SAMPLE WILCOXON TEST, OR MANN-WHITNEY U TEST41

To estimate the standard deviation of X — Y we need an esti-

mator of o2. A good choice turns out to be the “pooled sample” variance

~ 1 n _ m _
52 = W{Z(Xz - X)2 +Jz;(}/] - Y)2}7

=1

which is unbiased. Standardizing with the estimated standard deviation gives

the statistic o
X-Y
T nm —r
n+m S

But because S is random T is no longer normally distributed. This is not
really a problem, as long as its distribution under Hg does not depend on
unknown parameters. It is now not difficult to show that under Hy, T has a
Student distribution with n+m—2 degrees of freedom, the tn+m,2—distribution1.
Therefore, with c(n+m —2, §) the (1 — §)-quantile of the ¢, ,, o-distribution,
we reject Ho if |T'| > c(n +m — 2, §) or equivalently if |[X — Y| > ¢ where the

critical value ¢ is ¢ = c(n +m — 2, §),/ "JHTS'
6.2 Two-sample Wilcoxon test, or Mann-Whitney U
test

Model:
Xi,..., Xy, Y1,...,Y,, independent

~F ~G

where I and G are two unknown continuous distributions.

We want to test
HO : F = G,
H: F#G.

We construct a test statistic as follows. Let N := n 4+ m be the pooled sample
size and (Z1,...,2Zn) = (X1,...,Xn, Y1, ..., Yy) be the pooled sample. In the
pooled sample, let Z(1y < --- < Z(y) be the order statistics. Let R; := rank(X;)
in the pooled sample (i.e. Z(g,y = X;),i=1,...,n, and R,  := rank(Y;) in
the pooled sample, j =1,...,m. If F = G then (Ry,..., Ry, Ryt1,...,RN) is
a random permutation of the numbers {1,..., N}. This means that under H
the ranks R1,..., R, have the same distribution as a random sample without
replacement of size n from an urn with N balls numbered from 1 to N. The
Mann-Whitney U statistic is

=1

1As in the one sample case, (X - X)?/0? has a xZ_i-distribution. Similarly,
Sy —Y)? /gQ has a X2,_1-distribution. The two sums-of-squares are independent and
independent of X and Y.




42 CHAPTER 6. TWO-SAMPLE TESTS

The Wilcoxon test statistic is
W= #{Xz > }/]}

One may verify that U and W are equivalent:

v—w4nn
2
numerical example
z rank
x1 = 36 8
T = 9 4
Ir3 = 7 2
x4 = 100 9
Irs = 3 1
y1 =95 3
Yo = 37 7
Ys = 11 )
Yq = 12 6

Table 6.1: n=5 m=4, Eg,(U) =25, u=24, w=9

Lemma 6.2.1
i) By (U) = "5
ii) Varpg, (U) = nm(1]\2/+1).

Proof.
i) For all 4
1
IPHO(Ri—k):N, k=1,...N
Hence N
1 N+1
B Bi=) k=5
k=1
and so
n(N +1)
]EHO(U) = 9
ii) For all ¢
N
1 N+1)(2N +1
b= 3L (N )
k=1

» (N+DEN+1) (N+1) N*—-1

4 12 0.

VarHO (Rz) =

Further for i # j

B Bilt = 3 Koy
k£l
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N(N+1)* (N+1)(2N+1) (N+1)(3N?—-N-2)

4(N —1) 6(N —1) B 12(N —1)

Thus

o W+1)BN*-N-2) (N+1)* o
Covirg (Bi, ;) = 12(N 1) i N_-TU

It follows that

Varp, (Z RZ-) =no? —n(n—1) 7 = no? iy
i=1

Corollary 6.2.1 Ey, (W) = ™, Vary, (W) = nm(N+1)

Standardizing under Hy:

L U—Epy(U) _ W —Eg, (W)

Vary, (U)  +/Varg, (W)

For n and m large, T has under Hy approximately a N (0, 1)-distribution. (No
proof: this does not follow from the “usual” CLT.)

T:

Numerical example continued

24 — 2
)= =21 \/§: 655,
/20x8 7
12

The approximate p-value (see Section 5.4 for its definition) is 2(1 — ®(.655)) =
.513.
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Chapter 7

Goodness-of-fit tests

In this chapter, we study the construction of tests when the hypothesis is that
the data follow some given distribution (simple hypothesis), or a distribution
in some given parametric family (composite hypothesis). For example, one
may want to test whether the digits of 7 are uniformly distributed, or whether
the square-root function follows Benford’s law. For such questions one may
use the y2-test. Perhaps one wants to test whether waiting times in queueing
theory follow an exponential distribution. Then the distribution of the data
is continuous one may invoke binning and again use a y2-test, or refrain from
binning and use a Kolmogorov-Smirnov test.

7.1 Kolmogorov-Smirnov tests

Model: X1,...,X,, ii.d. with CDF F on R.
HO : F= F().
Recall the empirical distribution function

. 1 —
=1

Kolmogov-Smirnov tests are based on a comparison of Fn with Fy. The test
statistic is
Too :=sup |Fy(z) — Fy(z)],
X

or its variants
T := / |y () — Fo(z)[PdFy(x), 1< p < oo.
An approximation of the distribution of 7}, (1 < p < oo) under the null hypoth-

esis follows from probability theory (not treated here). One may also simulate
the null-distribution.
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7.2 The y’-test: simple hypothesis

Let X € {1,...,q} represent a class label. Write
By(X =7) = 0,

where
q

0eO0:={)=(0h,....,0): 9, >0V j ¥ 0;=1}

j=1

Suppose we want to test
HO : = 90 .
The data consist of i.i.d. copies X7,...,X,, of X. The maximum likelihood
estimator of 6 is
5 N;j o
0j=—, Nj:=#{X; =34}, j=1,...,¢q

n

(see Example 3.2.4). The idea is now to reject Hy if 6 is very different from
the hypothesized 0y. One may use for instance the Euclidean distance between
6 and 6 as a test statistic. One may however want to take into account the
different variances of the estimators of the components. A test statistic that
does so is the so-called y? test statistic

Theorem 7.2.1 For n large, Py, (x*> < t) ~ G(t) for all t, where G is the
CDF of a x*(q — 1)-distribution.

