Talk 4

bounds on stochastic bandits
& idea of Markovian bandits

by Claudio and Mathias

short recall

 Multiarmed bandit: «sequentially
decide for one of K arms to pull»

short recall

* Multiarmed bandit: «sequentially
decide for one of K arms to pull»

e 3 classes of multiarmed bandits:

- stochastic bandit: each arm fixed
distribution static during all rounds

- adversarial bandit: bandit allowed to
change payouts in each round

- Markovian bandit: state of the
activated arm is allowed to change
after usage (in «Markovian style»)

stochastic bandits

= == I !

Machine
number

1 2 ... I K

Machine
number

distribution

mean of
distribution

mean(v;) = u;

stochastic bandits

V7% W /2%
2 W
™ ™
1 2
Vq Vs
H1 U2

Hi

- 1

12926

Regret

K =2 arms,
Xi¢ reward of armiin time step t,
I, €{1,..,K} selected arm in time step t,

Regret

K =2 arms,
X~V reward of armiin time step t,
I, €{1,..,K} selected arm in time step t,

Regret

K =2 arms,
X~V reward of armiin time step t,
I, €{1,..,K} selected arm in time step t,

The regret after n plays:

n n
R, = max Xis — X
n i=1,...,KZ Lt Z Iet
t=1 t=1

Regret

K =2 arms,
X~V reward of armiin time step t,
I, €{1,..,K} selected arm in time step t,

The regret after n plays:
n n
Ro = mas) Xic=) Kie
t=1 t=1

The pseudo-regret after n plays:

n n 7

R. = max E E X, — E X
=1,k Lt let
L t=1 t=1 i

Regret: stochastic bandits

The pseudo-regret after n plays:

Ry ziirllﬁi(KIE let ZX“

Regret: stochastic bandits

The pseudo-regret after n plays:

R = max B EXw ZXH
=npu’ - zlﬁ[mt]

t=1

max U;
i=1,..K Hi

where u”

Regret: stochastic bandits

The pseudo-regret after n plays:

i IE['“It

t=1

Regret: stochastic bandits

The pseudo-regret after n plays:

- (iIE[Nn(i)] u*> — E an(i) i
i=1 K |

Regret: stochastic bandits

The pseudo-regret after n plays:

Ry=nu' =) Elw,]
K = K
= | D BNl | = E|) Na@)
=1 . =1
= > AEN, (D)
=1

where
N, (i) := number of times arm i pulled up to time n
A; == u* — u; = deviation of ith mean from the best mean

UCB - strategy

* Exploration — exploitation dilemma
* «optimism in face of uncertainty»

— «plausible» environment
— consistent with data
— take most «favourable» environment

Upper confidence bound theorem

* «No free lunch»-principle

* Assumption: there is a convex function iy on R
with 4 = 0:

— log E[e*&~EIXD] < 3 (1)
— log E[eEXI=X] < 3 (1)

2
* Forexample: if X € [0,1], take (1) = %

Upper confidence bound theorem

* Legendre-Fenchel transform/convex conjugate

c YP(A) = iulg(le — Y1)
 Example: Y(x) =e* = supxy —e”*
eR
= vy =1log(x) = 1/)y*(x) = xlog(x) — x

* Example: Y(x) = %lep = P*(x) =$|x|q

where1<p,q<00,%+$=1
A2 22 2
 Example: (1)) == = suple——= =2e—==0
8 LeR 8 4
= A=4e = YP*(e) = 2¢?

Lower bound theorem

» reward distribution X; .~Bernoulli(p, q),
p,q € [0,1]
 strategy statisfies
— E[N, (D)] = o(n®)
—A; >0
—a>0

En Aj
= 28>0 K, 1)

log(n) —

* then liminf,,_,

Comparing upper and lower bound

* kl(uy, p*) = pilog (Z—) + (1= p)log (i:ﬁ)

. —11*)2
. kl(ﬂl,ﬂ*) < (Ui—u™)

ur(1—p®)
. R W—u;
e = [limin 2 > Y
Jnoo fogmy 2 2y 10 l(pi, 1)

W=y w(l—p)
> E: S A—p)= 2: ;
o 2 —pr)? () W —

LU —pi> LU —ui>0

Comparing upper and lower bound

a—2

pwi(l-—u”)
Z‘“ “Hi>0 (ur—py)

* Ry < X0 (u " log(n) + —)

o liminf,, log (n) =

Bandit process

* Bandit process: process of a single machine/arm

e 2 possible actions of the machine:

— continue:
 produces reward r(x;), x; state of machine at time t

* the state changes to x;, 1 according to Markov dynamics x — y with
probability P(x,y)

— freeze:

e produces no reward
 state does not change

» states of the machine
follow a Markov process
-2 transition to other states
with given transition probabilities

[[

N

1
2

Markovian bandit

 Markovian bandits:
— collection of K bandit processes

— at each time t: exactly one machine continued, all others
stay frozen

Markovian bandit

 Markovian bandits:
— collection of K bandit processes

— at each time t: exactly one machine continued, all others
stay frozen

* Objective to optimize: f-discounted reward (i;: arm
pulled at time t)

