ETH Zuerich - Homepage
Seminar for Statistics

Christian Sbardella: High dimensional regression and survival models

Adviser: Prof. Dr. Peter B├╝hlmann

August 2011


In the high-dimensional regression we have too many parameters relative to the number of observations and then we can have the problem of the overfitting. A method to solve this problem is to use the Lasso (Least Absolute Shrinkage and Selection Operator) to estimate the regression's coefficients. This estimator has become very popular because, among other properties, it does variable selection, in the sense that some estimated coefficients are equal to zero.

We study the Lasso estimator proving its consistency and finding an oracle inequality in the case of squared error loss.

In this thesis we also talk about survival analysis: this branch of the statistic studies the failure times of an individual (or of a group of individuals) to conclude if for example a new treatment is effective, or if a certain group of individuals has more survival probability than another. We mainly focus on the Cox Proportional Hazard model and the Weibull Proportional Hazard model.

A natural question is: "Can we use the theory of the Lasso estimator in the survival analysis?"

We try to answer this question in the last chapter of this thesis (Chapter 5).


Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2014 Mathematics Department | Imprint | Disclaimer | 25 March 2013