No proof. (See Fundamentals of Mathematical Statistics.)

Special case: ¢ = 2. Then X := N; ~ Binomial(n,p) where p := 6, and
NQZTL—X, 92:1—]). So

s (X —np)? (-X-n(1-p)* (X-np?
=" 7 n(1—p) ~ np(l—p)

By the CLT
X —np

np(l —p)
is approximately N (0, 1)-distributed, and so its square
(X —np)?
np(l —p)

is approximately x?(1)-distributed (by the definition of the x2-distribution).
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7.3 The y’-test: composite hypothesis

The random variable X € {1,..., ¢} again represent a class label and

Pg(XIj) ::Hj, jzl,...,q

Suppose we want to test m < ¢ — 1 restrictions

Hoi Rk(ﬁ):o, kzl,...,m . Let

O = ar max N;log;
0 gﬁe@: Rk =0, k=1,. Z &

be the maximum likelihood estimator under the m restrictions. Define the test

statistic
=y, Bamrh
j=1 TL@O J

Under some regularity conditions (see Fundamentals of Mathematical Statis-
tics), the distribution of x? under Hy is approximately x?(m). Thus we reject
Hy when x2 > G~(1—a) where G is the CDF of the x?(m)-distribution. Then

Py, (Hp rejected) =~ a.

Note A special case is the simple hypothesis Hy : 6 = 6y. This corresponds to
m = q — 1 restrictions.

7.4 Contingency tables

This section treats a special case of the previous section.

Let X .= (Y, Z) e {(k,]): k=1,...,p, I=1,...,q} and

Py (X = (k:,l)) =0k

p q
= {ﬁ:{ﬂkJZ k=1,....,p, l=1,...,q}, Ve >0V k,l Zzﬁkvlzl}'

We aim at testing whether Y and Z are independent. Define the marginals

q p
pi= Y Ok (k=1,...,p), &:=> O (1=1,...,09).
=1 k=1

The null hypothesis is Hy : 0y, = ni&, V k1 .
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The data are i.i.d. copies {X; = (Y;,Z;) : i =1,...,n} of X = (Y, Z). The
maximum likelihood estimator is as before (see Example 3.2.4)

N N,
O = Mlok=1,....p,1=1,...,q,
n

where Ny = #{(Yi, Z;) = (k, )}, k=1,...,p,l=1,...,q.
Write

q p
NkHr = ZNk,l (]C = 1, ce ,p), NJ’,’l = ZNk’l (l = 1,. . .,q).
I=1 k=1

Lemma 7.4.1 The maximum likelihood under the restrictions of Hy is

N 4+ c Ny

e=——(k=1,...,p), &=
n n

(l=1,...,9).

Proof. The log-likelihood is

P q
Z Z Nk,l log ﬂk,l~

k=11=1

We now have the restriction dy; = ﬁk& for some non-negative fj, &, with
> i =1and > [ ;& = 1. The restricted log-likelihood is therefore

q
> Ny log(iiky)

1

wa

B
Il
—
o~
Il

P q

Niilogilk + > > Niglog,
k=1 1=1

I
NE
M=

=
Il

11

Il
—

q
Ny logile + Y Nyglogé;.
=1 =1

I
M*B

bl

The two terms can now be maximized separately, as done in Example 3.2.4
(where we used a Lagrange multiplier). O

It follows that S
= Z Z (Ngg — Nk,+N+7l/n)2_
Ni+Nyi/n

k=11=1
The original number of free parameters is
pq — 1.
The number of free parameters under Hy is
p—1+qg—1.
The number of restrictions is therefore

m = (pq—1> - <p—1+q—1> =(-1(q-1).

So x? is approximately x?((p — 1)(¢q — 1))-distributed under Hy.
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7.5 Special case: (2 x 2)-table

Ni 4

Not

or, using different symbols,

n

A
C
P

Q|| =

Then
n(AD — BC)?

PQRS
It has approximately a 2(1)-distribution under Hy.

X* =

Numerical example

‘left—ha,nded right-handed All

Arts 16 40 56
Science 25 35 60
All 41 75 116

Table 7.1: Rows: Beverage, Columns: Personality

In the above example

(16 x 35 — 40 x 25)2

= 2.174.
41 x 75 x 60 x 56 7

X2 =116 x

Remark Let X ~ Binomial(n;,p;) and Y ~ Binomial(ng, p2) be independent
and suppose we want to test

Hy: p1 =p2=:p where 0 < p <1 is an unknown common value.

An estimator of p; is p1 = X/ny and an estimator of py is po = Y/ny. Thus it
makes sense to reject Hy if [p; — pa2|? is large.

X Y X+Y
n—X|n-Y | n—(X+Y)
n1 no n:=mni+ n
We have "
V p1 — po) = p(1 —
arp, (P1 — p2) = p( p)nm,
and we can estimate this by
n

~

Varp, (p1 — p2) == p(1 — p)

n1n27
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where p = (X 4+ Y)/n. The Hy-standardized test statistic is now

b= Pa” _ n(AD - BOP

T (1P~ PQRS

as before.



Chapter 8

Confidence intervals

Let 4 € R be an estimator of v € R. As a rule of thumb, 9+ twice the (es-
timated) standard deviation of 4 is approximately a 95% confidence interval
for . This is true if 4 — « is approximately normally distributed with mean
zero, and if you are okay with the approximation ®~!(1 — a/2) = 1.96 =~ 2
for @« = 0.05. We remark here that many estimators are indeed approximately
normally distributed. This is for instance the case for method of moment es-
timators provided certain differentiability conditions hold. It is also true for
maximum likelihood estimators of a finite-dimensional parameter, assuming
(rather involved) regularity conditions. We refer to Fundamentals of Mathe-
matical Statistics.