E[)> 7, (x;,(8)) ,Bt], 0<p<1
g

f: discounting factor, balances exploration-exploitation
trade-off, keeps sum finite

Markovian bandits

-1

Machine
number

2 ... i

Markovian bandits

® O
state 9f : : ® o e ©
machine P O PP
C» O ... DO
Machine :
1 2 | ...

number

Markovian bandits

® O
state 9f : : ® o e ©
machine P O PP
C» O ... DO
Machine :
1 2 | ...

number

Markovian bandits

state of
machine

Machine
number

Other machines stay
frozen
—> states dont change

Markovian bandits

Machine

number

Markovian bandits

state of

machine

Machine

number 1 2 | K
Change State

of machinei

Markovian bandits

® O
state 9f : : ® o P |
machine P O PP
C» O ... DO
Machine :
1 2 | ...

number

Prolem: How to maximize?

Objective: ,8 dlscounted reward (i;: arm pulled at time t)

E

z r (x;, (D) ﬁt

, 0<pB<1

* Possible Solution: Dynamic Programming Solution =
computationally very expensive

* Better Solution: Forward Indcution = can show that
optimal solution of this type =2 computationally much

cheaper

Solution: Forward induction

* |dea: Allow the number of T steps over which
we look ahead at each stage, to depend on
how system evolves while these steps are
taking place =2 i.e. stopping time!

Car journey example

* Problem:
— choose route for journey by car

— Several different possible routes, all of same length which
itersect at various points

— Objective: choose route which minimizes time taken for
journey

Car journey example

* Problem:
— choose route for journey by car

— Several different possible routes, all of same length which
itersect at various points

— Objective: choose route which minimizes time taken for
journey

* Model:

— Markov decision process

— Distance covered so far = «time» variable

— Time take to cover each successive mile = negative reward
— position=state

— Action space = roads to continue at crossroads

Car journey example

* Suboptimality:

— 1st stage in forward induction = find route {; and
distance o4 along {; from the start point st. average
speed in traveling distance g; along {; maximized

— Suboptimal route example:

Start with short stretch of highway, followed by very slow
section vs. choose a trunk road which permits good steady
average speed (over all faster than the other)

— Trouble:

irrevocable decisions have been take at each cross-roads 2
there are alternative routes that are avilable at a stage but
aren’t available later on if they are not chosen—> irrevocable
decisions

Optimality of forward induction

 Forward induction optimal if decisions not
irrevocable

* Irrevocable:

any alternative that is avilable at any stage and is not
chosen, my be chosen at a later stage (with exactly the
same sequence of rewards (appart from discount
factor))

* Optimality for Markovian bandits:

decisions made not irrevocable, i.e. any alternative not
chosen is available in every upcomming time (because

of freezing)
- Forward induction optimal for Markovian bandits

Forward induction maximizations

e 2 maximizations:

— Inner maximization:
* Given: decision rule for taking a sequence of decisions

* Maximize: choose stopping time T to maximize the
conditional expected reward rate

— Outer maximization:
* Given: stopping time T from the inner maximization

* Maximize: choose decision rule to maximize the result
of the inner maximization for that decision rule

Forward induction process

* Resulting Procedure:
— At t=0:
e Given: initial state of process

 Select: decision rule and stopping time 7; and follow
for next T steps

— For t=1,2,...
e Given: info accumulated so far

* Select: new decision rule and stopping time 7;,4 by
conditioning on info accumulated so far and follow it
for next 7,4 steps

Gittins Index Theorem

Maximal expected discounted reward:

—Obtained by always continuing the bandit
having gratest Gittins index

G;(x;) = su E[X¢ t= OTL(Xl(t))IBt | xl(()) — x]
AN T ng) [t=0 :Bt | xl(()) — xi]

where T is a stopping time.

Gittins Index

Discounted rewardup to t
Discounted timeup to t

6. (x) = sup B0 i ()R | xi(0) = xi]
AP TZ? E[}7=0 13t | x,(0) = x;]

where T is a stopping time.

Gittins Index: Adventage

* find best strategy by only computing Gittins
indexes of all arms

e Gittins index of one arm doesn’t depend on
other arms - huge computational savings
compared with dynamic programming

* only need to solve K «one-dimensional»
problems in each time step

Example: Single Machine Scheduling

Problem: n jobs to be scheduled on one machine
job i has processing time t; and positive reward r;

If job 1 processed immediately before job 2, then:
rlﬁtl _I_ TZﬁtl-l_tz > r2ﬁt2 _I_ rlﬁtz-l_tl
B B2
& Gy = (1—ﬁ)ﬁﬁtl > (1 —ﬁ)f_ﬁtz = G,
Total discounted reward is maximized by choosing always
job with biggest G;

Example: Single Machine Scheduling

* Obtaind by calculation: best strategy = always
ripti
1-Rti
* The same obtained with Gittins index:
E[X¢ t= Orl(xl(t)),gt | x;(0) = x;]
G;(x;) = sup ,
T=1 [t=0 ,B | xi(o) — xi]
rifti
1+p+---phi~1
optimal stopping time T = t;

choose biggest

