Seminar for Statistics

Nicoletta Andri: Using Causal Inference for Identifying Coresets of the ICF

Adviser: Prof. Dr. Marloes Maathuis

September  2009


The World Health Organisation (WHO) has a strong interest in reducing the ICF-catalogue to a smaller set of items for different reasons such as time management and complexity. In this context, we analyse two data sets of the WHO concerning rheumatism/arthritis and chronic widespread pain consisting of variables from the ICF-catalogue. For this variable selection process we use the approach of Maathuis, Kalisch and Bühlmann which uses graph estimation techniques in combination with a causal method called back door adjustment. We show under which conditions this approach can be applied also to dichotomized data sets and how interactions between the variables can be handled. Significance of the estimates is assessed using permutation tests and a method called stability selection presented by Meinshausen and Bühlmann. Finally, the causal results are discussed and compared to associational results.


Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2015 Mathematics Department | Imprint | Disclaimer | 22 April 2013