If the sample size is not very large, one replaces ®~'(1 — a/2) by a larger
value so that the confidence interval becomes wider (and one thus is more
conservative). The most popular choice is replacing the (1 — «/2)-quantile
®~1(1 — a/2) of the standard normal distribution by the (1 — a/2)-quantile of
the t,,—1 distribution. This leads to an exact 95 % confidence interval for the
mean g using the estimator ji := X if the data are i.i.d. normally distributed. If
the data are not normally distributed, one can often also find exact confidence
intervals (instead of approximate ones based on some CLT), but this requires
some inventivity.

Numerical example:

€; (ZL‘z — :f) (SL‘Z — i’)z
4.5 0 0

4 -.5 .25
3.5 -1 1

6 1.5 2.25

) 1) .25

4 -.9 .25

We have n =6, T = 4.5, s> = .8 and s//n = .365. With o = .05 the (1 — §)-
quantile of the t5-distribution is ¢(5,0.025) = 2.571 which is substantially larger

o1
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than ®~1(1 — a/2) = 1.96. Thus ¢(5,0.025)s/y/n = .939. Assuming i.i.d.
Gaussian data the interval

Z + ¢(5,0.025)s/v/n = 4.5 + 939 = [3.561, 5.439)]

is an exact 95% confidence interval for p. If the Gaussian assumption does
not hold, it is an approximate 95 % confidence interval provided the common
variance o2 of the observations is finite.

8.1 Definition of a confidence interval

Consider an X € X with distribution Py depending on 6 € ©. Let v :=
g(0) € R be a parameter of interest. Write I' := {g(f) : 6 € ©} C R. Let
X:=(X1,...,Xy) be a sample from P

Recall that a real-valued statistic is a measurable map X — R.

Definition 8.1.1 Let T = T(X) € R and T = T(X) € R be two statistics with
T <T. One calls [T,T] a (1 — a)-confidence interval for g(0) if

IP(,(ng(e)gT)zl—a, V6eo.

8.2 Exact confidence intervals when the data are
(GGaussian

Let X1,..., X, beiid. N(u,oc?).
Confidence interval for u, 02 =: 63 known
Then

[X — o 11— L)oo/vVn, X+ (1 — g)ao/\/ﬁ}
is a (1 — a)-confidence interval for y:
P, (X — o' (1-Dog/Vn<p< X+ (1- g)ao/\/ﬁ>
o (R CNCES SPER S Ny

= ]PM<\/FL|X_“| gq>—1(1—g)> =1-a.

00

Confidence interval for y, o2 unknown
Then

[X* —e(n—1,2)S/vn, X +¢(n—1, g)S/\/ﬁ} ,
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is a (1 — a)-confidence interval for p. Here

1 _
§% = — D (X - X)?

i=1

is the sample variance and c(n — 1, §) the (1 — §)-quantile of the Student
distribution with n — 1 degrees of freedom.

’ Confidence interval for o2, 1 = po known‘
Then

[ né? né? ]
Ga'(1-5) Gu'(%)
is a (1 — a)-confidence interval for o2. Here

n

1
~2 § : 2
= %
g n < (.X ,u(])

’ Confidence interval for o2, p unknown‘
Then
[ (n—-1)8% (n- 1)52]
Guhi(1=8)" Gui(5)
is a (1 — a)-confidence interval for o2. Here
2 1 )2
52 .= > (X - X)

n—14
=1

and G,_1 is the CDF of the x?(n — 1)-distribution. A one-sided confidence
interval for o2 (right-sided) is

[ (n—l)ST
0, —~—=——1|:
Gn—l(a)

since

P, <02 < m> =P, (m_?sa > Gnil(a)> =1-o

n—1

Numerical example continued
The sample size is n = 6. We take a = .05. Then G, ' (1 — $) = 12.83 and
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a 2

G;Lil(i) = .83. The sample variance is s
for o2 is

= .8. So a 95% confidence interval

312 < 0?2 <4.18

and so a 95% confidence interval for o is
56 =v.312 <0 <vV4.18 = 2.19.

If one is interested in a upper bound for o we use that G;il(a) =1.145. So a
one-sided 95% confidence interval for o2 is

o? < 3.491

and a one-sided 95% confidence interval for o is

o <v3.491 = 1.868.

8.3 Approximate confidence interval when the data
are Poisson

We revisit the example of Section 1.7. Let Xi,..., X, be ii.d. Poisson(\)-
distributed. Then X := """ | X has a Poisson(n\)-distribution. By the duality
between tests and confidence sets as explained in Chapter 9.2 ahead, one can
construct an exact (1—a)-confidence set for A by testing for all Ay the hypothesis
Hy : A = )\g at level a and taking the confidence set as those values \g that are
not rejected. Yes, this is possible, but not easy and does not give us explicit
expressions. Therefore, let us use the central limit theorem instead.

We have X ~ Poisson(\,) with A\, := nA. In other words, we can reduce to
situation to one where we have one observation X from a Poisson distribution
with parameter \,,.

We take a = .05 and for simplicity replace ®~1(1 — §) = 1.96 by 2.
Approximate confidence interval for A, using the CLT‘

For A\, large, (X — \,)/+v/An is approximately N (0, 1) distributed. Hence

‘X - )‘n‘ )
P < 2| =~ .95.
/\n< N, o

Rewrite this to
]P)\n</\n € [X+2—2\/X+1,X+2+2\/X+1}> ~ .95.

So
[X+22\/X+1,X+2+2\/X+1}

is an approximate 95% confidence interval for \,,.

Approximate confidence interval for A, using the CLT and estimated variance

We can estimate the variance by

Var(X) := X.
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For \, large (X —\)/v/X is approximately A/(0, 1)-distributed (see e.g. Funda-
mentals of Mathematical Statistics). An approximate 95% confidence interval
based on this is

X —2vVX, X + 2vX]|.
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Chapter 9

Duality between confidence
sets and tests

In this chapter we replace X € X by X € X and IP by P to make the notation
less Baroque. We assume P = Py with § € © and consider a paramater of
interest v = g(f) € I' = {g(¥) : ¥ € ©} which is possibly not real-valued.

9.1 Definition of a confidence set

Let I be a mapping
I: X — {subsets of T'}

such that {z € X : v € I(z)} is measurable for all v € I.
Definition 9.1.1 One calls I(X) a (1 — «)-confidence set for g(0) if

p9<g(9) c I(X)) >1—a, VOe€O.

9.2 The duality theorem

Consider some set C C X x I and let for y € I’
Jy={xeX: (x,7)eC} CAX,
and for x € X
I(z)={yel: (z,7)eC} CT.
We assume that .J, is measurable for all v € I".

Theorem 9.2.1 (duality theorem)

The set I(X) is a (1 — a)-confidence set

g

For all vo € T', ¢y (X) := 578 (X) is a level « test for Hy: v = 9.
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Proof.

n(s00-1) = n(x¢s)

O

Example 9.2.1 In this ezample we return to the notation X = (X1,...,X,).
Let X1,..., X, be i.i.d. N(u,0?) with 0 =: 0% known. We let v := p. Then
we may take

I(X) = [X — & 11— L)oo/vn, X+ (1— g)ao/\/ﬁ}
and then

= |n= 070 = hou/ v+ 971 = $hou/ v

9.3 Confidence intervals when X is binomial

Consider X ~ Binomial(n, ) with 0 < 6§ < 1 unknown. We present three ways
for the construction of confidence intervals for 6.

’Exact confidence interval using the Duality Theorem‘

For the hypothesis

Ho ;0= 90 s

we use the test

1 X> 5(90> orX < 9(90)

0 else

¢(X7 00) = {
where ¢(6p) < ¢(6p) (both in {0,...,n}) are determined by

Py, (X > 5(90)> <

~~

=2 k>2(09) (i1)0k (1—60)"—*

Py, <X < c(00)> < — < Py, (X < c(bo) + 1).

So
Jg, = {x €{0,...,n}:c(0y) <x<é(b)}
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and
C={(x,0) €{0,...,n} x[0,1] : ¢(0) <z <)},

I(x)={0€[0,1]: ¢(0) <x<e(0)}.
We let for x € {0,...,n — 1}, 0(x) be defined by

k<x

and for x € {1,...,n}, 6(x) be defined by

> (Z)G(w)’“(l —f(z))"F = g

k>x

and further take (n) = 1 and §(0) = 0. Then [§(X),0(X)] is an exact (1 — a)-
confidence interval for 6.
Approximate confidence interval using the CLT‘

We reject
HO . 9 = 90 5
when
2
nbo(1 — bp)
I
So

I(X) = {9: M>z}

2X (n—X 4
= eeXJr%i %Jr%
n 4+ z2 n 4+ 22 ’

where the second equality follows after some calculations. ’ Approximate confidence interval using the CLT ¢
By the CLT

X —nb
Vary(X)

is approximately N (0, 1)-distributed. We have Vary(X) = nf(1 — 0) which can
be estimated by

Varg(X) 1= nf(1 — 6).

Then
X —nb

Varg(X)
is still approximately N(0, 1)-distributed (see Section 1.6). We can then take

100 foe X [T (125 )

n
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22X (n—X)

X B —
- {9 e Xy }
n n
Numerical example

Let n = 38 and suppose we observe X = 20. Then, using the third method
above, an approximate 95% confidence interval for 6 (and using ®~1(.975) ~ 2)
is

2O:|: 20 x 18

33 383 .526 £ .162.



Chapter 10

Bayesian statistics

In this chapter we again replace X by X, etc, to avoid a too Baroque notation.
Thus X € X represents the data. We assume X has distribution Py, with § € ©
an unknown parameter. In frequentist statistics one assumes the unknown 6 to
be fixed (nonrandom). In Bayesian statistics on assumes 6 to be random.

For example, suppose you visit your doctor. You ask your doctor: what is the
probability 6 that someone like me has the disease? He might say: some studies
indicate 6 is about 1/2, others experts find it is almost zero, but there are also
reports which point in the direction to it being close to one. And he continues:
I would personally say this probability # can be anything between 0 and 1,
each value is equally likely. Then the doctor seems to model a probability as a
random variable, assigning uniform weights to all possible values. The doctor
has a uniform prior for . Now the doctor carries out some tests on you. Given
the outcome X of these tests, you ask the doctor: what is now the probability
that I have the disease? With the data in hand, the doctor updates beliefs for
your case to posterior beliefs, and will hopefully share these to you.

Suppose P := {Py : 6 € O} is dominated by a sigma-finite measure v. Before,
we wrote for § € © the densities as

dP,
po(x) = d—ye(a:), rzcX.

In the Bayesian notation
po(z) = p(z|d), = € X,

is the density given the parameter value is 6. To make this work we suppose ©
is measurable space.
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10.1 Prior, marginal and posterior

Definition 10.1.1 Let II be a given probability distribution on ©, the prior.
For a dominating measure u the prior density of 0 is

w(®) = flgw), 9ee.

Remark 10.1.1
o [f O is countable we let w(-) be the probability mass function of 6.

o I[f® =R and if II is absolutely continuous, we let w(-) be the Lebesgue
density of 0.

e In both discrete and absolutely continuous case we call w(-) a density.
Other cases will not be considered in this lecture.

Definition 10.1.2 The marginal density of X is

Yoo px|Pw(¥) 6 discrete

, e X.
[y p(z|)w(9)dd 6 abs. continuous

p(z) = / p(a]9)w(9)du(9) :{

Definition 10.1.3 For p(x) > 0 the posterior density of 6 given X = x is

plald)uw(?)

w(dx) == (@)

The posterior density is thus given by Bayes’ rule.

10.2 The maximum a posteriori estimator

With the Bayesian approach, the data X lead to a posterior distribution for 6.
But one might also want a point estimator of 8, some value as representative
of the parameter. This could be the mean or the median of the posterior
distribution (when © C R). Another representative is the most likely value for
0 given the data X.

Definition 10.2.1 The mazimum a posteriori (MAP) estimator is

0 =0 X) = HMNX
MAP MaP(X) arggleaécw(l )

provided the maximum exists.

Note To find fyap you do not need to calculate the marginal distribution p(-):

Omap = arg rlgleaécp(XW)w(ﬂ).
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We apply the proportional symbol o: for real-valued functions f and g with
domain O, we write f(¢) x g(9) # 0 if f(¥)/g(¥) does not depend on ¥ € ©.
So w(d|x) o< p(x|d)w().

Note We may also write
Oniap = arg rqglaéc{logp(XW) + log w(¥) }
€

In other words, the MAP maximizes the log-likelihood log L x (9) penalized with
a “regularization term” logw(¥).

Example 10.2.1 Let, given § € R, X = (X1,...,X,) be an i.i.d. sample of
the N(0,1)-distribution. Suppose the prior on 0 is the N'(0,1/\?)-distribution,
where X > 0 is given. Then

. 1 <& 1 X
0 = —= X, =092 — N2 = ——
MAP arg?&?{ 2;( =3 } 1+ A2/n

We see that the MAP is a shrinked version of the MLE X. This makes sense,
because the N'(0,1/)\?)-prior has a preference for values of 0 near zero, and this
is reflected in the MAP by the shrinkage of X to zero.

10.3 Bayes’ decision in classification

Consider two given densities po(x) and p;(x), x € X. Given an observation X,
we want to classify it as coming from distribution Py (with density py) or P;
(with density p1). Let the prior be

, 9=0
w(@) =4 :
w1, g=1
for given 0 < wp < 1 and w; = 1 — wg. Then the MAP estimator is
pi(X) o wo
A 1 pog; > w?
_ p1 _w
Ovar = § g pog§g = UT?
p1 w
0 po(X) < wig

where ¢ € {0,1} is arbitrary. Here, use that
¥ =0

w(d|z) = po(x)wo/p(z), _

pi(x)wi/p(z), ¥=1

Note that
p(x) = wopo(x) +wip1(z), = € &,

is a mixture of py and p;.
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The estimator Oyap is called Bayes’ decision, which we write as ¢payes. Note
that ¢payes is of the same form as a Neyman-Pearson test defined in Chapter 4.

Now let us reformulate the classification problem. We simply use the notation
Y instead of . Let Y € {0,1} be a label and X € X be the features. Write

nz)=PY =1X=2z), x € X.

Then Bayes’ decision is is choosing the most likely label: given X = x, predict
Y = 1if n(xz) > 1/2 and predict ¥ = 0 if n(x) < 1/2 and randomize if
n(z) = 1/2. In other words,

PBayes(X) = 1{n(X) > 1/2} + ql{n = 1/2}.

One can present the situation in terms of decision theory. There are two pos-
sible actions a = 0 (classify as coming from pg) and a = 1 (classify as coming
from p1). The action space is thus A := {0,1}. We define the loss function as
the event of making a mistake:

L(y,a) ==l 24y, (y,a) € {0,1}%

This means one unit loss for taking a wrong action. We call a function ¢ : X —
{0,1} a decision and define its risk as

R(y, ) :== E[L(y, o(X))|Y = y].
Thus
Po(¢(X)=1), y=0
Pi(¢(X)=0), y=1"

We then define the Bayes risk of ¢ as the average risk over Y, where P(Y =
1) =w; and P(Y =0) = wy

R(y,¢) = {

rw(@) = woPo(¢(X) = 1) + w1 Pi(¢(X) = 0) = P(¢(X) #Y).

Bayes’ decision is the minimizer of the Bayes risk

=ar min r .
¢Bayes g¢1 X5{0,1} w(¢)
Remark 10.3.1 This remark makes a link to machine learning. You may find
it useful to see this connection, but it is not exam material for this course.

In the supervised learning setup for classification, one again has a label Y €
{0,1} and features X € X. The distribution of (X,Y) is (in part) unknown.
One either starts with a model for n(x) := P(Y = 1|X = x), or for the two
densities p1(x) = p(z|Y = 1) and po(x) = p(z|Y = 0). For instance, in logistic
regression, one uses given feature mappings 1 : X — R, j =1,...,d, and takes

1
L exp[S 05 (x)]

n(z)
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where 0 = (01,...,00)" € R? is an known parameter. In linear discriminant
analysis one has X = R? (possibly after a feature mapping) and models py as
the N'(p1, %) density and py as the N'(pg, L) density with p1 € R® and po € RY
unknown means and ¥ € R4 an unknown covariance matriz. In either case,
based on data {X;,Y;}!' | one estimates the unknown parameters to obtain an
estimator 1(-) of n(-) and applies the estimated Bayes’ decision

PBayes(X) = i (X) > 1/2} + ql{n = 1/2}.

10.4 Bayesian inference for the binomial distribution

Let X|¢ ~ Binomial(n, ) and 6 ~ Beta(r, s). Then the prior mean is £f = .
The posterior density is

w(V|z) o pz[d)w(®) oc 9*(1 — 9)" TP~ 11 —9)" !
— Q9ac—i-s—1(1 o ﬁ)n—x-i-r—l.

So 0| X =z ~ Beta(z +r,n —x — s) and the posterior mean is

X
BOIX) = — "
n+r+s
The MAP estimator is
é . X + T — 1
M s+ r—2

If for example one starts with the uniform distribution as prior, one finds as
posterior

w(@|X) = (n+1) (;) PX(1 9y X

and éMAP is equal to the maximum likelihood estimator éMLE = X/n. This
follows more generally from Definition 10.2.1: if II is the uniform!® distribution
on O, its density is constant over © so it plays no role in the maximization, and
therefore that éMAp = éMLE

10.5 Bayesian inference for the normal distribution

We revisit Example 10.2.1. Let X|0 ~ N (6,0?) were § € R and where o is
known. Suppose 6 ~ N (0,72) for some given 72 > 0. Then the posterior is

2 2 2
ayXNN( T x, 7 >

T2+O'2 ’7-2+0-2

We see that the posterior mean is

7.2

T2 40277
In this case this is also the MAP estimator.

E(0]X) =

'1f |©] is infinite there is no uniform distribution on ©.
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Chapter 11

The linear model

The linear model will be defined in Definition 11.2.1. Models are only approx-
imations. In this chapter we allow for a misspecified linear model and study
“linear approximations”. Recall Example 2.3.1, where we defined the best linear
prediction of Y € R given X € R (in that example (X,Y) was called (X,Y"), but
in this chapter X and Y will have another meaning). Let z; := {x;; };-l:l € R?
be fixed and Y; € R be random, ¢ = 1,...,n. These data could be based on
ii.d. copies {(X;,Yi)}" ,of a pair (X,Y), with X € R? and Y € R, and we
condition on the realizations z; of X;, i« = 1,...,n. We call {x;} (or {X;})
the co-variables. Note that given these co-variables X; = z;, ¢ = 1,...,n, the
random variables Y7,...,Y, remain independent but are (possibly) no longer
identically distributed.

We aim at estimating the best linear approximation (defined formally in Defi-
nition 11.2.2 below) of Y; given x; € RP, i = 1,...,n, by minimizing

n

d 2
Z(K —G—Z$i7jbj> .
J=1

=1

over a € Rand b = (by,...,bq)" € R%.

To simplify the expressions, we rename the quantities involved as follows. Define
for all 7, x; 0 := 1 and define by := a. Then for all 7 we have a + Z?:l x; jb; =

d
> _j—0 Ti ;b

Then we minimize

n d 2
Z(Y; — in,jbj) .
i=1 7=0

over b= (b, by,...,bg)T € RIFL,
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11.1 Definition of the least squares estimator

We let p:=d+ 1 and

1 ;L' PR x
1,1 1d Y
1 w1 -+ @24 .
X=|. "7 T ervr y=]|:
. Y,
1 Tn1 " Tnd

Thus, in this chapter X € R™*P is a given matrix with (non-random) entries
{wi;}-
One calls X the design matrix or input matrix. We assume it to be non-random,

which is called the case of fixed design. Moreover, Y € R" is the vector of
responses or output vector.

We will assume throughout this chapter:
Condition 11.1.1 The design matriz X has rank p.

Let us denote the Euclidean norm of a vector v € R™ by

Then

n

d 2
Z(Y - in,jbj> = ||Y — Xb|j3, beRP.
=0

=1

Definition 11.1.1 One calls

3 .= in ||V — X0bl|2
p := arg min | I

the least squares estimator (LSE).

The distance between Y and the space {Xb: b € RP} spanned by the columns
of X is minimized by projecting Y on this space. In fact, one has

Lemma 11.1.1 Suppose X has rank p. Then

B=(XTX)"'xTy.

Proof. It holds that

10

saplY -~ Xb||2 = -XT(Y — Xb).

It follows that B is a solution of the so-called normal equations

X"y -XpB)=0



11.1. DEFINITION OF THE LEAST SQUARES ESTIMATOR 69

or
Xy = XTX5.

As X has rank p, the matrix X " X has an inverse (X' X)~! and we get

B=XTX)'XxTy.

The projection of Y on {Xb: b€ RP} is

XX"x)'xTy.
N———

projection

Recall that a projection is a linear map of the form PPT such that PTP = I.
We can write X(X TX)™'X T := PPT, where P is an orthonormal basis for the
column space of X.!

Example 11.1.1 (Ezample with d =1)

Ford=1
1 X1
1 X9
X = .
1 x,
Then .
cx= (g, ET).
Z?:Nfi Z?:l 9512
n —1 1 n 2 _
_ _ =N xs —X
KT = (S -a) (PR )
=1
Moreover

Y
XTy = K .
(Z?zl xY)

We now obtain (with & = Bo, B = Bl)

<§> = (X"x) ' XTY
- <Z< - >> <’{‘ . _1:?) (anY>

n —1 -
_ Z(w _ @2 Z?:l x%_Y - Z?:l z;Y;
! —nZY + Y1 Y,

"Write the singular value decomposition of X as X = PpQ ", where ¢ = diag(¢1, ..., ¢p)
contains the singular values of Xand where PTP =1 and QTQ = I.
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Here we used that > 1 x? =Y"  (v; — )*> + nz?. We can moreover write

n n
inYi —nzY = Z(% -z)(Y;-Y).
i=1 i=1

& Y — Bz
(B) = | X (@m—ay-Y) |-
i (wi—%)?

These expressions coincide with what we derived as method of moments esti-

Thus

mators, see Example 2.3.1.

Note that if we assume that T = 0 the calculations become much simpler. If
the matriz X' X becomes a diagonal matriz, and we find & =Y and

0,
i Yixi/ Do 3%2

™ 8
Il

11.2 Theoretical properties of the least squares esti-
mator

We define the mean vector f =EY € R™. (Recall that X is fixed. One may see
fi as the mean of Y; given z;, i = 1,...,n.) We call f the signal. The noise is
defined as e =Y — f. This gives the signal+noise model

Y=Ff+e
Definition 11.2.1 The linear model (or linear regression model) is
f=Xp
where 5 € RP is an unknown parameter.
Thus in the linear regression model

Y =X0+e¢,
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where 8 € RP is unknown and € is an unobservable noise vector with indepen-
dent, mean zero entries.

If the linear model is true, the L§E B is an estimator of 5. We however allow
for a misspecified model. Then § is an estimator of 5* given in the following
definition.

Definition 11.2.2 Let 8* := (X' X)"'X"f. We call XB* the best linear
approzimation of the vector f.

Thus X * is the projection of f on the space spanned by the rows of X.

Lemma 11.2.1 Suppose Eee' = o2I. Then

i) BB = B*, Cov(B) = 0*(X T X)71,

i) B| X (8 — )3 = o®p,

i) B| X6 — fI3= X8 — fl5+ o°p
N——— ~—~

approximation estimation
error error

Proof.
i) By straightforward computation

B—p =(XTX)'XTe
We therefore have

and the covariance matrix of 3 is

Cov(3) = Cov(Be) = BCov(e) BT
N —
=c2]

=o?BB" =} XTX)L.
ii) Define the projection PPT := X(X"X)"!X". Then
P
IX(8 =83 = I1PP el3 =) V7,
j=1

where V := P,
EV = P'Ee = 0,

and
Cov(V) = PTCov(e)P = oI

It follows that » »
2 2 2
EY V- YRV -t
j=1 j=1
iii) It holds by Pythagoras’ rule for all b
1X0— FI5 = 1 X (0~ B3+ 1X8" — fI3

since X B* — f is orthogonal to X. a
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Lemma 11.2.2 Suppose e ~ N(0,0%I). Then we have

i) B =B~ N(0,0*(XTX)™),

o IX(B=89113

i) Il (ﬁozﬁ iz 2(p).

Proof.

i) Since 3 is a linear function of the multivariate normal noise vector ¢, the
least squares estimator 3 is also multivariate normal. The result follows from
Lemma 11.2.1.

ii) Define the projection PP := X(XTX)™'X . Then

p
IX(6 - 893 = IPPTel3 =Y V2.

j=1
Now V := PTe¢ has i.i.d. N(0,0?) entries. 0

Remark 11.2.1 More generally, under appropriate conditions, many estima-
tors are approrimately normally distributed (for example the sample median)
and many test statistics have approzimately a x? null-distribution (for example
the x? goodness-of-fit statistic). This phenomenon occurs because many models
can in a certain sense be approximated by the linear model and many minus log-
likelihoods resemble the least squares loss function (applying a two-term Taylor
expansion). Understanding the linear model is a first step towards understand-
ing a wide range of more complicated models.

Corollary 11.2.1 Suppose the linear model is well-specified:
Y=X0B+¢

Assume moreover that e ~ N'(0,021). If 0% := o} is known, a test for
Ho: =00 ,

is:

reject Hy when ||X(B - B93/02 > G;l(l —a),

where G, is the CDF of a x*(p)-distributed random variable.

Remark 11.2.2 When o2 is unknown one may estimate it using the estimator

2112
€
b el
n—p
where ¢ := Y — X3 is the vector of residuals. Under the assumptions of the

previous corollary (but now with possibly unknown o2) the test statistic || X (3 —
BO3/p/6? has under Hy a so-called F-distribution with p and n—p degrees of
freedom.



Chapter 12

High-dimensional statistics

Let Xi,...,X, be independent observations with distribution depending on
some parameter § € © C RP. Thus, the number of parameters is p and the
number of observations is n. In high-dimensional statistics, p is “large”, possibly
p > n. We consider here a prototype example, namely the ( approximate) linear
model.

12.1 Definition of ridge estimator and Lasso

As in the previous chapter, the data are (z1,Y1),..., (zn,Y,) with co-variable
T; = {xi,j}?zo € RP a given p-dimensional vector with z;0 =1 and ¥; € R a
random response (i = 1,...,n). One wants to find a good linear approximation
using the least squares loss function

n d 2
b— Z()fl — in,jb]’> .
=1 j=0

Define as in Chapter 11 p :=d + 1 and

I 10 - T14
1 @o1 -+ @24

1 Tn1l - Tnpd

)

Then

n

d 2
Z(YZ - in,jbj> = [|Y — Xb])3, beR.
=0

1=1

The difference with the previous chapter is now that we consider the high-
dimensional situation where p is “large”. This covers the case p > n or even

73
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=X

If p > n the matrix X has rank at most n. If its rank is equal to n, then
minimizing ||Y — Xb||3 over all b € RP gives a “perfect” solution Arsg with
X ELSE = Y. This solution just interpolates the data. It is of no use when
design is fixed!: we say that it overfits the data.

To avoid overfitting one may use a penalization term that penalizes a too good
fit. In general, the constant term by is not penalized. Recall b = {bj}?:o- Let

us define b_g = {bj};izl.

Definition 12.1.1 The ridge regression estimator is

Brgen = av uin{ 1Y = X015 + X210-0l3

where A > 0 is a regularization parameter.

Definition 12.1.2 The Lasso (Tibshirani [1996]: least absolute shrinkage and
selection operator) is

N A
Bramo = g i { 1Y = X015 + 270l |,

where A > 0 is a regularization parameter and ||b_o|1 := Z;‘l:1 |bj| is the £1-
norm of b_q .

Remark 12.1.1 Suppose the linear model is correct: Y = X + € with € ~
N(0,0%I). The ridge regression estimator is the MAP estimator using as prior
Biy...,Bq ii.d. ~ N(0,7%). The Lasso estimator is the MAP using as prior
B1,...,Bq ii.d. ~ Laplace(0,72). The tuning parameter is then in both cases
A2 =o2/72.

Both ridge estimator and Lasso are biased. As A increases the bias increases,
but the variance decreases.

The regularization parameter \ is for example chosen by using “cross validation”
or (information) theoretic or Bayesian arguments.

12.2 Theory for ridge estimator and Lasso

Let is write

1
Xo:=|: e R"”
1
and
X:(XO X1 Xd).

In this section, we assume

In recent work, data interpolation has been rehabilitated as it can be useful when the
design is random.
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Condition 12.2.1 For j =1,...,n, the entries of x; add up to zero.

This condition can be made without loss of generality. It means that x1,...,Xy

are orthogonal to xq: XjTXo = 0. (Compare with Example 11.1.1.) Define

Xoo=(x1 -+ x4) €R™

Lemma 12.2.1 Lef B = (Bo,Bl ... ,ﬁd be either the ridge estimator or the
Lasso. Then By =Y. Moreover,

B,o = arg min {||Y — X,gb,OH%/n + pen(bg)}
b_og€R4

where
(b_y) N2||b_gll2, if B is the ridge estimator
e = . .
P 2X[[b—o||1, if B is the Lasso

Proof. It holds that
1Y — Xb]13 = [|Y — xoboll5 + Y — X_ob—oll3 — [IY]3.

where we applied Pythagoras’ rule. O

Lemma 12.2.2 For B = Bridge we have

Boo=XToX o+ XD XY

Proof. We apply Lemma 12.2.1. We have

1 0
- v Y — X_ob_ 2 2 B 2
350 IV = X_ab-olf + Xo-ol3

= X, v+ (Xfoxo + )\21> b_o.

The estimator B_o puts this to zero. O

For the Lasso estimator there is no explicit expression in general. We therefore
only consider the special case of orthogonal design and that all columns in X_g
have the same length.

Lemma 12.2.3 Suppose X is a fized design matrix and XIOX_O = nl (thus
p < n necessarily). Define Z := X1 ,Y. Then for B = Brasso, and for j =
1,...,d,
(Z=N/n 2= A
Bj =40 Zj| < A -
(Z;+N/n Z; < =X
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Proof. We apply Lemma 12.2.1. We can write

1Y — X _obol2 = VI3 -205,X )Y +nb o X, X _ob_o

Thus for each j € {1,...,d} we minimize
—2b;Z; + nb3 + 2A|bj].

If Bj > () it must be a solution of putting the derivative of the above expression
to zero:

—Zj+nBj+A=0,

or .
Bj = (Z; — A)/n.

Similarly, if Bj < 0 we must have
—Zj+n5j - A=0.

Otherwise Bj =0. 0O

From Lemma 12.2.2 we conclude that as A grows the ridge estimator shrinks
the coefficients towards zero. They will however not be set exactly to zero.
From Lemma 12.2.3, the coefficients of the Lasso estimator shrink to zero as
well and some - or even many - are set exactly to zero. It can be shown that
this remains true when the design is not orthogonal. The ridge estimator can
be useful if p is moderately large. For very large p the Lasso is to be preferred.
The idea is that one should not try to estimate a signal when it is below the
noise level. Instead, then one should simply put it to zero.

Some notation

o For a vector z € R? we let ||z]|oo := maxj<j<q 2| be its foo-norm.

o For a subset S C {1,...,d} with cardinality s := |S| we let bg := {b;}jcs and
XS = {Xj}j€S~

o We let f_o = X_of* be the projection of f on the linear space spanned by
the columns of X_g.

In the next theorem we again assume orthogonal design.

Theorem 12.2.1 Consider again orthogonal design with XjOX_o =nl. Fix
some level a € (0,1) and suppose that for some A, it holds that P(|| X Tyeloo >

Aa) < . Let B = BLasso. Then for A > Ao we have with probability at least
l—«o

1080 — J-olf < mind X685 — ol + 0+ Aa)?s

NV
approximation estimation
error error

Proof. On the set where || X y¢||oco < Ao we have for j € {1,...,d}
-n|Bi > A+ Ao = 0B — B <A+ A,
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-nlBi] S A+ Aa = (85 — B < 1B;.
So with probability at least (1 — «),

A

IXobo—falf < 3 ngR+ (R (#0051 > A+ A}

?’L‘B; |S)\+)\a

m§H{||Xs,8§ — foollz+ ( + AO‘)%}'

O

Corollary 12.2.1 Suppose that B* has s, = #{j € {1,...,d} : Bj # 0}
non-zero components. Then under the conditions of the above theorem, with
probability at least 1 — «

1X_0(B—o — B3 < (A + Aa)?ss.

The above corollary tells us that the Lasso estimator adapts to favourable sit-
uations where 5* has many zeroes (i.e. where 8* is sparse).

To complete the story, we need to study a bound for A,. It turns out that for
many types of error distributions, one can take A\, of order \/log p.

Remark 12.2.1 The value a = % in Theorem 12.2.1 thus gives a bound for

the median of HXB,O — f-oll3. In the case of Gaussian errors one may use
“concentration of measure” to deduce that | XB—o — f-ol|3 is “concentrated”
around its median.
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Appendix A

Standard distributions

Standard discrete distributions

1. Bernoulli distribution with success parameter p € (0,1). X € {0,1} and
P(X=1)=p, EX=p, Var(X)=p(l—-p).

2. Binomial distribution with n trials and success parameter p € (0, 1).

X €{0,1,...,n}

P(X =k) = (Z) PFL—p)" ™, k=01,...n,

EX =np, Var(X)=np(l—p).
3. Poisson distribution with parameter A > 0. X € {0,1,...}

A
P(X=k) =S5 e k=01,

EX =), Var(X)=A\

79



80

APPENDIX A. STANDARD DISTRIBUTIONS

Standard continuous distributions

4. Gaussian distribution with mean p and variance o?. X € R,

X~ N, o?) & Z:=

N(0,1) is called the standard normal (or Gaussian).

5. The standard normal distribution function.

1 x
@(fL’) = E / €7Z2/2 dZ, T € R.

Let @1 be its inverse function. Then,

d710.9) =1.28, ®71(0.95) =1.64, ®71(0.975) = 1.96.

6. Exponential distribution with parameter A > 0. X € R, := [0, c0),
fx(x) = Ae ™ > 0.

EX =1/\, Var(X)=1/)\%

7. Gamma distribution with parameters o, \. X € Ry := [0, 00),

AOC
fx(z) = (o) e >0,

a)
Here I'(«) is the Gamma function and for integer values I'(m) = (m —1)!.

EX =a/), Var(X)=a/)\.

8. Beta distribution with parameters r,s. X € [0, 1],

L(r+s)

fx(x) = T(IT(s) (1 —-2)t zelo1].
EX = r+s’ Var(X) = (r+s)?21+r+s)



9. Chi-Square (x?) distribution.

The x? distribution with m degrees of freedom is the Gamma, distribution

with parameters (m/2,1/2). Denoted by x?(m). In particular,

XNN(O>1> = X2NX2(1)>

m
X;~N(0,1), j=1,,m, iid = Y X2~ xP(m),
j=1

10. Student distribution.
If Z~N(0,1),Y ~x%(m), Z LY, then,
Z

T .= ,
VY/m

has a student distribution with m degrees of freedom.

Its density is given by

N /2) #

fr(t) = Sl (1

mw T(m/2)

te R

Y

)—(m+1)/2

11. Studentizing. Let {X;}I; be ii.d.
X, =1, X;/n and set

§2= L3 (X - X

" n—1 4
=1

Then, X,, and S? are independent and

Vvn [yn - ,u]
Sn

has a Student distribution with n — 1 degrees of freedom.

with N (p,0?) distribution.

Let



82

APPENDIX A. STANDARD DISTRIBUTIONS



Bibliography

Anirban DasGupta. Probability for Statistics and Machine Learning: Funda-
mentals and Advanced Topics. Springer Science & Business Media, 2011.

Piet Groeneboom and Jon A. Wellner. Information Bounds and Nonparametric
Mazximum Likelihood Estimation, volume 19. Springer Science & Business
Media, 1992.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267—288, 1996.

83



